PROVING STATEMENTS IN LINEAR ALGEBRA
|
|
|
- Frank Alexander
- 9 years ago
- Views:
Transcription
1 Mathematics V2010y Linear Algebra Spring 2007 PROVING STATEMENTS IN LINEAR ALGEBRA Linear algebra is different from calculus: you cannot understand it properly without some simple proofs. Knowing statements of formulas isn t enough. You also have to know their contexts, and how to deduce one from another. That s what these notes are intended to help with. But proof is as much an art as a science, so these are merely guidelines. What is a proof? Just a convincing argument to explain why a mathematical statement is true. However, long experience has led us to develop very clear standards for what is convincing and what isn t. We will try to explain the steps that most frequently arise in a typical proof. But let us be clear: a proof does not have to be one of those mechanical constructions from high school with statements on the left and reasons on the right. Rather, it should be an argument (preferably in complete sentences) that is intelligible and convincing to a human being. Let s start by considering what kinds of basic objects we are dealing with. 1
2 What are our basic objects of study? There are two answers. Scalars, vectors, and matrices. First, there are real numbers, also known as scalars. Then there are m n matrices. There are also vectors in R m, but we regard them as m 1 matrices. You might say that scalars should also be regarded as 1 1 matrices. We might sometimes want to bend the rules this way, but it s usually better not to. For example, if λ is a scalar and A is a 2 2 matrix, then the product λa is defined, but you can t multiply a 1 1 matrix by a 2 2 matrix. In any equation, the same type of object should appear on both sides. It s an error to equate a scalar to a vector, for example. Sets. The other basic objects that we consider are sets. This is what many proofs are about. A set is just any collection of elements, which can be any kind of objects: scalars, vectors, matrices, or even apples and oranges. It s an error to equate a set with an element. For example, Span is a set, not a single vector, so it s an error to write Span (u, v) = λu + µv. An example of a set is R, the set of all real numbers. Another is the interval [0, 1], the set of all real numbers x with 0 x 1. Yet another is R n, the set of all n-vectors. We write x T (spoken as x is in T ) if x is an element of T. We write S T and say S is a subset of T if every element of S is also an element of T. For example, [0, 1] R. It s an error to confuse, belonging of an element, with, inclusion of a subset. However, notice that for any element x T, there is a set {x} whose sole element is x, and then {x} T. 2
3 How can I write down a set by name? A few of them, like R n, have standard names. Others have a finite number of elements, which we can list inside curly braces. This is called roster notation. For example, {3, π, 4} R. For another example, {(1, 3), (2, 4), (3, 7)} R 2. What about sets with an infinite number of elements? We don t have time to write them down this way! Roster notation can be extended in three ways to deal with this. First, you can write dots: {1, 3, 5, 7, 9,...} R. You should only do this when the pattern is absolutely clear. Second, you can define a subset by writing an expression with free variables, which you specify after a solidus (read as such that ): {(t, t) R 2 t R} R 2. That s the correct way to describe the span: Span (u, v) = {λu + µv λ, µ R}. Third, you can determine a subset of a set S by imposing some condition on the elements, which you again write down after the solidus: [0, 1] = {x R 0 x 1}. 3
4 How do I show that two objects are equal? That depends what kind of objects they are. For vectors or matrices. You need to show that they have the same size (usually obvious enough to go without saying) and that all entries are the same. Example 1. Prove that (A T ) T = A. Proof. If A is m n, then A T is n m, so (A T ) T is m n. Moreover, the i, j entry of (A T ) T is ((A T ) T ) i,j = (A T ) j,i = A i,j, that is, it s the same as the i, j entry of A. Hence (A T ) T = A. For sets. You need to show that they have the same elements. That is, every element of S is an element of T, and vice versa. Equivalently, you need to show S T and T S. Sometimes you can do both at once, but sometimes you have to do them separately. Example 2. If u, v R n, prove that Span (u, v) = Span (u + v, v). Proof. By definition, the left-hand side is the set of all linear combinations of u and v. So any element of the left-hand side can be expressed, for some λ, µ R, as λu + µv = λ(u + v) + (µ λ)v, which is a linear combination of u + v and v and hence is an element of the right-hand side. Likewise, any element of the right-hand side can be expressed, for some λ, µ R, as λ(u + v) + µv = λu + (λ + µ)v, which is an element of the left-hand side. Hence the two sides are equal. 4
5 How can I prove an if-and-only-if statement? P if and only if Q really means two things: P implies Q, and Q implies P. One can imagine at least two strategies for proving such a statement: (I) Prove both at once, by connecting P to Q through a chain of equivalences. (II) Prove them separately: first P implies Q, then Q implies P. Example 3. Prove that A is symmetric if and only if I 2A is. Proof. A is symmetric A T = A 2A T = 2A I 2A T = I 2A (I 2A) T = I 2A I 2A is symmetric. [Here we followed strategy (I).] Example 4. Prove that Ax = 0 has a unique solution if and only if Ax = b has a unique solution for any b where it has a solution at all. Proof. =: Suppose the second statement is true. Then x = 0, being a solution of Ax = 0, must be the unique solution. This proves the first statement. = : Conversely, suppose the first statement is true. Then for any two solutions x, x of Ax = b, we have A(x x ) = Ax Ax = b b = 0, so x x must be the unique solution of Ax = 0, namely 0. Hence x = x, that is, any two solutions of Ax = b must be equal. This proves the second statement. [Here we followed strategy (II).] 5
6 How can I prove a for-all statement? That is, something like For all elements of a set S, such-and-such is true. Begin with Let x S. That is, give it an open-ended name that could apply to any element of S. Then argue that for this x, such-and-such must hold. Example 5. If AB = I, prove that for every c R n, Ax = c has a solution. Proof. Let c R n. If x = Bc, then Ax = A(Bc) = (AB)c = Ic = c, so x is a solution. How can I prove a there-exists statement? That is, something like There exists an element of S satisfying so-and-so. Say Let x =... and specify accurately what it is. That is, give it a precise name ensuring that it satisfies what you want. Then argue that for this x, so-and-so must hold. Example 6. If A is n n with rank n, prove that it has an inverse. Proof. What we need to show can be rephrased as: If A is n n with rank n, then there exists an n n B satisfying BA = I. Any such A has RRE form equal to I, so there exist elementary matrices E 1,..., E r with E r E 1 A = I. Let B = E r E 1 ; then BA = I. Now, here is an example where both kinds of let appear. Example 7. If T : R n R m is linear and onto, prove that T is onto. Proof. For T to be onto means that for all x R m, there exists y R n such that T (y) = x. We need to show that T is onto, meaning that for all x R m, there exists z R n such that T (z) = x. Let x R m [this is the open-ended let, which goes with for all ]. Since T is onto, there exists y R n such that T (y) = x. Now let z = y [this is the specific let, which goes with there exists ]. Then T (z) = T ( y) = ( T (y)) = ( x) = x by linearity of T, so T is onto. 6
7 What is mathematical induction? A method for proving a statement for all natural numbers. There are two steps: (a) Check the statement for n = 1 (usually easy). (b) Then, assume it s true for a given n (called the induction hypothesis) and deduce it for n + 1 (called the induction step). This isn t circular: you assume it for only one n, but you prove it for all. Example 8. Prove that for A invertible and for all n > 0, (A n ) 1 = (A 1 ) n. Proof by induction. (a) For n = 1, this is just (A 1 ) 1 = A 1 = (A 1 ) 1. (b) Now, assume (A n ) 1 = (A 1 ) n for a given n. Then A n+1 (A 1 ) n+1 = AA n (A 1 ) n A 1 = AIA 1 = I (where the second equality uses the induction hypothesis), so (A 1 ) n+1 is the inverse of A n+1. 7
8 Any concluding general advice? Sometimes it s better to go back to the original definitions and unravel them; other times it s better to rely on previously established theorems. Also, sometimes it s better to take things apart with indices; other times it s better to work with matrices as a whole. Example 9. Prove that (A + B) T = A T + B T. Proof. By the definition of transpose, the i, j entry of (A + B) T is (A + B) ji. By the definition of matrix sum, (A + B) ji = A ji + B ji. But also by the definition of matrix sum, the i, j entry of A T +B T is A T ij +B T ij. By the definition of transpose, A T ij = A ji, and B T ij = B ji. So the i, j entry of A T + B T is A ji + B ji. Hence (A + B) T and A T + B T have the same i, j entries for each i and j, so they re equal. [Here we unraveled the definitions, working from the outside in on both sides. Also, we took things apart using indices.] Example 10. Prove that det A 1 = 1/ det A. Proof. Since I = AA 1, taking the determinant of both sides yields det I = det(aa 1 ). But previous theorems tell us that det I = 1 and det(ab) = det A det B, so 1 = det A det A 1 and the result follows. [Here we relied on previous theorems. And we treated the matrix as a whole.] 8
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Notes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
Solving simultaneous equations using the inverse matrix
Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix
8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes
Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices
Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
LINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
T ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
The Determinant: a Means to Calculate Volume
The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
Linear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
University of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
Lecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Name: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
MATH 551 - APPLIED MATRIX THEORY
MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
DETERMINANTS TERRY A. LORING
DETERMINANTS TERRY A. LORING 1. Determinants: a Row Operation By-Product The determinant is best understood in terms of row operations, in my opinion. Most books start by defining the determinant via formulas
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
26. Determinants I. 1. Prehistory
26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Cramer s Rule for Solving Simultaneous Linear Equations 8.1 Introduction The need to solve systems of linear equations arises frequently in engineering. The analysis of electric circuits and the control
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
Typical Linear Equation Set and Corresponding Matrices
EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
MA106 Linear Algebra lecture notes
MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector
A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form
Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...
3.2 Matrix Multiplication
3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
Lecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
Fundamentele Informatica II
Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear
Excel supplement: Chapter 7 Matrix and vector algebra
Excel supplement: Chapter 7 atrix and vector algebra any models in economics lead to large systems of linear equations. These problems are particularly suited for computers. The main purpose of this chapter
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
The Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Vector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
Elements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
