Lecture 11 Fast Fourier Transform (FFT)

Size: px
Start display at page:

Download "Lecture 11 Fast Fourier Transform (FFT)"

Transcription

1 Lecture 11 Fast Fourier Transform (FFT) Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn No.1 Science Building, 1575

2 Outline Examples Fast Fourier Transform Applications

3 Signal processing Filtering: a polluted signal High pass and low pass filter (signal and noise) How to obtain the high frequency and low frequency quickly?

4 Solving PDEs on rectangular mesh Solving the Poisson equations u = f in Ω u = 0 on Ω in the rectangular domain After discretization we will obtain the linear system with about N 2 unknowns ui+1,j + ui 1,j + ui,j+1 + ui,j 1 4ui,j 4h 2 = f ij The FFT would give a fast algorithm to solve the system above with computational efforts O(N 2 log 2 N).

5 Computing convolution ( ) Suppose h(x) = 2π 0 f(x y)g(y)dy is the convolution of f and g, where f(x), g(x) C 2π are period 2π functions. Take x j = jδ, j = 0, 1,..., N 1, δ = 2π N discretization h(x i) N 1 j=0 and apply simple rectangular f(x i x j)g(x j) δ i = 0, 1,..., N 1 Define f i = f(x i), g i = g(x i), and let f i is period N respect to the subscript i, define h i = N 1 j=0 The direct computation is O(N 2 ). f i jg j δ i = 0, 1,..., N 1

6 Fast Fourier Transform Fast Fourier Transform is one of the top 10 algorithms in 20th century. But its idea is quite simple, even for a high school student!

7 Outline Examples Fast Fourier Transform Applications

8 Fourier Transform Suppose f(x) is absolutely integrable in (, + ), then the Fourier transform of f(x) is ˆf(k) = + f(x)e ikx dx. Moreover if f(x) is square integrable, then the inverse Fourier transform of ˆf(k) is f(x) = 1 + ˆf(k)e ikx dk. 2π

9 Properties of Fourier transform Some important properties of Fourier transform: 1. Derivative to coefficient: 2. Translation property: 3. Convolution to multiplication: (f (x))(k) = ik ˆf(k); (f(x a))(k) = e ika ˆf(k); (f g)(k) = ˆf(k)ĝ(k); where (f g)(x) = + f(x y)g(y)dy. 4. Parseval s identity: + f(x) 2 dx = 1 2π + ˆf(k) 2 dk.

10 Discrete Fourier transform (DFT) Suppose we have a = (a 0, a 1,, a N 1) T, define DFT of a as c = (c 0, c 1,, c N 1) T = â, where c k = N 1 j=0 jk 2πi a je N, k = 0, 1,..., N 1. Here i is the imaginary unit, e 2πi N = ω is the N-th root of unity. a is the inverse discrete Fourier transform of c defined as a j = 1 N N 1 k=0 jk 2πi c k e N, j = 0, 1,..., N 1. DFT is closely related to the trigonometric interpolation for 2π-periodic function T (x) = N 2 k= N 2 +1 b k e ikx. such that at x j = 2jπ, T (xj) = aj, j = 0, 1,..., N 1. The readers N may find the relation between c k and b k.

11 Remark on DFT DFT can be considered as a linear transformation. Define Fourier matrix F = 1 ω ω N 1 = (ωjk ) N 1 1 ω N 1 ω (N 1)2 j,k=0 where ω is the N-th root of unity. c is the Fourier transform of a can be represented as c = F a

12 Remark on DFT Inverse DFT can also be considered as a linear transformation. Define inverse Fourier matrix F 1 = G = 1 1 ω 1 ω (N 1) N = (ω jk ) N 1 1 ω (N 1) ω (N 1)2 j,k=0 where ω is the N-th root of unity. a is the inverse Fourier transform of c can be represented as a = Gc

13 Properties of DFT Convolution to multiplication: where (f g) k = ˆf k ĝ k k = 0, 1,..., N 1 (f g) l = N 1 j=0 f l j g j l = 0, 1,..., N 1, and f l is period N with respect to index l, i.e. f 1 = f N 1, f 2 = f N 2,... Parseval s identity: N N 1 j=0 a j 2 = N 1 k=0 c k 2

14 FFT idea FFT is proposed by J.W. Cooley and J.W. Tukey in 1960s, but the idea may be traced back to Gauss. The basic motivation is if we compute DFT directly, i.e. c = F a we need N 2 multiplications and N(N 1) additions. Is it possible to reduce the computation effort? First consider the case N = (a 0 + a 2) + (a 1 + a 3) F = 1 i 1 i , F a = (a 0 a 2) i(a 1 a 3) (a 0 + a 2) (a 1 + a 3) 1 i 1 i (a 0 a 2) + i(a 1 a 3)

15 FFT idea From the concrete form of DFT, we actually need 2 multiplications (timing ±i) and 8 additions (a 0 + a 2, a 1 + a 3, a 0 a 2, a 1 a 3 and the additions in the middle). This observation may reduce the computational effort from O(N 2 ) into O(N log 2 N) Because It is a typical fast algorithm. log lim 2 N N N = 0 Fast algorithms of this type of recursive halving are very typical in scientific computing.

16 Construction of FFT Consider N = 2 m and denote p(x) = a 0 + a 1x + + a N 1x N 1, divide p(x) into odd ( ) and even ( ) power parts p(x) = (a 0 + a 2x 2 + ) + x(a 1 + a 3x 2 + ) = p e(x 2 ) + xp o(x 2 ) where p e(t) = a 0 + a 2t a N 2t N 2 1, p o(t) = a 1 + a 3t a N 1t N 2 1 Define ω k = e 2πi k (k-th root of unity), then when j = 0, 1,..., N 2 1 c j c N 2 +j = p e(ω 2j N ) + ωj N po(ω2j N ) = p e(ω 2( N 2 +j) N ) + ω N 2 +j N p o(ω 2( N 2 +j) N )

17 Construction of FFT Pay attention that ω 2j N = ωj N 2, ω N 2 +j N = ω j N, ωn+2j N = ω j N 2 then c j = v j + ω j N uj, c j+ N 2 = v j ω j N uj j = 0, 1,..., N 2 1 where v j = p e(ω j N 2 ), u j = p o(ω j N 2 ) The formula above show that the DFT of N components vector a could be converted to compute the DFT of two N components vectors ae, ao 2 and some simple additions and multiplications. This is called Danielson-Lanczos algorithm. The recursive application of this idea gives FFT.

18 A simple example: N = 8 Suppose the array a = (a 0, a 1,, a 7) T Step A: Splitting (reordering) (odd parts and even parts): Step 1 Step 2 Step 3 a e = (a 0, a 2, a 4, a 6 ) T, a o = (a 1, a 3, a 5, a 7 ) T ; a ee = (a 0, a 4 ) T, a eo = (a 2, a 6 ) T, a oe = (a 1, a 5 ) T, a oo = (a 3, a 7 ) T ; a eee a eeo a eoe a eoo a oee a oeo a ooe a ooo a 0 a 4 a 2 a 6 a 1 a 5 a 3 a 7

19 A simple example: N = 8 Step B: Combination: Step 1 c ee = (a 0 + ω2a 0 4, a 0 ω2a 0 4) T, c eo = (a 2 + ω2a 0 6, a 2 ω2a 0 6) T, c oe = (a 1 + ω2a 0 5, a 1 ω2a 0 5) T, c oo = (a 3 + ω2a 0 7, a 3 ω2a 0 7) T, Define the notations w 4 (w 0 4, w 1 4) T, w 8 (w 0 8, w 1 8, w 2 8, w 3 8) T, and X Y (x jy j) j as the vector product through multiplication by components.

20 A simple example: N = 8 Step B: Combination: Step 2 Step 3 [ ] [ ] cee + w 4 c eo coe + w 4 c oo c e =, c o =, c ee w 4 c eo c oe w 4 c oo [ ] ce + w 8 c 0 c = c e w 8 c 0

21 A simple sketch of FFT (N = 8) a reordering a 0 a 4 a 2 a 6 a 1 a 5 a 3 a 7 combination 1 c ee c eo c eo c oo combination 2 [ ce c o ] combination 3 c

22 A remark on the reordering If we map e to 0, and o to 1 we can find the binary representation of the indices after reordering is just the bit reversal before reordering 0= = = = = = = = Bit reversal = = = = = = = = 7

23 Outline Examples Fast Fourier Transform Applications

24 Compute the convolution From the discretization at the beginning, we have h i = N 1 j=0 f i jg j δ i = 0, 1,..., N 1 thus h = (ĥ) = (δ ˆf ĝ) After using FFT, N 2 + N multiplications and N(N 1) additions are reduced to 3 2 N log 2 N + 2N multiplications and 3N log 2 N additions.

25 Solving the linear system with loop matrix Let L = c 0 c N 1 c 1 c 1 c 0 c 2 Solving Lx = b. L is a loop matrix. We have c N 1 c N 2 c 0 (Lx) i = N 1 j=0 c i jx j where we assume c is period N with respect to the subscripts, and x = (x 0, x 1,..., x N 1) T.

26 Solving the linear system with loop matrix First consider the Jordan form of L. From the formula before Lx = c x = λx Take DFT we have then eigenvalues ĉ ˆx = λˆx The eigenvectors where δ kj is Kronecker s δ. Take inverse transform we obtain λ k = ĉ k ˆx (k) j = δ kj, (j, k = 0, 1,..., N 1) x (0) = (1, 1,..., 1) T, x (1) = (1, ω 1,..., ω (N 1) ) T, x (N 1) = (1, ω (N 1),..., ω (N 1)2 ) T

27 Solving the linear system with loop matrix Spectral decomposition of L L = (x (0) x (1) x (N 1) ) λ 0 λ 1... (x (0) x (1) x (N 1) ) 1 = (NF 1 )Λ (NF 1 ) 1 = F 1 ΛF λ N 1 Solving Lx = b is equivalent to F 1 ΛF x = b, i.e. Λ(F x) = F b. Then it is composed of three steps: Step 1: Compute F b i.e. apply FFT to b to obtain ˆb; Step 2: Compute Λ i.e. apply FFT to c to obtain ĉ; Step 3: Compute ˆx k = ˆb k /ĉ k, and then compute (ˆx) to obtainx.

28 Homework assignment Familiarize the FFT and IFFT command in MATLAB; Compute the convolution for h(x) = 2π 0 sin(x y)e cos y dy

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

1.4 Fast Fourier Transform (FFT) Algorithm

1.4 Fast Fourier Transform (FFT) Algorithm 74 CHAPTER AALYSIS OF DISCRETE-TIME LIEAR TIME-IVARIAT SYSTEMS 4 Fast Fourier Transform (FFT Algorithm Fast Fourier Transform, or FFT, is any algorithm for computing the -point DFT with a computational

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let) Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

How To Understand The Discrete Fourier Transform

How To Understand The Discrete Fourier Transform The Fast Fourier Transform (FFT) and MATLAB Examples Learning Objectives Discrete Fourier transforms (DFTs) and their relationship to the Fourier transforms Implementation issues with the DFT via the FFT

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

ECE 842 Report Implementation of Elliptic Curve Cryptography

ECE 842 Report Implementation of Elliptic Curve Cryptography ECE 842 Report Implementation of Elliptic Curve Cryptography Wei-Yang Lin December 15, 2004 Abstract The aim of this report is to illustrate the issues in implementing a practical elliptic curve cryptographic

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones

Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials 3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines

More information

FAST FOURIER TRANSFORM ALGORITHMS WITH APPLICATIONS. A Dissertation Presented to the Graduate School of Clemson University

FAST FOURIER TRANSFORM ALGORITHMS WITH APPLICATIONS. A Dissertation Presented to the Graduate School of Clemson University FAST FOURIER TRANSFORM ALGORITHMS WITH APPLICATIONS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

8 Polynomials Worksheet

8 Polynomials Worksheet 8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions - Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

The Convolution Operation

The Convolution Operation The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations

More information

Introduction to Complex Fourier Series

Introduction to Complex Fourier Series Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

GEC320 COURSE COMPACT. Four hours per week for 15 weeks (60 hours)

GEC320 COURSE COMPACT. Four hours per week for 15 weeks (60 hours) GEC320 COURSE COMPACT Course Course code: GEC 320 Course title: Course status: Course Duration Numerical Methods (2 units) Compulsory Four hours per week for 15 weeks (60 hours) Lecturer Data Name: Engr.

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Nonlinear Algebraic Equations Example

Nonlinear Algebraic Equations Example Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

NOTRE DAME MATHEMATICAL Number 2 GALOIS THEORY. Lectures delivered at the University of Notre Dame

NOTRE DAME MATHEMATICAL Number 2 GALOIS THEORY. Lectures delivered at the University of Notre Dame NOTRE DAME MATHEMATICAL Number 2 LECTURES GALOIS THEORY Lectures delivered at the University of Notre Dame by DR. EMIL ARTIN Professor of Mathematics, Princeton University Edited and supplemented with

More information

A note on companion matrices

A note on companion matrices Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Chebyshev Expansions

Chebyshev Expansions Chapter 3 Chebyshev Expansions The best is the cheapest. Benjamin Franklin 3.1 Introduction In Chapter, approximations were considered consisting of expansions around a specific value of the variable (finite

More information

9 Fourier Transform Properties

9 Fourier Transform Properties 9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

More information

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291) Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

O(n 3 ) O(4 d nlog 2d n) O(n) O(4 d log 2d n)

O(n 3 ) O(4 d nlog 2d n) O(n) O(4 d log 2d n) O(n 3 )O(4 d nlog 2d n) O(n)O(4 d log 2d n) O(n 3 ) O(n) O(n 3 ) O(4 d nlog 2d n) O(n)O(4 d log 2d n) 1. Fast Gaussian Filtering Algorithm 2. Binary Classification Using The Fast Gaussian Filtering Algorithm

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Fast Fourier Transform: Theory and Algorithms

Fast Fourier Transform: Theory and Algorithms Fast Fourier Transform: Theory and Algorithms Lecture Vladimir Stojanović 6.973 Communication System Design Spring 006 Massachusetts Institute of Technology Discrete Fourier Transform A review Definition

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

We will take the Fourier transform of integrable functions of one variable

We will take the Fourier transform of integrable functions of one variable Chapter 6 Fourier analysis (Historical intro: the heat equation on a square plate or interval.) Fourier s analysis was tremendously successful in the 9th century for formulating series expansions for solutions

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

1 Inner Products and Norms on Real Vector Spaces

1 Inner Products and Norms on Real Vector Spaces Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module: MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

1.1 Discrete-Time Fourier Transform

1.1 Discrete-Time Fourier Transform 1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Understanding and Applying Kalman Filtering

Understanding and Applying Kalman Filtering Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding

More information

Numerical Methods for Solving Systems of Nonlinear Equations

Numerical Methods for Solving Systems of Nonlinear Equations Numerical Methods for Solving Systems of Nonlinear Equations by Courtney Remani A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 Honour s

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

6 Systems Represented by Differential and Difference Equations

6 Systems Represented by Differential and Difference Equations 6 Systems Represented by ifferential and ifference Equations An important class of linear, time-invariant systems consists of systems represented by linear constant-coefficient differential equations in

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information