Image Compression through DCT and Huffman Coding Technique
|
|
|
- Bertina Rice
- 10 years ago
- Views:
Transcription
1 International Journal of Current Engineering and Technology E-ISSN , P-ISSN INPRESSCO, All Rights Reserved Available at Research Article Rahul Shukla * and Narender Kumar Gupta Department of Computer Science and Engineering, SHIATS, Allahabad, India Accepted 31 May 2015, Available online 06 June 2015, Vol.5, No.3 (June 2015) Abstract Image compression is an art used to reduce the size of a particular image. The goal of image compression is to eliminate the redundancy in a file s code in order to reduce its size. It is useful in reducing the image storage space and in reducing the time needed to transmit the image. Image compression is more significant for reducing data redundancy for save more memory and transmission bandwidth. An efficient compression technique has been proposed which combines DCT and Huffman coding technique. This technique proposed due to its Lossless property, means using this the probability of loss the information is lowest. Result shows that high compression rates are achieved and visually negligible difference between compressed images and original images. Keywords: Huffman coding, Huffman decoding, JPEG, TIFF, DCT, PSNR, MSE 1. Introduction 1 Image compression is a technique in which large amount of disk space is required for the raw images which seems to be a very big disadvantage during transmission and storage. With increase in technology an efficient technique for image compression is needed. Even though there are so many compression techniques which is present already, but the need for better compression technique is required which is faster, memory efficient and simply suits the requirements of the user. To analyze the parameters of image compression Peak Signal to noise ratio and compression ratio is an important parameters it gives synthetic performance of the compression of images. Image is a 2 Dimensional signal represented by Digital system. Normally Image taken from the camera is in the analog form. However for processing, transmitting and storage, images are converted in to digital form. A Digital Image is basically two Dimensional arrays of pixels. Basically compressing an image is different from compressing digital data. Data compression algorithm which is generally used for Image compression but it gives us result which is less than optimal. In remote sensing, bio medical and video processing techniques different types of images are used which require compression for transmission and storage. Compression is achieved by removing redundancy or extra bits from the image. There are numerous data compression algorithm which can be considered as universal number of universal compression algorithms that can compress almost any kind of data. These are the lossless methods they retain all the information of the compressed data. However, they do not take advantage of the 2- dimensional nature of the image data. Images have certain statistical properties, which can be exploited by encoders especially designed for them. Also, for the sake of saving a little more storage space and bandwidth some of the finer details in the image can be sacrificed. In this paper, a new technique to achieve image compression algorithm is proposed that combines a DCT transform and Huffman coding. Huffman coding is a well - known algorithm for generating minimum redundancy codes as compared to other algorithms. The Huffman coding has effectively used in text, image and video compression. The DCT transform is not new to image coding problems, some approaches based on DCT transforms have been recently reported in literature. The synergy of DCT is for better tackle the problem has been proposed. The method is shown to efficiently encode images in terms of high peak signal to noise ratio (PSNR) values. 2. Image Compression Techniques The image compression techniques are broadly classified into two categories depending whether or not an exact replica of the original image could be reconstructed using the compressed image. These are: *Corresponding auhor Rahul Shukla is a M.Tech Scholar and Narender Kumar Gupta is working as Associate Professor 1. Lossless technique 2. Lossy technique 1942 International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)
2 2.1 Lossless compression technique In lossless compression techniques, the original image can be perfectly recovered from the compressed (encoded) image. These are also called noiseless since they do not add noise to the signal (image).it is also known as entropy coding since it use statistics/decomposition techniques to eliminate/minimize redundancy. Lossless compression is used only for a few applications with stringent requirements such as medical imaging. Following techniques are included in lossless compression: 1. Run length encoding 2. Huffman encoding 3. LZW coding 4. Area coding 3. Huffman Algorithm This coding technique is basically based on frequency of occurrence of a data item. The principle behind this technique is to use lower number of bits to encode the data that occurs more frequently. A Huffman code dictionary, which associates each data symbol with a code-word, has the property that no code-word in the dictionary is a prefix of any other code-word in the dictionary. The basis for this coding is a code tree according to Huffman, which assigns short code words to symbols frequently used and long code words to symbols rarely used for both DC and AC coefficients, each symbol is encoded with a variable-length code Run Length Encoding technique This is a very simple compression method used for sequential data. It is very useful in case of repetitive data. This technique replaces sequences of identical symbols (pixels), called runs by shorter symbols Huffman Encoding This is a general technique for coding symbols based on their statistical occurrence frequencies (probabilities). The pixels in the image are treated as symbols. The symbols that occur more frequently are assigned a smaller number of bits, while the symbols that occur less frequently are assigned a relatively larger number of bits. Huffman code is a prefix code. This means that the (binary) code of any symbol is not the prefix of the code of any other symbol LZW Coding LZW (Lempel- Ziv- Welch) is a dictionary based coding. Dictionary based coding can be static or dynamic. In static dictionary coding, dictionary is fixed during the encoding and decoding process. In dynamic dictionary coding, the dictionary is updated on fly. LZW is widely used in computer industry and is implemented as compress command on UNIX Area Coding Area coding is an enhanced form of run length coding, reflecting the two dimensional character of images. This is a significant advance over the other lossless methods. For coding an image it does not make too much sense to interpret it as a sequential stream, as it is in fact an array of sequences, building up a two dimensional object. The algorithms for area coding try to find rectangular regions with the same characteristics. This type of coding can be highly effective but it bears the problem of a nonlinear method, which cannot be implemented in hardware. Figure 2(a) Flowchart of Huffman Algorithm 3.1 Huffman Coding The Huffman encoding algorithm starts by constructing a list of all the alphabet symbols in descending order of their probabilities. It then constructs, from the bottom up, a binary tree with a symbol at every leaf. This is done in steps, where at each step two symbols with the smallest probabilities are selected, added to the top of the partial tree, deleted from the list, and replaced with an auxiliary symbol representing the two original symbols. When the list is reduced to just one auxiliary symbol (representing the entire alphabet), the tree is 1943 International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)
3 complete. The tree is then traversed to determine the code-words of the symbols Huffman Decoding Before starting the compression of a data file, the compressor (encoder) has to determine the codes. It does that based on the probabilities (or frequencies of occurrence) of the symbols. The probabilities or frequencies have to be written, as side information, on the output, so that any Huffman decoder will be able to decompress the data. This is easy, because the frequencies are integers and the probabilities can be written as scaled integers. It normally adds just a few hundred bytes to the output. It is also possible to write the variable-length codes themselves on the output, but this may be awkward, because the codes have different sizes. It is also possible to write the Huffman tree on the output, but this may require more space than just the frequencies. In any case, the decoder must know what is at the start of the compressed file, read it, and construct the Huffman tree for the alphabet. Only then can it read and decode the rest of its input. The algorithm for decoding is simple. Start at the root and read the first bit off the input (the compressed file). If it is zero, follow the bottom edge of the tree; if it is one, follow the top edge. Read the next bit and move another edge toward the leaves of the tree. When the decoder arrives at a leaf, it finds there the original, uncompressed symbol, and that code is emitted by the decoder. The process starts again at the root with the next bit. Decoding a Huffman-compressed file by sliding down the code tree for each symbol is conceptually simple, but slow. The compressed file has to be read bit by bit and the decoder has to advance a node in the code tree for each bit. 4. Discrete Cosine Transform Transformation of image is necessary in the field of image processing. Discrete cosine transform (DCT) can be used at feature extraction, filtering, image compression and signal processing. There are a lot of transforms different from DCT as Karhunen-Loeve transform (KLT), Discrete Fourier transforms (DFT), and Hadamard transform and Slant transform. DCT has more efficient feature on energy compaction than DFT. DCT has also less complex calculation than KLT and DCT has good energy compaction feature as KLT. DCT converts an image to spatial domain into a frequency domain. Figure 3(a) Flowchart of Huffman Algorithm 5.1. Simulation Parameters MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. MATLAB stands for matrix laboratory, and was written originally to provide easy access to matrix software developed by LINPACK (linear system package) and EISPACK (Eigen system package) projects. MATLAB is therefore built on a foundation of sophisticated matrix software in which the basic element is array that does not require pre dimensioning which to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of time. 6. Result and Discussions In this paper MATLAB Simulator has been used to evaluate the performance of Huffman coding technique in the field of image compression behalf of compression parameters. The proposed algorithm has been applied on the different images having TIFF and JPEG format. 5. Proposed Algorithm Algorithm for compression of image using Huffman techniques with Discrete Cosine Transform has been proposed in this section. The algorithm of the proposed method is: Figure 4(a) cameraman original image 1944 International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)
4 error metrics which is used to compare the quality of image compression, that are known as MSE and PSNR. The MSE represents the cumulative squared error between the compressed and the original image whereas PSNR represents a measure of the peak error. Lower the value of MSE lowers the error and PSNR tells us about the quality of image, more the PSNR value better will be the result. MSE= ( ) ( ) Where m, n is the size of the original image. Figure 4(b) cameraman compressed image Figure 4(a) shows cameraman original image in TIFF format having image size When proposed algorithm has been applied on the cameraman image which is showing in figure 4(a) then obtained the cameraman compressed image which is showing in figure 4(b). When Barbara original image in JPEG format having size shown in figure 4(c). When proposed algorithm has been applied on this image than found Barbara compressed image which is shown in figure 4(d). PSNR db = 10log 10 ( ) Table 1 Compression ratio with PSNR using Huffman Coding based on Histogram Information and Image Segmentation Compression ratio PSNR CR= 20% CR= 30% CR= 40% CR= 50% CR= 60% CR= 70% Table 2 Compression ratio with MSE using Huffman Coding based on Histogram Information and Image Segmentation Compression Ratio MSE Figure 4(c) Barbara original image Table 3 Compression parameter Through DCT and Huffman Coding Technique Figure 4(d) Barbara compressed image Compression rate shows that how much an image can be compressed from its original size. There are two Parameter Cameraman Barbara image image Compression rate PSNR MSE Table (1) shows that the compression parameters for both the images which is shown in figure 4(b) and figure 4(d). Conclusion After observing the results it can be concluded that the objective of the research is achieved with following observation. It is concluded that Image Compression is an important technique in digital image processing. There are different types of compression techniques but 1945 International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)
5 Huffman Coding technique is a good compression technique in lossless image compression. Huffman compression is a variable length type of compression technique. In Huffman, the coding redundancy can be eliminated by assigning the codes in better way. Discrete Cosine Transform with Huffman codes has been used in the proposed algorithm and better quality of compressed image with high PSNR value and MSE has been achieved with high compression rate. References A. Maan (2013), Analysis and Comparison of Algorithms forlossless Data Compression. IJICT K. Novak (June 1996), A Comparison of Two lmage Compression Techniques for Softcopy Photogrammetric, Photogrammetric Engineering & Remote Sensing, Vol. 62, No. 6, pp Y. shen, A Medical Image Compression Scheme Based on Low Order Linear Predictor and Most-likely Magnitude Huffman Code (June 25-28, 2006), IEEE International Conference on Mechatronics and Automation, Luoyang, China Buro M (1993) On the maximum length of Huffman codes, Information Processing Letters, Vol. 45, No.5, pp Chen H, Wang Y, Lan Y (1999), A Memory Efficient and Fast Huffman Decoding Algorithm Information Processing Letters, Vol. 69, No. 3, pp Ganvir N, Jadhav A (2010), Explore the Performance of the ARM Processor Using JPEG International Journal on Computer Science and Engineering, Vol. 2(1), pp International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)
Introduction to image coding
Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by
Compression techniques
Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion
CHAPTER 2 LITERATURE REVIEW
11 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION Image compression is mainly used to reduce storage space, transmission time and bandwidth requirements. In the subsequent sections of this chapter, general
Information, Entropy, and Coding
Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated
Storage Optimization in Cloud Environment using Compression Algorithm
Storage Optimization in Cloud Environment using Compression Algorithm K.Govinda 1, Yuvaraj Kumar 2 1 School of Computing Science and Engineering, VIT University, Vellore, India [email protected] 2 School
Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding
Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding C. SARAVANAN [email protected] Assistant Professor, Computer Centre, National Institute of Technology, Durgapur,WestBengal,
Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.
Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image
Video compression: Performance of available codec software
Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes
Analysis of Compression Algorithms for Program Data
Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory
On the Use of Compression Algorithms for Network Traffic Classification
On the Use of for Network Traffic Classification Christian CALLEGARI Department of Information Ingeneering University of Pisa 23 September 2008 COST-TMA Meeting Samos, Greece Outline Outline 1 Introduction
A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES
A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES 1 JAGADISH H. PUJAR, 2 LOHIT M. KADLASKAR 1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli,
Introduction to Medical Image Compression Using Wavelet Transform
National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自
Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)
Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- [email protected] Objective: A study, implementation and comparison of
Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India
Abstract Image compression is now essential for applications such as transmission and storage in data bases. In this paper we review and discuss about the image compression, need of compression, its principles,
Wan Accelerators: Optimizing Network Traffic with Compression. Bartosz Agas, Marvin Germar & Christopher Tran
Wan Accelerators: Optimizing Network Traffic with Compression Bartosz Agas, Marvin Germar & Christopher Tran Introduction A WAN accelerator is an appliance that can maximize the services of a point-to-point(ptp)
Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine
Parametric Comparison of H.264 with Existing Video Standards
Parametric Comparison of H.264 with Existing Video Standards Sumit Bhardwaj Department of Electronics and Communication Engineering Amity School of Engineering, Noida, Uttar Pradesh,INDIA Jyoti Bhardwaj
Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera
Comparison of different image compression formats ECE 533 Project Report Paula Aguilera Introduction: Images are very important documents nowadays; to work with them in some applications they need to be
JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions
Edith Cowan University Research Online ECU Publications Pre. JPEG compression of monochrome D-barcode images using DCT coefficient distributions Keng Teong Tan Hong Kong Baptist University Douglas Chai
Figure 1: Relation between codec, data containers and compression algorithms.
Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order
Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IV (Mar-Apr. 2014), PP 43-47 Secured Lossless Medical Image Compression Based On Adaptive Binary
Video-Conferencing System
Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video
encoding compression encryption
encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS Dasaradha Ramaiah K. 1 and T. Venugopal 2 1 IT Department, BVRIT, Hyderabad, India 2 CSE Department, JNTUH,
Hybrid Lossless Compression Method For Binary Images
M.F. TALU AND İ. TÜRKOĞLU/ IU-JEEE Vol. 11(2), (2011), 1399-1405 Hybrid Lossless Compression Method For Binary Images M. Fatih TALU, İbrahim TÜRKOĞLU Inonu University, Dept. of Computer Engineering, Engineering
Performance Analysis of medical Image Using Fractal Image Compression
Performance Analysis of medical Image Using Fractal Image Compression Akhil Singal 1, Rajni 2 1 M.Tech Scholar, ECE, D.C.R.U.S.T, Murthal, Sonepat, Haryana, India 2 Assistant Professor, ECE, D.C.R.U.S.T,
2695 P a g e. IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India
Integrity Preservation and Privacy Protection for Digital Medical Images M.Krishna Rani Dr.S.Bhargavi IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India Abstract- In medical treatments, the integrity
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
A comprehensive survey on various ETC techniques for secure Data transmission
A comprehensive survey on various ETC techniques for secure Data transmission Shaikh Nasreen 1, Prof. Suchita Wankhade 2 1, 2 Department of Computer Engineering 1, 2 Trinity College of Engineering and
Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel
Geographic Information Technology Training Alliance (GITTA) presents: Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Content 1.... 2 1.1. General Compression Concepts...3
ANALYSIS AND EFFICIENCY OF ERROR FREE COMPRESSION ALGORITHM FOR MEDICAL IMAGE
ANALYSIS AND EFFICIENCY OF ERROR FREE COMPRESSION ALGORITHM FOR MEDICAL IMAGE 1 J HEMAMALINI, 2 D KAAVYA 1 Asstt Prof., Department of Information Technology, Sathyabama University, Chennai, Tamil Nadu
http://www.springer.com/0-387-23402-0
http://www.springer.com/0-387-23402-0 Chapter 2 VISUAL DATA FORMATS 1. Image and Video Data Digital visual data is usually organised in rectangular arrays denoted as frames, the elements of these arrays
Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433
Class Notes CS 3137 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 1. FIXED LENGTH CODES: Codes are used to transmit characters over data links. You are probably aware of the ASCII code, a fixed-length
Study and Implementation of Video Compression standards (H.264/AVC, Dirac)
Study and Implementation of Video Compression standards (H.264/AVC, Dirac) EE 5359-Multimedia Processing- Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) Objective A study, implementation and comparison
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM Iuon Chang Lin Department of Management Information Systems, National Chung Hsing University, Taiwan, Department of Photonics and Communication Engineering,
Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden)
Quality Estimation for Scalable Video Codec Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Purpose of scalable video coding Multiple video streams are needed for heterogeneous
Coding and decoding with convolutional codes. The Viterbi Algor
Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition
Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder
Performance Analysis and Comparison of 15.1 and H.264 Encoder and Decoder K.V.Suchethan Swaroop and K.R.Rao, IEEE Fellow Department of Electrical Engineering, University of Texas at Arlington Arlington,
Implementation of ASIC For High Resolution Image Compression In Jpeg Format
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 4, Ver. I (Jul - Aug. 2015), PP 01-10 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Implementation of ASIC For High
LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b
LZ77 The original LZ77 algorithm works as follows: A phrase T j starting at a position i is encoded as a triple of the form distance, length, symbol. A triple d, l, s means that: T j = T [i...i + l] =
AUTHORIZED WATERMARKING AND ENCRYPTION SYSTEM BASED ON WAVELET TRANSFORM FOR TELERADIOLOGY SECURITY ISSUES
AUTHORIZED WATERMARKING AND ENCRYPTION SYSTEM BASED ON WAVELET TRANSFORM FOR TELERADIOLOGY SECURITY ISSUES S.NANDHINI PG SCHOLAR NandhaEngg. College Erode, Tamilnadu, India. Dr.S.KAVITHA M.E.,Ph.d PROFESSOR
How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm
Implementation of H.264 Video Codec for Block Matching Algorithms Vivek Sinha 1, Dr. K. S. Geetha 2 1 Student of Master of Technology, Communication Systems, Department of ECE, R.V. College of Engineering,
FCE: A Fast Content Expression for Server-based Computing
FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao [email protected] Fei Li Department of Computer Science
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
ELECTRONIC DOCUMENT IMAGING
AIIM: Association for Information and Image Management. Trade association and professional society for the micrographics, optical disk and electronic image management markets. Algorithm: Prescribed set
DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION
DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION K. Revathy 1 & M. Jayamohan 2 Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India 1 [email protected]
Original-page small file oriented EXT3 file storage system
Original-page small file oriented EXT3 file storage system Zhang Weizhe, Hui He, Zhang Qizhen School of Computer Science and Technology, Harbin Institute of Technology, Harbin E-mail: [email protected]
Lossless Medical Image Compression using Predictive Coding and Integer Wavelet Transform based on Minimum Entropy Criteria
Lossless Medical Image Compression using Predictive Coding and Integer Wavelet Transform based on Minimum Entropy Criteria 1 Komal Gupta, Ram Lautan Verma, 3 Md. Sanawer Alam 1 M.Tech Scholar, Deptt. Of
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
Image Compression and Decompression using Adaptive Interpolation
Image Compression and Decompression using Adaptive Interpolation SUNILBHOOSHAN 1,SHIPRASHARMA 2 Jaypee University of Information Technology 1 Electronicsand Communication EngineeringDepartment 2 ComputerScience
Fast Arithmetic Coding (FastAC) Implementations
Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by
Security Based Data Transfer and Privacy Storage through Watermark Detection
Security Based Data Transfer and Privacy Storage through Watermark Detection Gowtham.T 1 Pradeep Kumar.G 2 1PG Scholar, Applied Electronics, Nandha Engineering College, Anna University, Erode, India. 2Assistant
Genetically Modified Compression Approach for Multimedia Data on cloud storage Amanjot Kaur Sandhu [1], Er. Anupama Kaur [2] [1]
Genetically Modified Compression Approach for Multimedia Data on cloud storage Amanjot Kaur Sandhu [1], Er. Anupama Kaur [2] [1] M.tech Scholar, [2] Assistant Professor. Department of Comp. Sc. and Engg,
Lossless Data Compression Standard Applications and the MapReduce Web Computing Framework
Lossless Data Compression Standard Applications and the MapReduce Web Computing Framework Sergio De Agostino Computer Science Department Sapienza University of Rome Internet as a Distributed System Modern
Transform-domain Wyner-Ziv Codec for Video
Transform-domain Wyner-Ziv Codec for Video Anne Aaron, Shantanu Rane, Eric Setton, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University 350 Serra Mall,
Entropy and Mutual Information
ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 Macmillan Reference Ltd Information Theory information, entropy, communication, coding, bit, learning Ghahramani, Zoubin Zoubin Ghahramani University College London
Michael W. Marcellin and Ala Bilgin
JPEG2000: HIGHLY SCALABLE IMAGE COMPRESSION Michael W. Marcellin and Ala Bilgin Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721. {mwm,bilgin}@ece.arizona.edu
Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation
Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation Sunil Karthick.M PG Scholar Department of ECE Kongu Engineering College Perundurau-638052 Venkatachalam.S Assistant Professor
Data Mining Un-Compressed Images from cloud with Clustering Compression technique using Lempel-Ziv-Welch
Data Mining Un-Compressed Images from cloud with Clustering Compression technique using Lempel-Ziv-Welch 1 C. Parthasarathy 2 K.Srinivasan and 3 R.Saravanan Assistant Professor, 1,2,3 Dept. of I.T, SCSVMV
Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected]
Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different
For Articulation Purpose Only
E305 Digital Audio and Video (4 Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of thinking, learning, problem solving, team work, communication,
Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl [email protected].
Video Encryption Exploiting Non-Standard 3D Data Arrangements Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl [email protected] Andreas Uhl 1 Carinthia Tech Institute & Salzburg University Outline
SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A
International Journal of Science, Engineering and Technology Research (IJSETR), Volume, Issue, January SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A N.Rama Tej Nehru, B P.Sunitha
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network.
Global Journal of Computer Science and Technology Volume 11 Issue 3 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172
Understanding Compression Technologies for HD and Megapixel Surveillance
When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Image Authentication Scheme using Digital Signature and Digital Watermarking
www..org 59 Image Authentication Scheme using Digital Signature and Digital Watermarking Seyed Mohammad Mousavi Industrial Management Institute, Tehran, Iran Abstract Usual digital signature schemes for
Binary Trees and Huffman Encoding Binary Search Trees
Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary
COMPRESSION OF 3D MEDICAL IMAGE USING EDGE PRESERVATION TECHNIQUE
International Journal of Electronics and Computer Science Engineering 802 Available Online at www.ijecse.org ISSN: 2277-1956 COMPRESSION OF 3D MEDICAL IMAGE USING EDGE PRESERVATION TECHNIQUE Alagendran.B
Arithmetic Coding: Introduction
Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation
Multi-factor Authentication in Banking Sector
Multi-factor Authentication in Banking Sector Tushar Bhivgade, Mithilesh Bhusari, Ajay Kuthe, Bhavna Jiddewar,Prof. Pooja Dubey Department of Computer Science & Engineering, Rajiv Gandhi College of Engineering
A HIGH PERFORMANCE SOFTWARE IMPLEMENTATION OF MPEG AUDIO ENCODER. Figure 1. Basic structure of an encoder.
A HIGH PERFORMANCE SOFTWARE IMPLEMENTATION OF MPEG AUDIO ENCODER Manoj Kumar 1 Mohammad Zubair 1 1 IBM T.J. Watson Research Center, Yorktown Hgts, NY, USA ABSTRACT The MPEG/Audio is a standard for both
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
DCT-JPEG Image Coding Based on GPU
, pp. 293-302 http://dx.doi.org/10.14257/ijhit.2015.8.5.32 DCT-JPEG Image Coding Based on GPU Rongyang Shan 1, Chengyou Wang 1*, Wei Huang 2 and Xiao Zhou 1 1 School of Mechanical, Electrical and Information
How to Send Video Images Through Internet
Transmitting Video Images in XML Web Service Francisco Prieto, Antonio J. Sierra, María Carrión García Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería Telemática Escuela Superior
MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION
MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION K. Vidhya 1 and S. Shenbagadevi Department of Electrical & Communication Engineering, College of Engineering, Anna University, Chennai,
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Fast Hybrid Simulation for Accurate Decoded Video Quality Assessment on MPSoC Platforms with Resource Constraints
Fast Hybrid Simulation for Accurate Decoded Video Quality Assessment on MPSoC Platforms with Resource Constraints Deepak Gangadharan and Roger Zimmermann Department of Computer Science, National University
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,
Digitisation Disposal Policy Toolkit
Digitisation Disposal Policy Toolkit Glossary of Digitisation Terms August 2014 Department of Science, Information Technology, Innovation and the Arts Document details Security Classification Date of review
ENG4BF3 Medical Image Processing. Image Visualization
ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues
ELEC3028 Digital Transmission Overview & Information Theory. Example 1
Example. A source emits symbols i, i 6, in the BCD format with probabilities P( i ) as given in Table, at a rate R s = 9.6 kbaud (baud=symbol/second). State (i) the information rate and (ii) the data rate
Internet Video Streaming and Cloud-based Multimedia Applications. Outline
Internet Video Streaming and Cloud-based Multimedia Applications Yifeng He, [email protected] Ling Guan, [email protected] 1 Outline Internet video streaming Overview Video coding Approaches for video
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2 1 Tata Consultancy Services, India [email protected] 2 Bangalore University, India ABSTRACT
Design and Implementation of a Storage Repository Using Commonality Factoring. IEEE/NASA MSST2003 April 7-10, 2003 Eric W. Olsen
Design and Implementation of a Storage Repository Using Commonality Factoring IEEE/NASA MSST2003 April 7-10, 2003 Eric W. Olsen Axion Overview Potentially infinite historic versioning for rollback and
How To Recognize Voice Over Ip On Pc Or Mac Or Ip On A Pc Or Ip (Ip) On A Microsoft Computer Or Ip Computer On A Mac Or Mac (Ip Or Ip) On An Ip Computer Or Mac Computer On An Mp3
Recognizing Voice Over IP: A Robust Front-End for Speech Recognition on the World Wide Web. By C.Moreno, A. Antolin and F.Diaz-de-Maria. Summary By Maheshwar Jayaraman 1 1. Introduction Voice Over IP is
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
