1 Introduction to Differential Equations

Size: px
Start display at page:

Download "1 Introduction to Differential Equations"

Transcription

1 1 Introduction to Differential Equations A differential equation is an equation that involves the derivative of some unknown function. For example, consider the equation f (x) = 4x 3. (1) This equation tells us information about the derivative f (x) of some function f(x), but it doesn t actually give us a formula for f(x). Of course, in this example, it s not too hard to figure out what f(x) might be. If the derivative of f(x) is 4x 3, then one possibility is that f(x) = x 4. This formula is a solution to the differential equation, because it matches the information about f (x) that we were given. Most differential equations have more than one solution. For example, f(x) = x and f(x) = x are also solutions to equation (1), since the derivative of either of these is equal to 4x 3. More generally, any formula of the form Really all we ve done here is integrate, i.e. 4x 3 dx = x 4 + C. f(x) = x 4 + C (2) is a solution, where C can be any constant, and every possible solution has this form. Thus, this formula is the general solution to equation (1). The general solution to a differential equation usually involves one or more arbitrary constants. Because of this, most differential equations have infinitely many different solutions, with one solution for every possible value of the constant(s). Letters other than y are often used in applications. Notation When writing differential equations, it is common to use the letter y for the function, instead of the letter f. Thus, equation (1) would be written y (x) = 4x 3. It is common in applications to use the variable t (for time) in place of x. In this case, the derivative would be written y or dy/dt, or possibly ẏ (with a dot above the y). Moreover, it is common to simply write y or dy/dx instead of y (x): y = 4x 3 or dy dx = 4x3. In any case, the goal is to find a formula for y in terms of x that satisfies the given differential equation. Basic Examples Let s look at a few more examples of differential equations, to help us get a feel for the subject.

2 INTRODUCTION TO DIFFERENTIAL EQUATIONS 2 EXAMPLE 1 Find the general solution to the following differential equation. y = 2x cos ( x 2). SOLUTION integrate: This isn t much harder than our initial example. All we need to do is 2x cos ( x 2) dx. This integral is most easily evaluated by substituting u = x 2, which gives cos u du = sin u + C = sin ( x 2) + C In general, any differential equation of the form y = f(x) can be solved by integrating: f(x) dx. However, not every differential equation is so simple. EXAMPLE 2 Find the general solution to the following differential equation. y = y. Actually, it is essentially the definition of the number e that the derivative of e x is e x. That is, e is defined so that e x is a solution to the differential equation y = y. SOLUTION This equation is much more interesting than those we have encountered so far. In words, it says the following: find a formula that doesn t change when you take its derivative. Here is one solution that immediately leaps to mind: e x. The derivative of e x is just e x, so if e x then y will be equal to y. But how can we find the general solution? Where should we place the constant C? So far, we have always just added C to the end of the formula: e x + C But this doesn t work: if e x + C, then y is just e x, so y and y are not the same. The answer is that C should be the coefficient instead. Ce x This works, since the derivative of Ce x is Ce x for any constant C. In the last example, we started by finding a particular solution to the dfferential equation, and then we figured out how to add a constant C to get the general solution. This is a common two-step process when solving differential equations EXAMPLE 3 Find a general solution to the following differential equation. y = y 2

3 INTRODUCTION TO DIFFERENTIAL EQUATIONS 3 SOLUTION Where do we even begin? How can we possibly find a formula for y that satisfies this equation? When we have no idea how to solve a math problem, one method we can always resort to is guess and check. We have no idea what formula might work here, and there s no way to find out without making some guesses, and then checking whether they work. Here are some possible guesses: sin x, e x, x, 1 x, x2, ln x. Do any of these work? It turns out that 1/x is the right guess. If 1/x, then y = 1/x 2, and the equation becomes 1 x 2 = ( 1 x) 2. Later on, we will learn a method called separation of variables that allows us to solve this equation without any guessing. So 1/x is a particular solution to this differential equation. Now, what about the general solution? We need to figure out how to include an arbitrary constant C. Here are a few possibilities: 1 x + C, C x, 1 Cx, 1 x + C, 1 x C. Actually, this answer isn t quite correct. In particular, 0 is a solution to the given equation, though it doesn t correspond to any value of C. (Intuitively, it s the solution you get when C =.) Do any of these work? Yes it is easy to check that 1 x + C is always a solution, so presumably this is the general solution to the given differential equation. Making up Differential Equations Although our goal is to learn how to solve differential equations, you can learn a lot by trying to make up differential equations that have a certain solution. For example, suppose we want a differential equation that has as a solution. The simplest possibility is x 3 y = 3x 2. However, any differential equation that holds when you plug in x 3 and y = 3x 2 will work. For example, xy = 3y has x 3 as a solution, since x ( 3x 2) = 3 ( x 3). Some other differential equations with x 3 as a solution include ( y )3 = 27y 2, xy + 4 7x 3, and yy = 3x 5. On your own, you could try making some differential equations that have x 2 solution, or perhaps sin x. as a

4 INTRODUCTION TO DIFFERENTIAL EQUATIONS 4 Initial Value Problems An initital value problem consists of the following information: 1. A differential equation involving an unknown function y. Instead of including y(0), sometimes an initial value problem includes a different value of y, such as y(1), or possibly the limiting value of y as x or x. 2. An initial value for y, i.e. the value y(0) of the function y when x = 0. The idea is that the value of y(0) is usually enough information to specify a single solution to the differential equation. Usually, an initial value problem has only one solution. Here is the most common procedure for solving an initial value problem. SOLVING INITIAL-VALUE PROBLEMS 1. Find the general solution to the given differential equation, involving an arbitrary constant C. 2. Plug in the initial value to get an equation involving C, and then solve for C. EXAMPLE 4 Find the solution to the following initial value problem. y = y 2, y(0) = 3. SOLUTION We found the general solution to this differential equation in Example 3: 1 x + C Therefore, all that remains is figure out a value for C so that y(0) = 3. Plugging in x = 0 and 3 gives the equation 3 = Solving for C gives C = 1/3, and hence C. 1 x + 1/3 We can simplify our answer by multiplying the numerator and denominator by 3: 3 3x + 1 EXAMPLE 5 Find the solution to the following initial value problem. y = 2y, y(0) = 5. SOLUTION The given differential equation isn t very different from the equation y = y from Example 2. In that case, the general solution was Ce x. How can we modify this solution to account for the extra 2?

5 INTRODUCTION TO DIFFERENTIAL EQUATIONS 5 A few minutes of thought reveals the answer: More generally, the solution to any equation of the form y = ky (where k is a constant) is Ce kx. Ce 2x So this is the general solution to the given equation. Plugging in x = 0 and 5 gives the equation 5 = Ce 0, so C = 5, and the solution is 5e 2x. When using t (for time) instead of x, the second derivative is sometimes written with two dots, i.e. ÿ. Second-Order Equations Recall that the second derivative of a function y is the derivative of the derivative. This can be written y d 2 y or dx 2. A second-order equation is a differential equation that involves y, as well as perhaps y, y, and x. EXAMPLE 6 Find the general solution to the following second-order equation. y = 12x 2. SOLUTION Integrating once gives a formula for y : y = 12x 2 dx = 4x 3 + C. We can now integrate again to get a formula for y. (4x 3 + C ) dx = x 4 + Cx + C 2. Here C 2 represents a new constant of integration, which may be different from the original C. Actually, it would make more sense to refer to the original C as C 1 : x 4 + C 1 x + C 2 This is the general solution to the given second-order equation. Note that the general solution in the last example involved two arbitrary constants. This is fairly common. 1. The general solution to a first-order equation usually involves one arbitrary constant. 2. The general solution to a second-order equation usually involves two arbitrary constants. Here the phrase first-order equation refers to an equation that has only first derivatives, i.e. the sort of equation we were discussing initially. Incidentally, it is of course possible to discuss third-order equations (involving the third derivative), fourth-order equations, and so forth. As you would expect, the general solution to an nth order equation usually involves n arbitrary constants. However, we will mostly restrict our attention to first and second order equations, since equations of third order or higher are rare in both science and mathematics.

6 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6 EXAMPLE 7 Find the general solution to the following second-order equation. y = y. SOLUTION Obviously e x is a solution, and more generally C 1 e x is a solution for any constant C 1. However, this is not the general solution we are expecting one more arbitrary constant. So how can we find another solution to this differential equation? Think about this for a minute we want a function other than a multiple of e x that is equal to its own second derivative. The answer is quite clever: what about e x? Though the derivative of e x has an extra minus sign, the second derivative is again e x, so e x is a solution to the above equation. Indeed, anything of the form C 2 e x is a solution, where C 2 can be any constant. But how can we combine the two solutions into a single formula? In this case, it turns out that it works to just add them together: C 1 e x + C 2 e x (The reader may want to check this by plugging this formula into the original equation.) This formula includes two arbitrary constants, so it ought to be the general solution to the given second-order equation. It is common in applications that the two known values of y are at the boundary points of the interval of possible x-values. Hence the terminology boundary value problem. Because the general solution to a second-order equation involves two arbitrary constants, you need two additional pieces of information to determine a single solution. One option is to give two different values for y, e.g. y(0) and y(1). This is called a boundary value problem, and you can solve it using the following procedure. SOLVING BOUNDARY-VALUE PROBLEMS 1. Find the general solution to the given second-order equation, involving constants C 1 and C Plug in the first value for y to get an equation involving C 1 and C Plug in the second value for y to get another equation involving C 1 and C Solve the two equations for the unknown constants C 1 and C 2. EXAMPLE 8 Find the solution to the following boundary-value problem y = 12x, y( 1) = 3, y(1) = 5. SOLUTION We can integrate to get a formula for y : y = 12x dx = 6x 2 + C 1, and then integrate again to get a formula for y: (6x 2 + C 1 ) dx = 2x 3 + C 1 x + C 2, All that remains is to find the values of C 1 and C 2. Plugging in x = 1 and 3 gives the equation 3 = 2 C 1 + C 2,

7 INTRODUCTION TO DIFFERENTIAL EQUATIONS 7 and plugging in x = 1 and 5 gives the equation 5 = 2 + C 1 + C 2, We can solve these two equations to get C 1 = 1 and C 2 = 4, so 2x 3 x + 4 Instead of giving two pieces of information about y, another way of specifying a single solution to a second-order differential equation is to give one piece of information about y and one piece of information about y. In particular, a second-order initial value problem consists of the following information: 1. A second-order differential equation involving an unknown function y. 2. An initial value for y, such as y(0). 3. An initial value for y, such as y (0). You can solve such a problem using the following procedure. SOLVING SECOND-ORDER INITIAL VALUE PROBLEMS 1. Find the general solution to the given second-order equation, involving constants C 1 and C Plug in the initial value for y to get an equation involving C 1 and C Take the derivative of the general formula for y to get a general formula for y. 4. Plug in the initial value for y to get another equation involving C 1 and C Solve the two equations for the unknown constants C 1 and C 2. EXAMPLE 9 Find the solution to the following initial value problem. y = y, y(0) = 7, y (0) = 3. SOLUTION As we saw in Example 7, the general solution to the given equation is C 1 e x + C 2 e x. Therefore, we need only figure out the values of C 1 and C 2. Plugging in x = 0 and 7 gives the equation 7 = C 1 + C 2. Next we take the derivative of the general formula for y to get a general formula for y. y = C 1 e x C 2 e x. Plugging in x = 0 and y = 3 gives the equation 3 = C 1 C 2. We can now solve the equations C 1 + C 2 = 7 and C 1 C 2 = 3 for C 1 and C 2. The result is that C 1 = 5 and C 2 = 2, so 5e x + 2e x

8 INTRODUCTION TO DIFFERENTIAL EQUATIONS 8 Guessing the Form One basic method for solving differential equations is an enhanced version of guess & check: we can guess the form of the solution, and then solve for any missing constants. For example, we might guess that a differential equation has a solution of the form e ax for some unknown value of a. We then check this solution by plugging it into the differential equation, and then try to figure out which values of a will make the solution work. EXAMPLE 10 Suppose we wish to find a solution the equation y = 7y 10y. We might guess that this equation has solutions of the form e ax for some constant a. In this case, we have y = ae ax and y = a 2 e ax. Plugging these into the equation gives which simplifies to a 2 e ax = 7ae ax 10e ax a 2 e ax = (7a 10)e ax. Now, how can we arrange it so that the left and right sides of this equation are the same? Well, they will be the same as long as For this equation we only found two solutions e 2x and e 5x of the given form, but there ought to be many more solutions not of this form. Indeed, the general solution to this differential equation is C 1 e 2x + C 2 e 5x. a 2 = 7a 10 The solutions to this quadratic equation are a = 2 and a = 5, and therefore e 2x and e 5x are two solutions to the given differential equation. EXAMPLE 11 Find a solution to the equation x 2 y = 2xy + 10y of the form x a. SOLUTION If x a, then y = ax a 1 and y = a(a 1)x a 2 Plugging these into differential equation gives which simplifies to x 2( a(a 1)x a 2) = 2x ( ax a 1) + 10x a a(a 1)x a = (2a + 10)x a. Now, how can we arrange it so that the left and right sides of this equation are the same? Well, they will be the same as long as Again, we only found two solutions to the given equation, but it turns out that the general solution is C 1 x 5 + C 2 x 2. a(a 1) = 2a + 10 Solving gives a = 5 or a = 2, so x 5 and x 2 are two solutions to this equation.

9 INTRODUCTION TO DIFFERENTIAL EQUATIONS 9 Forms with Two Constants Sometimes it works well to guess a form that involves two constants. For example, consider the equation y y = 2y We might guess that this equation has solutions of the form ax b, where a and b are constants. The derivatives of this form are y = abx b 1 and y = ab(b 1)x b 2. Plugging these into the differential equation and simplifying yields a 2 b 2 (b 1)x 2b 3 = 2ax b. The only way for the left and right sides of this equation to be the same is if the coefficients are the same and the exponents are the same. This gives us the following two equations: a 2 b 2 (b 1) = 2a and 2b 3 = b. The second equation tells us that b = 3. Plugging this into the first equation and solving for a yields a = 0 or a = 1/9. Therefore, 0 and 1 9 x3 are two solutions to the given equation. EXERCISES 1 6 Use integration to find the general solution to the given differential equation. 1. y = x x y = x cos x 3. y + cos(3x) = 0 4. y e x = 1 5. xy + 4x 3 = 1 6. y = 1 x 2 y 7. y = 3 x 8. x 3 y = x Use guess & check to find the general solution to the given differential equation. 9. y + y tan x = ( y )2 = 4y Use guess & check to find just one solution to the given differential equation. 11. y + 9e 2x 12. yy = 4e 8x 13. x 2 y + e 2x 14. y y = 14y + 4x Solve the given initial value problem. 15. y = xe x, y(0) = y = 3y, y(2) = Solve the given boundary value problem. 17. y = sin x, y(0) = 4, y(π) = y = y, y(0) = 7, y(ln 2) = Solve the given initial value problem. 19. y = x 2, y(1) = 1/2, y (1) = 1/2 20. y = 4y, y(0) = 5, y (0) = Find all solutions to the given differential equation of the specified form. 21. y = 3y + 4y ( e ax ) 22. x 2 y 7xy ( x a ) 23. y y = 36y 3 ( x a ) 24. 5yy = ( y )2 + 36y 2 ( e ax )

10 Answers ( x ) 3/2 +C 2. x sin x + cos x +C sin(3x) +C 4. e x +C 5. ln x 4 3 x3 +C 6. arctanx +C x7/3 +C 1 x +C 2 8. ln x + x 1 +C 1 x +C 2 9. C cos x 10. (x +C) e 2x 12. e 4x 13. lnx 14. x (x 1)e x e 3x sinx + (2/π)x e x + 4e x ( x 4 + 2x + 3 ) 20. 3e 2x + 2e 2x 21. e x and e 4x 22. x 2 and x x e 3x and e 3x

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Recognizing Types of First Order Differential Equations E. L. Lady

Recognizing Types of First Order Differential Equations E. L. Lady Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Solving DEs by Separation of Variables.

Solving DEs by Separation of Variables. Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Approximating functions by Taylor Polynomials.

Approximating functions by Taylor Polynomials. Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x). .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

6 Further differentiation and integration techniques

6 Further differentiation and integration techniques 56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

More information

Find all of the real numbers x that satisfy the algebraic equation:

Find all of the real numbers x that satisfy the algebraic equation: Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

2.2 Derivative as a Function

2.2 Derivative as a Function 2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

More information

INTEGRATING FACTOR METHOD

INTEGRATING FACTOR METHOD Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Finding Rates and the Geometric Mean

Finding Rates and the Geometric Mean Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

More Quadratic Equations

More Quadratic Equations More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

13.5. Click here for answers. Click here for solutions. CURL AND DIVERGENCE. 17. F x, y, z x i y j x k. 2. F x, y, z x 2z i x y z j x 2y k

13.5. Click here for answers. Click here for solutions. CURL AND DIVERGENCE. 17. F x, y, z x i y j x k. 2. F x, y, z x 2z i x y z j x 2y k SECTION CURL AND DIVERGENCE 1 CURL AND DIVERGENCE A Click here for answers. S Click here for solutions. 1 15 Find (a the curl and (b the divergence of the vector field. 1. F x, y, xy i y j x k. F x, y,

More information

Solutions to Linear First Order ODE s

Solutions to Linear First Order ODE s First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we

More information