Sample Problems. Practice Problems


 Archibald Martin Logan
 3 years ago
 Views:
Transcription
1 Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x x (x ) dx x + (x ) dx sec x dx csch x dx Practice Problems. x + x dx 7. x x 0x x dx. x + x + dx.... x x x 8 dx x a dx x x dx x x + dx x 7 x 6x + 9 dx x + 7x + x + dx x x + 0 (x ) (x + 9) dx... x + x (x + 6) dx x + 6 (x + ) dx x x + 9 dx 6. x x + x dx. x x 6 dx 6. x + x x x dx c copyright Hidegkuti, Powell, 0 Last revised: February, 0
2 Lecture Notes Partial Fractions page Sample Problems  nswers.) ln jx j ln jx + j + C.) ln jx + j ln jx + j + C.) ln jx j ln jx + j + C.) x 6.) ln jx j x + x + ln jx + j + ln jx j + C.) 6 ln jx + j ln jx j + ln jx j + C 9 x + C 7.) x (x ) + C x (x ) + C 8.) x arctan x ln jx + j + ln jx j + C 9.) ln jsec x + tan xj + C ln jsec x tan xj + C 0.) ln je x j ln (e x + ) + C Practice Problems  nswers.) ln jxj ln jx + j + C.) 7 6 ln jx + j 6 ln jx j + C.) a ln jx aj ln jx + aj + C a.) ln jx j + ln jx + j + C.) ln x + tan x + C 6.) x + ln jx j 9 ln jx + j + C 7.) x x ln jx j + ln jx + j + C 8.) ln jx j + x + C 9.) x + 7 ln x + + tan x + C 0.) ln jx j tan x + C.) x + ln jx j ln jx + j tan x + C.) tan x + ln x + + C.) ln x + 6x + C.) ln jx + j 9 x + + C.) ln x + 9 tan x + C 6.) ln jxj + ln jx j ln jx + j + C c copyright Hidegkuti, Powell, 0 Last revised: February, 0
3 Lecture Notes Partial Fractions page Sample Problems  Solutions Compute each of the following integrals.. x dx Solution: We factor the denominator: x (x + ) (x ). Next, we rewrite the fraction x as a sum (or di erence) of fractions with denominators x + and x. This means that we need to solve for and B in the equation x + + B x x To simplify the lefthand side, we bring the fractions to the common denominator: (x ) B (x + ) x + Bx + B + (x + ) (x ) (x ) (x + ) x ( + B) x + B x Thus we have We clear the denominators by multiplication ( + B) x + B x x ( + B) x + B The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. In other words, ( + B) x + B 0x + This gives us an equation for each coe cient, forming a system of linear equations: We solve this system and obtain and B. + B 0 + B So our fraction, x x + + x Now we can easily integrate: can be rewritten as x + +. We check: x (x ) (x + ) (x + ) (x ) + (x ) (x + ) x (x ) + (x + ) (x + ) (x ) x + + x + (x + ) (x ) x dx x + + x dx x + dx + x dx ln jx + j + ln jx j + C c copyright Hidegkuti, Powell, 0 Last revised: February, 0
4 Lecture Notes Partial Fractions page Method : The values of and B can be found using a slightly di erent method as follows. Consider rst the equation x + + B x x We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x ) B (x + ) + (x + ) (x ) (x ) (x + ) x (x ) + B (x + ) The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute (0) + B () B Let us substitute x into both sides: ( ) + B (0). and so and B. x (x + ) (x + ) dx x Solution: We rewrite the fraction as a sum (or di erence) of fractions with denominators (x + ) (x + ) x + and x +. This means that we need to solve for and B in the equation x + + B x + x (x + ) (x + ) To simplify the lefthand side, we bring the fractions to the common denominator: x + + B x + (x + ) (x + ) (x + ) + B (x + ) (x + ) (x + ) ( + B) x + + B (x + ) (x + ) (x + ) + B (x + ) (x + ) (x + ) x + + Bx + B (x + ) (x + ) Thus we have We clear the denominators by multiplication ( + B) x + + B (x + ) (x + ) x (x + ) (x + ) ( + B) x + + B x The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. In other words, ( + B) x + + B x + 0 c copyright Hidegkuti, Powell, 0 Last revised: February, 0
5 Lecture Notes Partial Fractions page This gives us an equation for each coe cient, forming a system of linear equations: We solve this system and obtain and B. So our fraction, x + + x + x (x + ) (x + ) Now we can easily integrate: can be rewritten as + B + B 0 x + + x +. We check: (x + ) (x + ) (x + ) (x + ) + (x + ) (x + ) (x + ) 9 (x + ) x + x (x + ) (x + ) (x + ) (x + ) x (x + ) (x + ) x (x + ) (x + ) dx x + + x + dx x + dx The second integral can be computed using the substitution u x +. x + dx ln jx + j ln jx + j + C Method : The values of and B can be found using a slightly di erent method as follows. Consider rst the equation x + + B x + x (x + ) (x + ) We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x + ) (x + ) (x + ) + B (x + ) (x + ) (x + ) x (x + ) (x + ) (x + ) + B (x + ) x The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: (0) + B + 8 B B Let us substitute x into both sides: Let us substitute ( ( ) + ) + B ( + ) ( ) 8 + B (0) and so and B. c copyright Hidegkuti, Powell, 0 Last revised: February, 0
6 Lecture Notes Partial Fractions page 6. x + x x dx Solution: We factor the denominator: x x + x (x + ) (x ). Next, we rewrite the fraction x x as a sum (or di erence) of fractions with denominators x + and x. This means that we need to solve for and B in the equation x + + B x x + x x To simplify the lefthand side, we bring the fractions to the common denominator: (x ) B (x + ) x + Bx + B + (x + ) (x ) (x ) (x + ) x x Thus ( + B) x + B x x We clear the denominators by multiplication x + x x ( + B) x + B x x ( + B) x + B x + The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. This gives us an equation for each coe cient, forming a system of linear equations: + B + B We solve the system and obtain and B. x + So we have that our fraction, x x can be rewritten as x + +. We check: x x + + x (x ) (x + ) (x ) + (x + ) (x ) + (x + ) x + + x + (x ) (x + ) (x + ) (x ) x x Now we can easily integrate: x + x x dx x + + x dx x + dx + x x + x x dx ln jx + j + ln jx j + C Method : The values of and B can be found using a slightly di erent method as follows. Consider rst the equation x + + B x x + x x We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x ) B (x + ) + (x ) (x + ) (x ) (x + ) x + x x (x ) + B (x + ) x + The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute (0) + B () + B 8 B c copyright Hidegkuti, Powell, 0 Last revised: February, 0
7 Lecture Notes Partial Fractions page 7 Let us substitute x into both sides: ( ) + B (0) + and so and B.. x + x x + 6x x + x dx Solution: This rational function is an improper fraction since the numerator has a higher degree than the denominator. We rst perform long division. This process is similar to long division among numbers. For example, to simplify 8 ; we perform the long division 8 7 R which is the same thing as to say that The division: x x + x + x ) x + x x + 6x x x + x x x + 6x x + 6x 8x x + 8x x x + 0 x x Step : x x x x + x x + x x x + x x x x + x We add that to the original polynomial shown above. x Step : x x x x + x x 6x + 8x x 6x + 8x x + 6x 8x We add that to the original polynomial shown above. Step : x x x + x x + x 0 x + x 0 x x + 0 We add that to the original polynomial shown above. The result of this computation is that very much like Thus x + x x + 6x x dx + x x + x x + 6x x + x x We apply the method of partial fractions to compute x x + + x x + x x x + + x x + x dx x x + x + C + x + x dx x x + x dx. x x + dx + x x + x dx c copyright Hidegkuti, Powell, 0 Last revised: February, 0
8 Lecture Notes Partial Fractions page 8 We factor the denominator: x x + x (x + ) (x ). Next, we rewrite the fraction x + x as a sum (or di erence) of fractions with denominators x + and x. This means that we need to solve for and B in the equation x + + B x x x + x To simplify the lefthand side, we bring the fractions to the common denominator: (x ) B (x + ) x + Bx + B + (x + ) (x ) (x + ) (x ) x + x ( + B) x + B x + x Thus ( + B) x + B x + x We clear the denominators by multiplication x x + x ( + B) x + B x The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. This gives us an equation for each coe cient that forms a system of linear equations: We solve the system and obtain and B. So our fraction, x x + x x + + x Now we can easily integrate: x x + x dx can be rewritten as Thus the nal answer is x + x x + 6x x + x + B + B x + +. We check: x (x ) (x + ) (x + ) (x ) + (x ) (x + ) (x ) + (x + ) (x + ) (x ) x + x + 8 x (x + ) (x ) x + x x x + x x + + dx x dx x + dx + x x + dx + x dx dx ln jx + j + ln jx j + C x x x + x + C + x x + x dx x x + x + ln jx + j + ln jx j + C x + x + C + ln jx + j + ln jx j + C c copyright Hidegkuti, Powell, 0 Last revised: February, 0
9 Lecture Notes Partial Fractions page 9 Method : The values of and B can be found using a slightly di erent method as follows. Consider rst the equation x + + B x x x + x We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x ) B (x + ) + (x + ) (x ) (x + ) (x ) x (x + ) (x ) (x ) + B (x + ) x The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute ( ) + B ( + ) x 0 + B B B Let us substitute x into both sides: ( ) + B ( + ) ( ). and so and B. x + x (x + ) (x ) (x ) dx x + x Solution: We rewrite the fraction as a sum (or di erence) of fractions with denominators x +, x and x. This means that we need to solve for, B, and C in the (x + ) (x ) (x ) equation x + + B x + C x x + x (x + ) (x ) (x ) To simplify the lefthand side, we bring the fractions to the common denominator: x + + B x + C x (x ) (x ) B (x + ) (x ) C (x + ) (x ) + + (x + ) (x ) (x ) (x + ) (x ) (x ) (x + ) (x ) (x ) x 7x + 0 (x + ) (x ) (x ) + B x x (x + ) (x ) (x ) + C x x (x + ) (x ) (x ) x 7x B x x + C x x (x + ) (x ) (x ) x 7x Bx Bx B + Cx Cx C (x + ) (x ) (x ) ( + B + C) x + ( 7 B C) x + 0 B C (x + ) (x ) (x ) c copyright Hidegkuti, Powell, 0 Last revised: February, 0
10 Lecture Notes Partial Fractions page 0 Thus ( + B + C) x + ( 7 B C) x + 0 B C (x + ) (x ) (x ) We clear the denominators by multiplication x + x (x + ) (x ) (x ) ( + B + C) x + ( 7 B C) x + 0 B C x + x The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. We have an equation for each coe cient that gives us a system of linear equations: + B + C 7 B C 0 B C We solve the system by elimination: rst we will eliminate C from the second and third equations. eliminate C from the second equation, we simply add the rst and second equations. + B + C 7 B C 6 B To eliminate C from the third equation, we multiply the rst equation by and add that to the third equation. + B + C 0 B C B We now have a system of linear equations in two variables: 6 B B We will eliminate B by adding the opposite of the rst equation to the second equation. 6 + B B 8 6 Using the equation 6 + B we can now solve for B. 6 + B 6 + B Using the rst equation, we can now solve for C. 6 + B B + B + C + C + C C To c copyright Hidegkuti, Powell, 0 Last revised: February, 0
11 Lecture Notes Partial Fractions page Thus 6, B, and C So we have that our fraction, 6 x + + x + x Now we can easily integrate: x + x (x + ) (x ) (x ) can be rewritten as 6 x + + x +. We check: x (x ) (x ) (x + ) (x ) (x + ) (x ) 6 (x + ) (x ) (x ) + (x + ) (x ) (x ) + (x + ) (x ) (x ) 6 (x ) (x ) (x + ) (x ) + (x + ) (x ) (x + ) (x ) (x ) 6 x 7x + 0 x x + x x (x + ) (x ) (x ) 6 x x x + x + + x x (x + ) (x ) (x ) x x + (x + ) (x ) (x ) x + x (x + ) (x ) (x ) x + x (x + ) (x ) (x ) dx 6 x x + x + dx x dx x dx + x dx 6 ln jx + j ln jx j + ln jx j + C Method : The values of ; B, and C can be found using a slightly di erent method as follows. Consider rst the equation x + + B x + C x x + x (x + ) (x ) (x ) We bring the fractions to the common denominator: (x ) (x ) B (x + ) (x ) C (x + ) (x ) + + (x + ) (x ) (x ) (x + ) (x ) (x ) (x + ) (x ) (x ) x + x (x + ) (x ) (x ) and then multiply both sides by the denominator: (x ) (x ) + B (x + ) (x ) + C (x + ) (x ) x + x The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute ( ) ( ) + B ( + ) ( ) + C ( + ) ( ) + 0 9B + 0C 9B B c copyright Hidegkuti, Powell, 0 Last revised: February, 0
12 Lecture Notes Partial Fractions page Let us substitute x into both sides: ( ) ( ) + B ( + ) ( ) + C ( + ) ( ) ( ) + ( ) Let us substitute x into both sides: ( ) ( 6) + 0B + 0C 8 6 ( ) ( ) + B ( + ) ( ) + C ( + ) ( ) + (0) + B (0) + C (6) () 7 8C 7 C and so 6, B, and C. 6. x (x ) dx Solution: We will rewrite the fraction x as a sum (or di erence) of fractions with denominators x (x ) and (x ). This means that we need to solve for and B in the equation x + B (x ) x (x ) To simplify the lefthand side, we bring the fractions to the common denominator: Thus we have x + B (x ) (x ) (x ) + B (x ) + B x + B (x ) (x ) (x ) We clear the denominators by multiplication x + B (x ) x (x ) x + B x The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. This gives us an equation for each coe cient, forming a system of linear equations: + B We solve this system and obtain and B 9. x So our fraction, (x ) can be rewritten as x + 9. We check: (x ) x + 9 (x ) (x ) (x ) + 9 x (x ) (x ) x (x ) c copyright Hidegkuti, Powell, 0 Last revised: February, 0
13 Lecture Notes Partial Fractions page Now we can easily integrate: x (x ) dx x + 9 (x ) dx x dx + 9 (x ) dx ln jx j 9 x + C Method : The values of and B can be found using a slightly di erent method as follows. Consider rst the equation x + B (x ) x (x ) We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x ) (x ) + B (x ) x (x ) (x ) + B x The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute (0) + B 9 B 9 The other value of x can be arbitrarily chosen. (There is no value that would eliminate B from the equation.) For easy substitution, let us substitute x 0 into both sides and also substitute B 9: ( ) and so and B 9. x + (x ) dx Solution: We rewrite the fraction x + as a sum (or di erence) of fractions with denominators x, (x ) (x ) and (x ). This means that we need to solve for, B, and C in the equation x + B (x ) + C (x ) x + (x ) To simplify the lefthand side, we bring the fractions to the common denominator: x + B (x ) + C (x ) (x ) B (x ) (x ) + (x ) + C (x ) (x ) + B (x ) + C (x ) x x + + B (x ) + C (x ) x x + + Bx B + C (x ) x + ( + B) x + B + C (x ) c copyright Hidegkuti, Powell, 0 Last revised: February, 0
14 Lecture Notes Partial Fractions page Thus We clear the denominators by multiplication x + ( + B) x + B + C (x ) x + (x ) x + ( + B) x + B + C x + The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. We have an equation for each coe cient that gives us a system of linear equations: 0 + B B + C Since 0; this is really a system in two variables: B B + C We solve this system and obtain B and C. x + So our fraction, (x ) can be rewritten as (x ) +. We check: (x ) Now we can easily integrate: x + (x ) dx (x ) + (x ) (x ) (x ) + (x ) x + (x ) x + (x ) Both nal answers are acceptable. (x ) + (x ) dx x (x ) + C x (x ) dx + (x ) + C (x ) (x ) (x ) + C x + (x ) + C (x ) dx x (x ) + C Method : The values of ; B, and C can be found using a slightly di erent method as follows. Consider rst the equation x + B (x ) + C (x ) x + (x ) We bring the fractions to the common denominator: and then multiply both sides by the denominator: (x ) B (x ) (x ) + (x ) + C (x ) x + (x ) (x ) + B (x ) + C x + The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute (0) + B (0) + C + C c copyright Hidegkuti, Powell, 0 Last revised: February, 0
15 Lecture Notes Partial Fractions page There is no value other than that would eliminate or B from the equation. Our method will still work. For easy substitution, let us substitute x 0 into both sides and also substitute C : Let us substitute x into both sides: We now solve the system of equations (x ) + B (x ) + C x + (0 ) + B (0 ) B + B (x ) + B (x ) + C x + ( ) + B ( ) B + B + B + B and obtain 0 and B. Recall that we already have C. x 8. x dx Solution: This rational function is an improper fraction since the numerator has the same degree as the denominator. We rst perform long division. This one is an easy one; the method featured below is called smuggling. x x x + x x x + x + x Thus x x dx + x dx dx + x dx x + C + dx We apply the method of partial fractions to compute x dx. We factor the denominator: x x + (x + ) (x ). Next, we rewrite the fraction x as a sum (or di erence) of fractions with denominators x + and x +, and x. In the fraction with quadratic denominator, the numerator is linear. This means that we need to solve for and B in the equation x + B x + + C x + + D x x To simplify the lefthand side, we bring the fractions to the common denominator: x + B x + + C x + + D (x + B) (x + ) (x ) x (x + ) (x + ) (x ) + C x + (x ) (x + ) (x + ) (x ) + D x + (x + ) (x + ) (x + ) (x ) x (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) x (x + B) x + C x x + x + D x + x + x + x x + Bx x B + Cx Cx + Cx C + Dx + Dx + Dx + D x ( + C + D) x + (B C + D) x + ( + C + D) x B C + D x c copyright Hidegkuti, Powell, 0 Last revised: February, 0
16 Lecture Notes Partial Fractions page 6 Thus ( + C + D) x + (B C + D) x + ( + C + D) x B C + D x We clear the denominators by multiplication x ( + C + D) x + (B C + D) x + ( + C + D) x B C + D The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. This gives us an equation for each coe cient that forms a system of linear equations: + C + D 0 B C + D 0 + C + D 0 B C + D We will solve this system by elimination. First, we will eliminate using the rst equation. The second and fourth equations do not have in them, so there is nothing to do there. To eliminate from the third equation, we add the rst one to it. B C + D 0 C + D 0 B C + D We now have three equations with three unknowns. We will use the rst equation to eliminate B. In case of the second equation, again, there is nothing to do. We add the rst equation to the third one to eliminate B. C + D 0 C + D dding the two equations eliminates C and gives us D and so D. equation Next, we compute C using the C + D 0 C + 0 C C We can compute using the rst equation, + C + D 0 and we can compute B using the second equation, + C + D B B C + D B c copyright Hidegkuti, Powell, 0 Last revised: February, 0
17 Lecture Notes Partial Fractions page 7 Thus 0; B ; C ; and D : So our fraction, x + x x + + x can be rewritten as Now we rewrite the integral: x + x + +. We check: x (x + ) (x ) x + (x ) (x + ) (x + ) (x ) (x + ) (x + ) (x ) + x + (x + ) (x + ) (x + ) (x ) (x + ) (x ) x + (x ) + x + (x + ) (x + ) (x + ) (x ) x x x + x + x + x + x + x + + x + x x + x x + + x + x + x + x x x + x x x dx Thus the nal answer is x x dx x + x + + x dx arctan x ln jx + j + ln jx j + C + x x dx dx + x x + dx dx x + C arctan x ln jx + j + ln jx j + C x arctan x ln jx + j + ln jx j + C x + dx + x dx Method : The values of ; B; C; and D can be found using a slightly di erent method as follows. Consider rst the equation x + B x + + C x + + D x x We bring the fractions to the common denominator: (x + B) (x + ) (x ) (x + ) (x + ) (x ) + C x + (x ) (x + ) (x + ) (x ) + D x + (x + ) (x + ) (x + ) (x ) (x + ) (x + ) (x ) and then multiply both sides by the denominator: (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) c copyright Hidegkuti, Powell, 0 Last revised: February, 0
18 Lecture Notes Partial Fractions page 8 The equation above is about two functions; the two sides must be equal for all values of x. x into both sides: Let us substitute (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) ( ( ) + B) (( ) + ) (( ) ) + C ( ) + (( ) ) + D ( ) + (( ) + ) Let us substitute x into both sides: ( + B) (0) ( ) + C () ( ) + D () (0) (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) ( () + B) (() + ) ( ) + C + ( ) + D + ( + ) ( + B) () (0) + C () (0) + D () () D D C C Let us substitute x 0 into both sides and also C and D : (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) ( (0) + B) ((0) + ) (0 ) + C 0 + (0 ) + D 0 + (0 + ) (B) () ( ) + C () ( ) + D () () B B C + D + B + B B Let us substitute x into both sides and also B, C and D : (x + B) (x + ) (x ) + C x + (x ) + D x + (x + ) ( () + B) (() + ) ( ) + C + ( ) + D + ( + ) ( + B) () () + C () () + D () () 6 + ( + B) + C + D 6 + B + C + D c copyright Hidegkuti, Powell, 0 Last revised: February, 0
19 Lecture Notes Partial Fractions page and so 0, B, C, and D. sec x dx ln + sin x sin x + C ln jsec x + tan xj + C ln jsec x tan xj + C Solution: sec x dx cos x dx cos x cos x cos x dx Now let u sin x. Then du cos xdx. cos x sin x dx sin cos xdx x This integral can be computed by partial fractions: The lefthand side can be rewritten u + B + u u cos x cos x dx u du cos x sin x dx ( u) ( + u) du u + B ( + u) B ( u) u + Bu + B ( B) u + + B + + u ( u) ( + u) ( + u) ( u) u u So we have ( B) u + + B u u We clear the denominators by multiplication ( B) u + + B The equation above is about two polynomials: they are equal to each other as functions and so they must be identical, coe cint by coe cient. This gives us an equation for each coe cient that forms a system of linear equations: we solve this system and obtain B. Now for the integral: u du + u + u B 0 + B Indeed, u + + u ( u) ( + u) u u u + + u ( u) ( + u) du du ln j uj + ln j + uj + C ln j + uj ln j uj + C ln j + sin xj ln j sin xj + C u du + + u du c copyright Hidegkuti, Powell, 0 Last revised: February, 0
20 Lecture Notes Partial Fractions page 0 Note the sign in du ln j uj + C is caused by the chain rule. slo note that the nal answer u can be rewritten in several forms: ln j + sin xj ln j sin xj ln + sin x sin x ln + sin x sin x + sin x + sin x ln! s ln ( + sin x) cos x ln ( + sin x) cos ln x So, our result can also be presented as ln jsec x + tan xj + C nother form can be obtained as shown below. ln j + sin xj ln j sin xj ( + sin x) sin x + sin x cos x ln ( + sin x) cos x ln cos x + sin x cos x ln jsec x + tan xj ln + sin x sin x ln + sin x sin x sin x sin x ln sin x ( sin x) ln cos x ( sin x) cos s x ln ( sin x) ln cos x ( sin x) ln cos x sin x ln sin x cos x sin x ln cos x ln sin x cos x cos x ln jsec x tan xj So, our result can also be presented as ln jsec x tan xj + C : ctually, there are more forms possible, but 0. we will stop here. csch x dx Solution: This is an interesting application of partial fractions. csch x dx e x e x dx e x e x we now multiply both numerator and denominator by e x. e x dx e x (e x ) dx e x We proceed with a substitution: let u e x. Then du e x dx and so (e x ) (ex dx) u du dx c copyright Hidegkuti, Powell, 0 Last revised: February, 0
21 Lecture Notes Partial Fractions page This is now an integral we can easily compute via partial fractions. u u + csch x dx u du u ln je x j ln (e x + ) + C du u + u du We easily decompose u as du ln ju j ln ju + j + C u + For more documents like this, visit our page at and click on Lecture Notes. questions or comments to c copyright Hidegkuti, Powell, 0 Last revised: February, 0
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
More informationPartial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
More informationSample Problems. 10. 1 2 cos 2 x = tan2 x 1. 11. tan 2 = csc 2 tan 2 1. 12. sec x + tan x = cos x 13. 14. sin 4 x cos 4 x = 1 2 cos 2 x
Lecture Notes Trigonometric Identities page Sample Problems Prove each of the following identities.. tan x x + sec x 2. tan x + tan x x 3. x x 3 x 4. 5. + + + x 6. 2 sec + x 2 tan x csc x tan x + cot x
More informationSample Problems. Practice Problems
Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationRepresentation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
More informationIntegrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
More informationPartial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
More information3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
More informationis identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
More informationIntegration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A selfcontained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More informationPartial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationSample Problems. Practice Problems
Lecture Notes Factoring by the ACmethod page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x
More informationIntegrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
More informationTo add fractions we rewrite the fractions with a common denominator then add the numerators. = +
Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x
More informationPartial Fractions Examples
Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More information5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
More informationDecomposing Rational Functions into Partial Fractions:
Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and
More informationis identically equal to x 2 +3x +2
Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any
More informationSample Problems. Practice Problems
Lecture Notes Circles  Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points
More informationHFCC Math Lab Arithmetic  4. Addition, Subtraction, Multiplication and Division of Mixed Numbers
HFCC Math Lab Arithmetic  Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.
More informationNonhomogeneous Linear Equations
Nonhomogeneous Linear Equations In this section we learn how to solve secondorder nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where
More informationPartial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for rewriting F(s) in a form suitable for the use of the
More information36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
More informationDifferentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationIntroduction to the Finite Element Method (FEM)
Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the onedimensional
More informationSecond Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More informationLecture Notes Order of Operations page 1
Lecture Notes Order of Operations page 1 The order of operations rule is an agreement among mathematicians, it simpli es notation. P stands for parentheses, E for exponents, M and D for multiplication
More informationEquations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationc 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.
Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationLecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More information2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More information14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
More informationSolving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
More informationRecognizing Types of First Order Differential Equations E. L. Lady
Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationIDENTIFICATION IN A CLASS OF NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS. Steven T. Berry and Philip A. Haile. March 2011 Revised April 2011
IDENTIFICATION IN A CLASS OF NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS By Steven T. Berry and Philip A. Haile March 2011 Revised April 2011 COWLES FOUNDATION DISCUSSION PAPER NO. 1787R COWLES FOUNDATION
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationThe Mathematics Diagnostic Test
The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether
More informationName: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 handgraded questions worth a total of 30 points. INSTRUCTIONS:
More informationActivity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationSOLVING EQUATIONS WITH EXCEL
SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More information3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationUsing a table of derivatives
Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.
More informationINTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More information3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
More informationReview Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
More informationFRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
More informationthe points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationSeparable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
More informationPYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
More informationTechniques of Integration
8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it
More informationSolutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationMathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
More informationSolving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
More informationnorth seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
More information2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
More information1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems  Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
More information4.1. COMPLEX NUMBERS
4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers
More informationCOMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i
COMPLEX NUMBERS _4+i _i FIGURE Complex numbers as points in the Arg plane i _i +i i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More information1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
More informationSection 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationMath 432 HW 2.5 Solutions
Math 432 HW 2.5 Solutions Assigned: 110, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationConstrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
More informationDiscrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
More informationLecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is onetoone, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More information2.4 Real Zeros of Polynomial Functions
SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower
More informationPartial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.
Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More information1 Present and Future Value
Lecture 8: Asset Markets c 2009 Je rey A. Miron Outline:. Present and Future Value 2. Bonds 3. Taxes 4. Applications Present and Future Value In the discussion of the twoperiod model with borrowing and
More informationEAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
More informationCalculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More information