# Int. Geometry Unit 2 Quiz Review (Lessons 1-4) 1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Int. Geometry Unit Quiz Review (Lessons -4) Match the examples on the left with each property, definition, postulate, and theorem on the left PROPRTIS:. ddition Property of = a. GH = GH. Subtraction Property of = b. If, then c. If = and =, then. Multiplication Property of = + = + 4. ivision Property of = d. If and, then 5. istribution Property of = e. If m = 60, then m = 0 f. If = 0, then = Substitution Property of = 7. Reflexive Property of = g. x+ 6= ( x+ ) 8. Symmetric Property of = h. If m = m, then m = m i. If = and =, then 9. Transitive Property of = = 0. Reflexive Property of ongruence j. If + = +, then =. Symmetric Property of ongruence k. l. If m + m = 90 and m = m,. Transitive Property of ongruence then m + m = 90 FINITIONS:. efinition of ngle isector 4. efinition of Midpoint 5. efinition of Segment isector 6. efinition of ongruent ngles 7. efinition of ongruent Segments 8. efinition of Right ngles 9. efinition of cute ngles 0. efinition of Obtuse ngles. efinition of Straight ngle m. ngles are congruent if and only if their measures are equal n. is a right angle if and only if m = 90 o. n angle is acute if and only if its measure, x, is 0 < x < 90 p. Segments are congruent if and only if their lengths are equal. q. bisects T if and only if T r. bisects if and only if it passes through the midpoint of s. M is the midpoint if and only if M = M and -M- t. n angle is obtuse if and only if its measure, x, is 90 < x < 80 u. m = 80 if and only if it s a straight angle

2 Int. Geometry Unit Quiz Review (Lessons -4) POSTULTS. Segment ddition Postulate. ngle ddition Postulate v. If is between and, then + = w. If T is in the interior of, then m T = m T = m irections 4-7: Name the definition, property, postulate, or theorem that justifies each statement. Refer to the diagram: 4. T = T 5. If S bisects P, then m S = m SP S P 6. If is the midpoint of T, then = T T 7. m S + m SP = m P irections 8: In the following two algebraic proofs, justify each statement with a property from algebra. Statement Reason x + = Given a. x = 8 a. b. x = 4 b. 9. omplete the following proof. Given: Prove:

3 Int. Geometry Unit Quiz Review (Lessons -4) 0. Write an indirect proof. Given: m m Prove: does not bisect. Write a proof. Given: = ; = Prove: =. Write an indirect proof. Given: y + 5 Prove: y. Given: G = FH Prove: F = GH F G H

4 Int. Geometry Unit Quiz Review (Lessons -4) 4 4. Given: m m Prove: m m Selected nswers:. c. j. f 4. e 5. g 6. l 7. a 8. h 9. i 0. k. b. d. q 4. s 5. r 6. m 7. p 8. n 9. o 0. t. u. v. w 4. Reflexive Property 5. ef. of an angle bisector 6. Midpoint efinition 7. ngle ddition Postulate 8. a. Subtraction b. ivision Note with the proofs, there are multiple solutions to these problems 9.. m = m. Reflexive Po iagram. m = m. Given. m + m = m + m. ddition Po and 4. m + m = m 4. ngle ddition iagram m + m = m Postulate 5. m = m 5. Substitution Po and 4

5 Int. Geometry Unit Quiz Review (Lessons -4) 5 0. Temporarily assume bisects y the definition of an angle bisector. This contradictions the given information m m, therefore our assumption must be false and does not bisect.. = ; =. Given. + = +. ddition Po. + =. Segment ddition iagram + = Postulate 4. = 4. Substitution Po and. Temporarily assume y =. Then y + = ( ) + = 5 This contradicts our given information, y + 5. Therefore our assumption must be false and y.. F+FG=G and. Segment ddition iagram FG+GH=FH Postulate. G = FH. Given. F+FG = FG+GH. Substitution Po and 4. FG = FG 4. Reflexive Po iagram 5. F = GH 5. Subtraction Po and 4 4. Temp. assume that m = m. The ngle ddition Postulate allows us to say m = m + m and m = m + m. Since we assumed m = m by the Substitution Po we get m + m = m + m. The m = m by the Reflexive Po which means by the Subtraction Po we have m = m, but this contradicts the given information that : m m which means our assumption is false and m m.

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### Definition: If two lines are perpendicular, then they form right angles. segments. 3. If two angles are right angles, then they are congruent

Notes Page 1 2.1 notes Thursday, September 18, 2008 12:42 PM efinition: If two lines are perpendicular, then they form right angles. Example1: Given : Pr ove : 1. 1. Given 2. is a right angle is a right

### 1.2 Informal Geometry

1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior

### Algebraic Properties and Proofs

Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

### PARALLEL LINES CHAPTER

HPTR 9 HPTR TL OF ONTNTS 9-1 Proving Lines Parallel 9-2 Properties of Parallel Lines 9-3 Parallel Lines in the oordinate Plane 9-4 The Sum of the Measures of the ngles of a Triangle 9-5 Proving Triangles

### CK-12 Geometry Algebraic and Congruence Properties

CK-12 Geometry Algebraic and Congruence Properties Learning Objectives Understand basic properties of equality and congruence. Solve equations and justify each step in the solution. Use a 2-column format

### A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end.

Points, Lines, and Planes Point is a position in space. point has no length or width or thickness. point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. (straight)

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### Theorem Prove Given. Dates, assignments, and quizzes subject to change without advance notice.

Name Period GP GOTRI PROOFS 1) I can define, identify and illustrate the following terms onjecture Inductive eductive onclusion Proof Postulate Theorem Prove Given ates, assignments, and quizzes subject

### Given: ABCD is a rhombus. Prove: ABCD is a parallelogram.

Given: is a rhombus. Prove: is a parallelogram. 1. &. 1. Property of a rhombus. 2.. 2. Reflexive axiom. 3.. 3. SSS. + o ( + ) =180 4.. 4. Interior angle sum for a triangle. 5.. 5. PT + o ( + ) =180 6..

### 14 add 3 to preceding number 35 add 2, then 4, then 6,...

Geometry Definitions, Postulates, and Theorems hapter 2: Reasoning and Proof Section 2.1: Use Inductive Reasoning Standards: 1.0 Students demonstrate understanding by identifying and giving examples of

### Name Period 11/2 11/13

Name Period 11/2 11/13 Vocabulary erms: ongruent orresponding Parts ongruency statement Included angle Included side GOMY UNI 6 ONGUN INGL HL Non-included side Hypotenuse Leg 11/5 and 11/12 eview 11/6,,

### NAME DATE PERIOD. Study Guide and Intervention

opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### A polygon with five sides is a pentagon. A polygon with six sides is a hexagon.

Triangles: polygon is a closed figure on a plane bounded by (straight) line segments as its sides. Where the two sides of a polygon intersect is called a vertex of the polygon. polygon with three sides

### Geometry Final Assessment 11-12, 1st semester

Geometry Final ssessment 11-12, 1st semester Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name three collinear points. a. P, G, and N c. R, P, and G

### Math. Analyzing Lines, Rays, Segments and Angles. Answers B C D E F. Name: Use the graphic to the right to find the following (if possible):

nalyzing Lines, Rays, Segments and ngles nswers 1) Line,, 2) Ray,,,,,,, 1. 2. 3) Segment,,,,, 4) Parallel Lines ( & ) 5) Perpendicular Lines ( & ),( & ) 6) Intersecting Lines ( & ),( & ) F 3. 4. ( & )

### circle the set of all points that are given distance from a given point in a given plane

Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius

### 5-1 Perpendicular and Angle Bisectors

5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and

### Lesson 28: Properties of Parallelograms

Student Outcomes Students complete proofs that incorporate properties of parallelograms. Lesson Notes Throughout this module, we have seen the theme of building new facts with the use of established ones.

### Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain

### Angle Vocabulary, Complementary & Supplementary Angles

ngle Vocabulary, omplementary & Supplementary ngles Review 1 1. What is the definition of an acute angle? 2. Name the angle shown. 3. What is the definition of complimentary angles? 4. What is the definition

### For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

### Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times

### #2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

### GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

### Use algebra to write two-column proofs. Use properties of equality in geometry proofs. is mathematical evidence similar to evidence in law?

lgebraic Proof Use algebra to write two-column proofs. Use properties of equality in geometry proofs. Vocabulary deductive argument two-column proof formal proof is mathematical evidence similar to evidence

### Geometry Chapter 1 Review

Name: lass: ate: I: Geometry hapter 1 Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name two lines in the figure. a. and T c. W and R b. WR and

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Chapter 5: Relationships within Triangles

Name: Chapter 5: Relationships within Triangles Guided Notes Geometry Fall Semester CH. 5 Guided Notes, page 2 5.1 Midsegment Theorem and Coordinate Proof Term Definition Example midsegment of a triangle

### Geometry Chapter 2 Study Guide

Geometry Chapter 2 Study Guide Short Answer ( 2 Points Each) 1. (1 point) Name the Property of Equality that justifies the statement: If g = h, then. 2. (1 point) Name the Property of Congruence that justifies

### Perpendicular and Angle Bisectors Quiz

Name: lass: ate: I: Perpendicular and ngle isectors Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measures and. a. = 6.4, = 4.6 b. = 4.6,

### (n = # of sides) One interior angle:

6.1 What is a Polygon? Regular Polygon- Polygon Formulas: (n = # of sides) One interior angle: 180(n 2) n Sum of the interior angles of a polygon = 180 (n - 2) Sum of the exterior angles of a polygon =

### Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. One angle of the triangle measures 90, so it is a right angle. Since the triangle has a

### Geometry Chapter 5 - Properties and Attributes of Triangles Segments in Triangles

Geometry hapter 5 - roperties and ttributes of Triangles Segments in Triangles Lesson 1: erpendicular and ngle isectors equidistant Triangle congruence theorems can be used to prove theorems about equidistant

### Chapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1.

Name: lass: ate: I: hapter 1 Exam Multiple hoice Identify the choice that best completes the statement or answers the question. 1. bisects, m = (7x 1), and m = (4x + 8). Find m. a. m = c. m = 40 b. m =

### Measuring Angles. To find and compare the measures of angles

hsmgmse_4_t829. -4 easuring ngles ommon ore State Standards G-.. now precise definitions of angle, circle, perpendicular line, parallel line, and line segment... P, P 3, P 6 bjective To find and compare

### The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry

The Protractor Postulate and the SAS Axiom Chapter 3.4-3.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted

### **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

### Geometry - Chapter 2 Review

Name: Class: Date: Geometry - Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.

### Find the measure of each numbered angle, and name the theorems that justify your work.

Find the measure of each numbered angle, and name the theorems that justify your work. 1. The angles 2 and 3 are complementary, or adjacent angles that form a right angle. So, m 2 + m 3 = 90. Substitute.

### Study Guide and Intervention

4-3 E E EI tud Guide and Intervention ongruent riangles orresponding arts of ongruent riangles riangles that have the same size and same shape are congruent triangles. wo triangles are congruent if and

### Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning:

Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning: Conjecture: Advantages: can draw conclusions from limited information helps us to organize

### Ch 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and Angles [and Triangles]

h 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and ngles [and Triangles] Warm up: Directions: Draw the following as accurately as possible. Pay attention to any problems you may be having.

### 1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8.

1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8. 3 and 13 9. a 4, c 26 10. 8 11. 20 12. 130 13 12 14. 10 15.

### acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.

Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points

### Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

### CONGRUENCE BASED ON TRIANGLES

HTR 174 5 HTR TL O ONTNTS 5-1 Line Segments ssociated with Triangles 5-2 Using ongruent Triangles to rove Line Segments ongruent and ngles ongruent 5-3 Isosceles and quilateral Triangles 5-4 Using Two

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### 8.2 Angle Bisectors of Triangles

Name lass Date 8.2 ngle isectors of Triangles Essential uestion: How can you use angle bisectors to find the point that is equidistant from all the sides of a triangle? Explore Investigating Distance from

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### 5.6 Angle Bisectors and

age 1 of 8 5.6 ngle isectors and erpendicular isectors oal Use angle bisectors and perpendicular bisectors. ey Words distance from a point to a line equidistant angle bisector p. 61 perpendicular bisector

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Chapter 1. Foundations of Geometry: Points, Lines, and Planes

Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in

### Chapter Two. Deductive Reasoning

Chapter Two Deductive Reasoning Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply

### 11.2 Chords & Central Angles Quiz

Name: lass: ate: I: 11.2 hords & entral ngles Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. In the diagram below, circle O has a radius of 5, and

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Euclidean Geometry - The Elements

hapter 2 Euclidean Geometry - The Elements Goal: In this chapter we will briefly discuss the first thirty two propositions of Euclid s: The Elements. You can find the Elements on the Web at: http://aleph0.clarku.edu/

### 2.) 5000, 1000, 200, 40, 3.) 1, 12, 123, 1234, 4.) 1, 4, 9, 16, 25, Draw the next figure in the sequence. 5.)

Chapter 2 Geometry Notes 2.1/2.2 Patterns and Inductive Reasoning and Conditional Statements Inductive reasoning: looking at numbers and determining the next one Conjecture: sometimes thought of as an

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Chapter 1: Points, Lines, Planes, and Angles

Chapter 1: Points, Lines, Planes, and Angles (page 1) 1-1: A Game and Some Geometry (page 1) In the figure below, you see five points: A,B,C,D, and E. Use a centimeter ruler to find the requested distances.

### Notes on Congruence 1

ongruence-1 Notes on ongruence 1 xiom 1 (-1). If and are distinct points and if is any point, then for each ray r emanating from there is a unique point on r such that =. xiom 2 (-2). If = and = F, then

### The Basics: Geometric Structure

Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-2015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow

### This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### Ex 1: For points A, B, and C, AB = 10, BC = 8, and AC = 5. Make a conjecture and draw a figure to illustrate your conjecture.

Geometry 2-1 Inductive Reasoning and Conjecturing A. Definitions 1. A conjecture is an guess. 2. Looking at several specific situations to arrive at a is called inductive reasoning. Ex 1: For points A,

### Transversals. 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by vertical angles, corresponding angles,

Transversals In the following explanation and drawing, an example of the angles created by two parallel lines and two transversals are shown and explained: 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by

### AB divides the plane. Then for any α R, 0 < α < π there exists a unique ray. AC in the halfplane H such that m BAC = α. (4) If ray

4. Protractor xiom In this section, we give axioms relevant to measurement of angles. However, before we do it we need to introduce a technical axiom which introduces the notion of a halfplane. 4.. Plane

### Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

### STUDY OF THE LINE: THE PERPENDICULAR BISECTOR

STUDY OF THE LINE: THE PERPENDICULR ISECTOR Study of the Line, Second Series: The Perpendicular isector (4: 20) Material Geometry Classified Nomenclature 4 (20) Paper Pencil Compass Ruler Presentation

### MATH STUDENT BOOK. 10th Grade Unit 3

MTH STUDENT K 10th Grade Unit 3 Unit 3 ngles and Parallels MTH 1003 NGLES ND PRLLELS INTRDUTIN 3 1. NGLE DEFINITINS ND MESUREMENT 5 NGLE DEFINITINS 5 NGLE MESUREMENT 12 SELF TEST 1 18 2. NGLE RELTINSHIPS

### Page : 17, 19, 21, 31, 33. Conditional/Biconditional/Inverse/Converse/Contrapositive Page 109-: odd, odd, 47, 48

Geometry UNIT 2 Reasoning and Proof Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 11 Inductive Reasoning and Conjecture Page 93-95: 15-25 odds, 31-34, 36, 38, 47a Logic Page 101-102: 17, 19,

### Triangle Similarity: AA, SSS, SAS Quiz

Name: lass: ate: I: Triangle Similarity:, SSS, SS Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Explain why the triangles are similar and write a

### Parallelogram Bisectors Geometry Final Part B Problem 7

Parallelogram Bisectors Geometry Final Part B Problem 7 By: Douglas A. Ruby Date: 11/10/2002 Class: Geometry Grades: 11/12 Problem 7: When the bisectors of two consecutive angles of a parallelogram intersect

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### Goal Find angle measures in triangles. Key Words corollary. Student Help. Triangle Sum Theorem THEOREM 4.1. Words The sum of the measures of EXAMPLE

Page of 6 4. ngle Measures of Triangles Goal Find angle measures in triangles. The diagram below shows that when you tear off the corners of any triangle, you can place the angles together to form a straight

### Notes on Perp. Bisectors & Circumcenters - Page 1

Notes on Perp. isectors & ircumcenters - Page 1 Name perpendicular bisector of a triangle is a line, ray, or segment that intersects a side of a triangle at a 90 angle and at its midpoint. onsider to the

### The Perpendicular Bisector of a Segment

Check off the steps as you complete them: The Perpendicular Bisector of a Segment Open a Geometry window in Geogebra. Use the segment tool of draw AB. Under the point tool, select Midpoint of Center, and

### Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

### 2.6 Properties of Equality

age of 7 2.6 roperties of Equality and Goal Use properties of equality and congruence. Reflexive roperty Symmetric roperty Key Words Reflexive roperty Symmetric roperty Transitive roperty Jean is the same

### PROVING STATEMENTS IN GEOMETRY

CHAPTER PROVING STATEMENTS IN GEOMETRY After proposing 23 definitions, Euclid listed five postulates and five common notions. These definitions, postulates, and common notions provided the foundation for

### 5-1 Perpendicular and Angle Bisectors

5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Holt 5-1 Perpendicular and Angle Bisectors Warm Up Construct each of the following. 1.

### RATIO, PROPORTION, AND SIMILARITY

HPTER 474 12 HPTER TLE OF ONTENTS 12-1 Ratio and Proportion 12-2 Proportions Involving Line Segments 12-3 Similar Polygons 12-4 Proving Triangles Similar 12-5 ilations 12-6 Proportional Relations mong

### Geometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview

Geometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview 1. REVIEW Complete this geometric proof by writing a reason to justify each statement. Given:

Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10 th Grade Geometry Theorems 1. Given: g h Prove: 1 and 2 are supplementary

### MI314 History of Mathematics: Episodes in Non-Euclidean Geometry

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry Giovanni Saccheri, Euclides ab omni naevo vindicatus In 1733, Saccheri published Euclides ab omni naevo vindicatus (Euclid vindicated om

### Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than

### GEOMETRIC FIGURES, AREAS, AND VOLUMES

HPTER GEOMETRI FIGURES, RES, N VOLUMES carpenter is building a deck on the back of a house. s he works, he follows a plan that he made in the form of a drawing or blueprint. His blueprint is a model of

### Chapter One. Points, Lines, Planes, and Angles

Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

### Formal Geometry S1 (#2215)

Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Course Guides for the following course: Formal Geometry S1 (#2215)

### A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

### Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

### 22.1 Interior and Exterior Angles

Name Class Date 22.1 Interior and Exterior ngles Essential Question: What can you say about the interior and exterior angles of a triangle and other polygons? Resource Locker Explore 1 Exploring Interior

### Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start