# Energy of Waves. Book O Chapter 1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Energy of Waves Book O Chapter 1

2 A wave can make a leaf bob up and down on the water, but it cannot move the leaf toward the shore. This is because waves only transfer A. Media B. Crests C. Energy D. Matter

3 A wave can make a leaf bob up and down on the water, but it cannot move the leaf toward the shore. This is because waves only transfer A. Media B. Crests C. Energy D. Matter

4 How do waves transfer energy? A. By a combination of waves B. By the vibration of particles in a medium C. Through ocean waves D. Through compression

5 How do waves transfer energy? A. By a combination of waves B. By the vibration of particles in a medium C. Through ocean waves D. Through compression

6 The number of waves produced in a given amount of time is the A.Amplitude B.Wavelength C.Frequency D.Wave speed

7 The number of waves produced in a given amount of time is the A.Amplitude B.Wavelength C.Frequency D.Wave speed

8 A phenomenon that occurs when two objects naturally vibrate at the same frequency A.Interference B.Refraction C.Diffraction D.Resonance

9 A phenomenon that occurs when two objects naturally vibrate at the same frequency A.Interference B.Refraction C.Diffraction D.Resonance

10 A. Frequency B.Wave speed C.Wavelength D.Amplitude The distance from any point on a wave to an identical point on the next wave

11 The distance from any point on a wave to an identical point on the next wave A. Frequency B.Wave speed C.Wavelength D.Amplitude

12 A periodic disturbance in a solid, liquid, or gas as energy is transmitted through a medium A. Medium B. Mechanical wave C. Wave D. Interference

13 A periodic disturbance in a solid, liquid, or gas as energy is transmitted through a medium A. Medium B. Mechanical wave C. Wave D. Interference

14 A section of a longitudinal wave where the particles are crowded together is called a A. Compression B. Vibration C. Rarefaction D. Surface wave

15 A section of a longitudinal wave where the particles are crowded together is called a A. Compression B. Vibration C. Rarefaction D. Surface wave

16 Which of these waves do NOT require a medium? A. Radio waves B. Ocean waves C. Sound waves D. Seismic waves

17 Which of these waves do NOT require a medium? A. Radio waves B. Ocean waves C. Sound waves D. Seismic waves

18 A physical environment in which phenomena occur A. Mechanical wave B. Transverse wave C. Wave D. Medium

19 A physical environment in which phenomena occur A. Mechanical wave B. Transverse wave C. Wave D. Medium

20 If a wave is traveling at a certain speed and you cut its frequency in half, what would happen to its wavelength? A. The wavelength would remain the same. B. The wavelength would be doubled. C. The wavelength would be halved. D. The wavelength would produce a standing wave.

21 If a wave is traveling at a certain speed and you cut its frequency in half, what would happen to its wavelength? A. The wavelength would remain the same. B. The wavelength would be doubled. C. The wavelength would be halved. D. The wavelength would produce a standing wave.

22 Which of the following is NOT a property of a wave? A. Refraction B. Amplitude C. Wavelength D. Frequency

23 Which of the following is NOT a property of a wave? A. Refraction B. Amplitude C. Wavelength D. Frequency

24 When the crests of one wave overlap the crests of another wave or waves, this occurs: A. Resonant frequencies B. Destructive interference C. Constructive interference D. Diffraction

25 When the crests of one wave overlap the crests of another wave or waves, this occurs: A. Resonant frequencies B. Destructive interference C. Constructive interference D. Diffraction

26 The bouncing back of a ray of light, sound, or heat when the ray hits a surface that it does not penetrate A. Refraction B. Reflection C. Standing wave D. Interference

27 The bouncing back of a ray of light, sound, or heat when the ray hits a surface that it does not penetrate A. Refraction B. Reflection C. Standing wave D. Interference

28 A change in the direction of a wave when the wave finds an obstacle or an edge A. Refraction B. Resonance C. Diffraction D. Interference

29 A change in the direction of a wave when the wave finds an obstacle or an edge A. Refraction B. Resonance C. Diffraction D. Interference

30 The speed at which a wave travels through a medium A. Wavelength B. Wave speed C. Amplitude D. Frequency

31 The speed at which a wave travels through a medium A. Wavelength B. Wave speed C. Amplitude D. Frequency

32 A wave in which the particles of the medium vibrate parallel to the direction of the wave motion A. Medium B. Transverse wave C. Electromagnetic wave D. Longitudinal wave

33 A wave in which the particles of the medium vibrate parallel to the direction of the wave motion A. Medium B. Transverse wave C. Electromagnetic wave D. Longitudinal wave

34 A wave that does NOT require a medium A. Surface wave B. Mechanical wave C. Medium D. Electromagnetic wave

35 A wave that does NOT require a medium A. Surface wave B. Mechanical wave C. Medium D. Electromagnetic wave

36 When two objects, such as marimba bars and columns, vibrate at the same frequency, this occurs. A. Resonance B. Reflection C. Amplitude D. Refraction

37 When two objects, such as marimba bars and columns, vibrate at the same frequency, this occurs. A. Resonance B. Reflection C. Amplitude D. Refraction

38 The bending of a wave as the wave passes between two substances in which the speed of the wave differs A. Interference B. Refraction C. Diffraction D. Resonance

39 The bending of a wave as the wave passes between two substances in which the speed of the wave differs A. Interference B. Refraction C. Diffraction D. Resonance

40 The maximum distance that the particles of a wave s medium vibrate from their rest position A. Wave speed B. Wavelength C. Amplitude D. Frequency

41 The maximum distance that the particles of a wave s medium vibrate from their rest position A. Wave speed B. Wavelength C. Amplitude D. Frequency

42 The combination of two or more waves that result in a single wave A. Resonance B. Interference C. Diffraction D. Refraction

43 The combination of two or more waves that result in a single wave A. Resonance B. Interference C. Diffraction D. Refraction

44 A wave in which the particles move perpendicularly to the direction the wave is traveling A. Transverse wave B. Electromagnetic wave C. Medium D. Longitudinal wave

45 A wave in which the particles move perpendicularly to the direction the wave is traveling A. Transverse wave B. Electromagnetic wave C. Medium D. Longitudinal wave

46 A transverse wave and a longitudinal wave that combine at or near the boundary between two media A. Transverse wave B. Electromagnetic wave C. Medium D. Surface wave

47 A transverse wave and a longitudinal wave that combine at or near the boundary between two media A. Transverse wave B. Electromagnetic wave C. Medium D. Surface wave

48 A wave that requires a medium through which to travel A. Light wave B. Electromagnetic wave C. Mechanical wave D. Compression

49 A wave that requires a medium through which to travel A. Light wave B. Electromagnetic wave C. Mechanical wave D. Compression

50 A pattern of vibration that simulates a wave that is standing still A. Diffraction B. Resonance C. Reflection D. Standing wave

51 A pattern of vibration that simulates a wave that is standing still A. Diffraction B. Resonance C. Reflection D. Standing wave

52 What kind of wave is this? A. Transverse B. Longitudinal C. Standing wave

53 What kind of wave is this? A. Transverse B. Longitudinal C. Standing wave

54 What kind of wave is this?

55 What kind of wave is this? Transverse wave

56 This is an example of a wave. A. Transverse B. Electromagnetic C. Surface wave

57 This is an example of a wave. A. Transverse B. Electromagnetic C. Surface wave

58 A slinky can be used to show: A. Transverse waves B. Longitudinal waves C. Both transverse & longitudinal waves D. Neither transverse or longitudinal waves

59 A slinky can be used to show: A. Transverse waves B. Longitudinal waves C. Both transverse & longitudinal waves D. Neither transverse or longitudinal waves

60 Reflection? Refraction? Both? Neither? WHY??

61 This image shows both reflection from the surface of the water, and refraction as the beams of light change media from the air to the water. The light waves travel faster in the water than in air.

62 What is the speed (v) of a wave that has a wavelength ( )of 5m and a frequency (f) of 4 Hz? v = 5m x 4 Hz = m/s

### Wave Vocabulary- 25 words 1. WAVE 2. MEDIUM 3. MECHANICAL WAVE 4. ELECTROMAGNETIC WAVES 5. ENERGY 6. TRANSVERSE WAVES 7. LONGITUDINAL WAVES 8.

WAVES Chapter 11 Wave Vocabulary- 25 words 1. WAVE 2. MEDIUM 3. MECHANICAL WAVE 4. ELECTROMAGNETIC WAVES 5. ENERGY 6. TRANSVERSE WAVES 7. LONGITUDINAL WAVES 8. CREST 9. TROUGH 10. INTERFERENCE 11. CONSTRUCTIVE

### Waves. Transverse Waves

Waves A wave is a repeated oscillation or disturbance that transfers energy through matter or space. The two primary types of waves are Transverse Longitudinal Transverse Waves In a transverse wave, the

### Look at the picture below. With the person next to you, discuss what this might be.

WAVES Unit 10 Look at the picture below. With the person next to you, discuss what this might be. SECTION 1: THE NATURE OF WAVES A. Wave a repeating disturbance or movement that transfers energy through

### Wave and Sound. The waves we are working with in this unit are mechanical waves.

Wave and Sound Properties of waves A wave is a disturbance that carries energy through matter or space. We have worked with electromagnetic waves that do not require a medium through which to travel. Sound

### Waves and Sound Part 1

Waves and Sound Part 1 Intro Write the following questions on a blank piece of paper (don t answer yet) 1. What is the difference between a mechanical and electromagnetic wave? 2. What is the difference

### Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

### Periodic Wave Phenomena

Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

### What Is a Wave? What Is a Wave?, continued. What Is a Wave?, continued. What Is a Wave?, continued. What Is a Wave?, continued

What Is a Wave? What does a wave carry? A wave is a disturbance that carries energy through matter or space. Most waves travel through a medium. medium: a physical environment in which phenomena occur

### Waves. Types of Waves. Waves and Wave Properties Serway Ch. 13: Section 8 thru 13 Physics B Lesson 42: Wave Basics.

Waves Waves and Wave Properties Serway Ch. 13: Section 8 thru 13 www.archive.org Physics B Lesson 42: Wave Basics Mechanical Caused by vibrations in a medium Examples: Sound Waves in a string Water waves

### Transverse and Longitudinal waves (6.2)

Waves Homework from the book: Exercises: 1, 2, 3, 5-10, 12-16, 20, 25, 33, 34, 36. Questions:3, 9, 14 Problems 2, 11, 17 In the study guide: All the Multiple choice & True False a starting on page 69.

### 2) In terms of wave motion, define medium. The type of matter a wave moves through is the medium.

Waves Classwork #1 What is a wave? 1) What causes a wave? A disturbance that travels through space or matter. 2) In terms of wave motion, define medium. The type of matter a wave moves through is the medium.

Introduction to Waves Auto slide change for this page, WAIT.. Part A Part B Part C Part D Part E : Definition The basics - Definition of waves. - Basic Properties of waves. : Types of Waves and Terminology.

### Waves and Sound. AP Physics B

Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular to the surface (the normal) Angle of incidence

The maximum displacement of particles of the medium from their mean positions during the propagation of a wave Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular

### Ch 26 Chapter Review Q & A s

Ch 26 Chapter Review Q & A s Q: What is the source of all sounds? A: vibrating objects Q: How does pitch relate to frequency? A: Pitch is subjective, but it increases as frequency increases Q: What is

### Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

### TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 17 Waves 1 17-1 What is a wave? 2 17-2 How do waves travel through matter? 3 Kinds of Waves Enrichment Activity for Lesson 17-2 4 17-3

### Waves review practice questions

Name: ate: 1. The diagram shown represents four waves traveling to the right in the same transmitting medium. 4. Which wave has the greatest amplitude?.... Which type of wave is represented? 5. Which characteristic

### Unit 6 Practice Test: Sound

Unit 6 Practice Test: Sound Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. A mass attached to a spring vibrates back and forth. At

### Resonance. Wave. Wave. There are three types of waves: Tacoma Narrows Bridge Torsional Oscillation. Mechanical Waves 11/2/2009

Resonance Wave Transfers Energy Without Transferring Matter Clip from Mechanical Universe Wave A wave can be described as a disturbance that travels through a medium from one location to another location.

### Properties of waves including light and sound

Unit 1 Properties of waves including light and sound Wherever you live in Namibia you will have seen ripples in a river or oshana perhaps when you threw a stone in the water. If you have visited the coast

### Waves. Sec Wave Properties. Waves are everywhere in nature. What is a wave? Example: Slinky Wave

Waves PART I Wave Properties Wave Anatomy PART II Wave Math Wave Behavior PART III Sound Waves Light Waves (aka Electromagnetic Waves or Radiation) 1 Sec. 14.1 Wave Properties Objectives Identify how waves

### Waves Introduction A wave is a disturbance in a medium that caries energy without a net movement of particles.

Waves Introduction A wave is a disturbance in a medium that caries energy without a net movement of particles. A wave: transfers energy. usually involves a periodic, repetitive movement. does not result

### Lesson 19: Mechanical Waves!!

Lesson 19: Mechanical Waves Mechanical Waves There are two basic ways to transmit or move energy from one place to another. First, one can move an object from one location to another via kinetic energy.

### Unit 1 Lesson 1 Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Copyright Houghton Mifflin Harcourt Publishing Company B.I - Waves transfer energy and interact in predictable ways. E.Q - What are waves? What are waves? Riding the Wave Waves are disturbances that transfer

### Introduction to Waves. Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f)

Introduction to Waves Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f) Use the PowerPoint to fill in the Waves graphic organizer as we discuss the characteristics

### Waves. Overview (Text p382>)

Waves Overview (Text p382>) Waves What are they? Imagine dropping a stone into a still pond and watching the result. A wave is a disturbance that transfers energy from one point to another in wave fronts.

### PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves.

PS-7.1 Illustrate ways that the energy of waves is transferred by interaction with matter (including transverse and longitudinal /compressional waves). Understand that a wave is a repeating disturbance

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### Science Tutor: Physical Science

Science Tutor: Physical Science By GARY RAHAM COPYRIGHT 2006 Mark Twain Media, Inc. ISBN 1-58037-331-3 Printing No. CD-404045 Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing

### CHAPTER 14 WAVE & Sound

CHAPTER 14 WAVE & Sound COURSE CONTENT Properties of waves Definition Types of waves Wavelength Amplitude Frequency Waves are everywhere in nature Sound waves, visible light waves, radio waves, microwaves,

### 1/28/2009. Motion that repeats itself over and over. Rotation and revolution of Earth Back and forth motion of a swing Turning bicycle wheel

Physics: Waves and Sound Dr. Ed Brothers Chemistry and Physics for High School Students Texas A&M (Qatar) January 27, 2009 Harmonic Motion Motion that repeats itself over and over Examples of harmonic

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Waves Sound and Light

Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

### PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction

Name: Class: Date: ID: A PRACTICE Q6--Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine

### Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion Characteristics of Wave Motion Types of Waves: Transverse and Longitudinal Energy Transported by Waves Mathematical Representation of a Traveling Wave The Wave Equation Units of

### The first wave to reach the surface in an earthquake is the primary

4 The first wave to reach the surface in an earthquake is the primary wave (P-wave), which is a type of compression or longitudinal wave. A longitudinal wave is one that transfers energy through compressions

### MECHANICS PROJECTILE MOTION

1 MECHANICS PROJECTILE MOTION When an object is in free fall, the object is at an acceleration of 10m/s down Displacement is the straight line from start to finish in that direction Projectile: An object

### Waves Practice. 1. The diagram shown represents four waves traveling to the right in the same transmitting medium.

Name: Date: 1. The diagram shown represents four waves traveling to the right in the same transmitting medium. 4. Periodic waves are being produced in a ripple tank. As the rate at which the waves are

### Chapter 10: Waves. Waves. Waves (2) Examples of waves. Compression Waves. Shear (transverse) Waves

Chapter 10: Waves Chapter 13 Waves Demo: Shive wave machine 1. disturbances that travel from one place to another (pulse, but is often periodic) -pressure -displacement -light 2. initiated by a source

### W AVES. Chapter 6 OUTLINE GOALS. 6.9 Types of EM Waves 6.10 Light Rays

Chapter 6 W AVES OUTLINE Wave Motion 6.1 Water Waves 6.2 Transverse and Longitudinal Waves 6.3 Describing Waves 6.4 Standing Waves Sound Waves 6.5 Sound 6.6 Doppler Effect 6.7 Musical Sounds Electromagnetic

### waves and sound 1. Within a vacuum, the property common to all electromagnetic waves is their A. amplitude B. frequency C. wavelength D.

Name: ate: 1. Within a vacuum, the property common to all electromagnetic waves is their 1.. amplitude. frequency. wavelength. velocity 2. The diagram shown represents four waves traveling to the right

### Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### Chapter 19 Vibrations and Waves

Chapter 19 Vibrations and Waves Vibration of a pendulum Wave Description Wave Motion Transverse Waves Longitudinal Waves 1 General definitions of vibrations and waves Vibration: in a general sense, anything

### IB PHYSICS HL REVIEW PACKET: WAVES & VIBRATIONS

NAME IB PHYSICS HL REVIEW PACKET: WAVES & VIBRATIONS 1. This question is about waves and wave properties. (a) By making reference to waves, distinguish between a ray and a wavefront.......... (3) The diagram

### Nicholas J. Giordano. Chapter 12 Waves

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 12 Waves Wave Motion A wave is a moving disturbance that transports energy from one place to another without transporting matter Questions

### Simple Harmonic Motion(SHM) Harmonic Motion and Waves. Period and Frequency. Period and Frequency

Simple Harmonic Motion(SHM) Harmonic Motion and Waves Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period

### Chapter 23 Multiple Choice Test

Name: Class: Date: Chapter 23 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A unit of motion repeated over and over again is called

### What is the essence of waviness? The Wave Model. Waves: examples. Particles. Wave. 1. Ripples on a pond. Think of a leaf, or a cork on the water

Chapter 20: Traveling Waves 20.1 The wave model 20.2 One-dimensional waves 20.3 Sinusoidal waves 20.4 Waves in 2- & 3-dimensions 20.5 Sound and Light Waves 20.6 Power and Intensity 20.7 Doppler Effect

### Name Class Date. c. column of air at the mouthpiece 4. flute. longitudinal

Exercises 26.1 The Origin of (page 515) Match each sound source with the part that vibrates. Source Vibrating Part a b d c 1. violin a. strings 2. your voice b. reed 3. saxophone c. column of air at the

### Waves are created by disturbances which cause vibrations.

Wave Motion Waves are created by disturbances which cause vibrations. Vibrations produce a back-and-forth type motion called an oscillation. http://3d wave simulation The number of vibrations (or waves)

### SOUND: Nature of sound

SOUND: Nature of sound: Sound is a mechanical wave. Mechanical waves need a material medium to propagate. The medium can be a gas, liquid or solid. They can not propagate in vacuum because vacuum is not

### Waves Physics Leaving Cert Quick Notes

Waves Physics Leaving Cert Quick Notes Waves A wave is a means of transferring energy from one point to another Waves can be classified as mechanical where the wave must have a medium to travel through,

### Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

### Electricity and Magnetism

Electricity and Magnetism Waves Wave a disturbance that travels through a medium in such a way that energy travels through the medium but matter does not. All waves (sound waves, waves on a string, seismic

### Since we will be studying electromagnetic waves, let s review some general features of waves:

The Nature of Waves Since we will be studying electromagnetic waves, let s review some general features of waves: 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. The

### Essential Knowledge 5.G.1: The possible nuclear reactions are constrained by the law of conservation of nucleon number.

Curriculum Framework Essential Knowledge 5.F.1: The continuity equation describes conservation of mass flow rate in fluids. Examples should include volume rate of flow and mass flow rate. Learning Objective

### Waves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008

Waves and Sound An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### 4 Oscillations ans Waves (10 h)

4 Oscillations ans Waves (10 h) Kari Eloranta 2015 Jyväskylän Lyseon lukio International Baccalaureate November 30, 2015 4.4 Wave Sources Figure: When a stick is dipped into the water, a series of circular

### Wave Energy. A pulse is a traveling disturbance in a medium. Pictures (a) through (d) show successive positions of a pulse in a rope.

Wave Energy A pulse is a traveling disturbance in a medium. Pictures (a) through (d) show successive positions of a pulse in a rope. Wave Energy A wave is a succession of pulses, traveling through a medium.

### Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

### a) A hanging spring supporting a weight. b) The balance of a wheel. c) The wheel of an automobile. d) The spring of a violin.

114. If mass of a body suspended from a spring is doubled, the period of vibration of the body becomes: (6a ii 07) a) Double. b) Half. c) Times. d) Iyr times. 115. The frequency of a simple pendulum in

### 1. Examples: Wave motion is generating, when disturbance is generating in a wave source and the disturbance is propagating in time and in space.

Wave motion 1. Examples: Wave motion can be observed when a water surface is disturbed. In this case waves move outwards across the water surface from the point of disturbance. Wave motion along the string.

### NOTES Unit 13: Waves and Optics Wave Motion and Sound

Unit 13: Waves and Optics Wave Motion and Sound OBJECTIVES: Big Idea 6: Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical

### Chapter 21 Mechanical Waves. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 21 Mechanical Waves A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completion of this module, you should be able

### Principles of Technology CH 12 Wave and Sound 1 Name

Principles of Technology CH 12 Wave and Sound 1 Name KEY OBJECTIVES At the conclusion of this chapter you will be able to: Define the terms periodic wave, wave motion, transverse wave, longitudinal wave,

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Chapter 16 Waves and Sound

Chapter 16 WAVES AND SOUND PREVIEW A wave is a disturbance which causes a transfer of energy. Mechanical waves need a medium in which to travel, but electromagnetic waves do not. Waves can be transverse

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

### Rigorous Curriculum Design Unit Planning Organizer

1 Rigorous Curriculum Design Unit Planning Organizer Subject(s) Science Grade/Course 6 Unit of Study Forces and Motion Pacing Minimum 15 days, Maximum 20 days Priority Essential Standards 6.P.1 Understand

### Waves. Wave: A traveling disturbance consisting of coordinated vibrations that transmit energy with no net movement of the matter.

Waves Wave: A traveling disturbance consisting of coordinated vibrations that transmit energy with no net movement of the matter. Source: some kind of disturbance from the state of equilibrium. Propagation:

### Name Class Date. A wave is produced that moves out from the center in an expanding circle. The wave

Exercises 25.1 Vibration of a Pendulum (page 491) 1. The time it takes for one back-and-forth motion of a pendulum is called the period. 2. List the two things that determine the period of a pendulum.

### Waves. In short: 1. A disturbance or variation which travels through a medium 2. Must transfer energy from one location to another.

Waves What is a wave? A disturbance or variation that transfers energy progressively from point to point in a medium and that may take the form of an elastic deformation or of a variation of pressure,

### A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

### Waves in Water Waves and Sound

Waves in Water Waves and Sound What is a wave? What are the main properties of waves? What two things do all waves transport? Vibration Waves are a type of disturbance that can propagate or travel. Waves

### INTEGRATED SCIENCE 1: UNIT 4: PHYSICS

INTEGRATED SCIENCE 1: UNIT 4: PHYSICS Sub Unit 1: Waves TEST 2: Electromagnetic Waves Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)Electromagnetic

### Longitudinal waves: Part 1

OpenStax-CNX module: m39032 1 Longitudinal waves: Part 1 Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction

### I. C O N T E N T S T A N D A R D S

Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S 4. Waves Central Concept: Waves carry energy from place to place without the transfer

### Eighth Grade Sound Waves Assessment

Eighth Grade Sound Waves Assessment 1a. Waves carry or transfer, but they do not carry matter. a. mass b. energy 1b. Waves of all kinds only carry or transfer from one place to another. 1c. Waves transfer,

### PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

### Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

### Longitudinal and Transverse Waves

Longitudinal and Transverse Waves Learning Intentions To develop an understanding of the properties of transverse and longitudinal waves. Success Criteria You will be successful if you are able to... Draw

### Unit 4 Sound and Waves

Name: Class: Date: Unit 4 Sound and Waves Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The speed of any mechanical wave as it propagates through a medium

### Chapter 15: Making Waves

Chapter 15: Making Waves 1. Electromagnetic waves are generally A. transverse waves. B. longitudinal waves. C. a 50/50 combination of transverse and longitudinal waves. D. standing waves. 2. The period

### What are the different forms of energy?

Lesson 1 Heat Lesson 2 Sound Lesson 3 Light Lesson 4 Electricity What are the different forms of energy? Lesson 5 Magnetism heat temperature conduction convection radiation thermal conductivity What is

### SP9. StudyPacks KS4 SCIENCE STUDY. Wave Basics. Wave speed = Frequency x Wavelength

StudyPacks STUDY. KS4 SCIENCE Wave Basics Wave speed = Frequency x Wavelength This Study Pack aims to cover:. Describing Waves using keywords wavelength, amplitude & frequency 2. How to calculate Wave

### PHYS102 General Physics II

PHYS102 General Physics II Topics covered: Waves Thermodynamics Electricity Magnetism Currently this corresponds to chapters 16 to 30 of Fundamentals of Physics by Halliday, Resnick and Walker. Lectures:

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### Activity Description: Students correctly complete the Everyday Examples of Thermodynamics matching pieces and the Student Worksheet.

Activity Description: Students correctly complete the Everyday Examples of Thermodynamics matching pieces and the Student Worksheet. Materials: 1 Student Attachment: Student Worksheet (per student) 1 Student

### The Nature. of Waves. Teacher's Guide. Visual Learning Company Editors: Brian A. Jerome, Ph.D. Stephanie Zak Jerome

The Nature of Waves Teacher's Guide Editors: Brian A. Jerome, Ph.D. Stephanie Zak Jerome Assistant Editors: Anneliese Brown Louise Marrier Graphics: Lyndsey Canfield Dean Ladago Fred Thodal www.visuallearningco.com

### LESSON 1 - AN INTRODUCTION TO WAVE PHENOMENA

Overview: LESSON 1 - AN INTRODUCTION TO WAVE PHENOMENA Through a combination of class discussion, animations, demonstrations, lab work and an individual activity, students will be introduced to waves and

### transverse wave on a string Slinky waves

L 23 Vibrations and Waves [3] updated 10/23/07 resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar

### Chapter 18 4/14/11. Superposition Principle. Superposition and Interference. Superposition Example. Superposition and Standing Waves

Superposition Principle Chapter 18 Superposition and Standing Waves If two or more traveling waves are moving through a medium, the resultant value of the wave function at any point is the algebraic sum

### EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)