# Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

Save this PDF as:

Size: px
Start display at page:

Download "Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?"

## Transcription

1 Wave Properties Student Worksheet Answer the following questions during or after your study of Wave Properties. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return to her as an echo 2.3 seconds later. What is the speed of sound on this day at her location? 2. A boat traveling in saltwater (speed of sound = 1530 m/s) sends out an ultrasonic signal to the sea floor only to receive the reflected signal 0.23 second later. How deep is the ocean? 3. A particular sonar unit in a fishing boat stops working reliably when the boat is brought from the ocean to a freshwater lake. What is the problem? Should the captain worry about running aground? 4. How are refraction and the speed of wave in different media related? 5. What properties do waves have that particles do not? Can you think of any properties that particles have that waves do not? 6. Why do only very small particles have noticeable wave properties? 7. A wave of amplitude 0.5 m interferes with a wave of amplitude of 0.2m. What is the maximum resultant displacement that may occur? What is the minimum resultant displacement that may occur? 8. A string is rigidly attached to a post. A wave with amplitude of 0.5m is sent down the string. It is reflected off of the post. Assuming the amplitude of the forward wave remains the same upon reflection, what is the displacement when the two waves cross each other? What is this called? 9. A string is free to move in its attachment to a post. A wave with amplitude of 0.5m is sent down the string. It is reflected off of the post. Assuming the amplitude of the forward wave remains the same upon reflection, what is the displacement when the two waves cross each other? What is this called? 10. In attempting to tune a piano, a piano tuner produces a note at 440 Hz. He notices that he hears beats with a frequency of 2 Hz when he strikes the A key on the piano. What frequency is the piano key actually producing? Why are there two possibilities? 11. Why can you hear a radio playing around the corner but not see it?

2 12. What produces a standing wave? What are standing waves characterized by? 13. A horn, when stationary, is heard to produce a tone of A (440 Hz). When the horn is placed on a train, it is heard to make a tone at 435 Hz. What direction is the train moving, relative to the listener? 14. How do police officers use the Doppler Effect to determine whether or not you deserve a ticket? 15. How can the density of a gas be determined from the shape of the spectral lines it produces? 16. How does MOSAIC observe only the ozone from the mesosphere through the 99% of the ozone that lies in the lower atmosphere?

3 Wave Properties Teacher Notes This worksheet is intended to accompany the Wave Properties PowerPoint (Wave Properties.pptx) created as part of Haystack Observatory s RET project on Physics and MOSAIC. The PowerPoint can be used as an in-class presentation, but also could be reenvisioned as a Webquest-type activity of self-directed learning. This worksheet provides practice solving problems as well as thinking conceptually through the principles of waves. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return to her as an echo 2.3 seconds later. What is the speed of sound on this day at her location? The speed of sound is the total distance traveled by the sound divided by the time elapsed. The total distance is out and back, so 2 x 385 m. v = (2*385) / 2.3 s = 335 m/s 2. A boat traveling in saltwater (speed of sound = 1530 m/s) sends out an ultrasonic signal to the sea floor only to receive the reflected signal 0.23 second later. How deep is the ocean? Again, the distance traveled by the sound is equal to the speed of the sound times the time elapses. The distance is the out and back distance, or two times the distance to the bottom of the ocean from the boat. d = 1530 m/s * 0.23 s = 352 m / 2 = 176 m 3. A particular sonar unit in a fishing boat stops working reliably when the boat is brought from the ocean to a freshwater lake. What is the problem? Should the captain worry about running aground? The speed of sound depends on the medium the sound is traveling through. Sound travels at a different speed in salt water than it does in fresh water. Specifically, sound travels faster in salt water, due to the increased density. That means, then, that the sonar will assume a faster speed than is accurate, leading to an over-reporting of the distance to the bottom of the lake. The captain should be cautious to not run aground, since the actual depth will be less than what the sonar indicates. 4. How are refraction and the speed of wave in different media related? Refraction arises because of the change in speed of waves in different media. When a wave travels faster in one medium, it tends to spend more time in it, and waves appear to bend towards the faster medium. 5. What properties do waves have that particles do not? Can you think of any properties that particles have that waves do not? Waves can exhibit diffraction and interference, which particles cannot. Particles have a definite mass and momentum, which particles do not.

4 6. Why do only very small particles have noticeable wave properties? Because the de Broglie wavelength of a particle is h/p, and h is a very small number, the wavelength is only appreciable if p (= mv, the momentum of the particle) is very small as well. 7. A wave of amplitude 0.5 m interferes with a wave of amplitude of 0.2m. What is the maximum resultant displacement that may occur? What is the minimum resultant displacement that may occur? If the two waves interfere constructively, the amplitude will be 0.7 m. If the two waves interfere destructively, the amplitude will be 0.3 m. 8. A string is rigidly attached to a post. A wave with amplitude of 0.5m is sent down the string. It is reflected off of the post. Assuming the amplitude of the forward wave remains the same upon reflection, what is the displacement when the two waves cross each other? What is this called? When a wave reflects off a fixed post, it is inverted. So, when the two waves interfere, it will result in destructive interference, with no (0) displacement. 9. A string is free to move in its attachment to a post. A wave with amplitude of 0.5m is sent down the string. It is reflected off of the post. Assuming the amplitude of the forward wave remains the same upon reflection, what is the displacement when the two waves cross each other? What is this called? When a wave reflects off a free boundary, it is not inverted, so when the two waves encounter each other it will result in constructive interference, with amplitude of 1.0 m. 10. In attempting to tune a piano, a piano tuner produces a note at 440 Hz. He notices that he hears beats with a frequency of 2 Hz when he strikes the A key on the piano. What frequency is the piano key actually producing? Why are there two possibilities? The piano could be producing either 442 Hz or 438 Hz. The tuner can t be sure which because the frequency of the beat is equal to the absolute value of the difference between the two frequencies. He would need to try a different frequency (441 Hz, for example) and see what happens to the beat frequency (if it becomes 3 Hz or 1 Hz in this example) to determine which frequency the piano is producing. 11. Why can you hear a radio playing around the corner but not see it? Sound waves in the audible range have large wavelengths, comparable to the size of a hallway or corner. Both are approximately on the scale of a meter. This allows the sound waves to diffract, or spread out, around the corner. Visible light, however, has a very short wavelength (less than micrometer), and thus, the waves do not diffract around the corner, which is an opening on the scale of meters. 12. What produces a standing wave? What are standing waves characterized by? Standing waves are produced by the alternating constructive and destructive interference of a forward wave and its reflection. They are characterized by a stationary pattern with nodes and antinodes.

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

### Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Chapter VII Wave Transfer and Waves incident on a rigid boundary almost completely reflect Almost all the wave s energy is reflected back the way it came Waves incident

### Thompson/Ocean 420/Winter 2005 Tide Dynamics 1

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the

### Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Introduction to acoustic imaging

Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

### Waveforms and the Speed of Sound

Laboratory 3 Seth M. Foreman February 24, 2015 Waveforms and the Speed of Sound 1 Objectives The objectives of this excercise are: to measure the speed of sound in air to record and analyze waveforms of

### Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes:

1 Through this learning journey, learners will be given the opportunity to explore the nature of sound, waves and wave characteristics using a variety of ICT. The learning journey offers opportunities

### Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

### Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

### D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

### Energy Transformations

Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

### G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current

G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current Electric Current A net flow of charged particles. Electrons in a metal Ions in an electrolyte Conventional Current A model used

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### Periodic wave in spatial domain - length scale is wavelength Given symbol l y

1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic

### Sensors and Cellphones

Sensors and Cellphones What is a sensor? A converter that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument What are some sensors we use every

### Training programme on flow measurements

WMO / OMM Autorite du Bassin du Niger Niger-HYCOS and Volta-HYCOS Projects Training programme on flow measurements 2 nd part : Flow measurement techniques Flow measurements and calculations Definitions

### I. Wireless Channel Modeling

I. Wireless Channel Modeling April 29, 2008 Qinghai Yang School of Telecom. Engineering qhyang@xidian.edu.cn Qinghai Yang Wireless Communication Series 1 Contents Free space signal propagation Pass-Loss

### Building a Guitar to Showcase High School Mathematics and Physics

Building a Guitar to Showcase High School Mathematics and Physics College of Engineering and Science Presented at the ASEE 8 t h Annual Workshop on K-12 Engineering Education Vancouver, Canada June 25,

### Thu Truong, Michael Jones, George Bekken EE494: Senior Design Projects Dr. Corsetti. SAR Senior Project 1

Thu Truong, Michael Jones, George Bekken EE494: Senior Design Projects Dr. Corsetti SAR Senior Project 1 Outline Team Senior Design Goal UWB and SAR Design Specifications Design Constraints Technical Approach

### Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

### RF & GPS Tracking. American Sales: 150 S. Adkins Way, Suite 100 Meridian, ID 83642 United States. European Sales: Ahventie 4a7 02170 ESPOO Finland

RF & GPS Tracking European Sales: Ahventie 4a7 02170 ESPOO Finland American Sales: 150 S. Adkins Way, Suite 100 Meridian, ID 83642 United States www.trackersecurity.com sales@trackersecurity.com +1 (888)

### Level 3 Science, 2008

90732 3 907320 For Supervisor s Level 3 Science, 2008 90732 Describe selected properties and applications of EMR, radioactive decay, sound and ultrasound Credits: Four 2.00 pm Thursday 20 November 2008

### XX. Introductory Physics, High School

XX. Introductory Physics, High School High School Introductory Physics Test The spring 2013 high school Introductory Physics test was based on learning standards in the Physics content strand of the Massachusetts

### Navy Electricity and Electronics Training Series

NONRESIDENT TRAINING COURSE SEPTEMBER 1998 Navy Electricity and Electronics Training Series Module 10 Introduction to Wave Propagation, Transmission Lines, and Antennas NAVEDTRA 14182 DISTRIBUTION STATEMENT

### Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles

2 nd International Symposium on Seawater Drag Reduction Busan, Korea, 23-26 MAY 2005 Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles D. Modarress, P. Svitek (Measurement Science

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter

A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter Leszek Kwapisz (*) Marek Narewski Lech A.Rowinski Cezary Zrodowski Faculty

### Study of RF Spectrum Emissions in High Pressure Sodium and Metal Halide Lamps. Lawrence P. Glaister VE7IT, Automation Engineer.

Study of RF Spectrum Emissions in High Pressure Sodium and Metal Halide Lamps Lawrence P. Glaister VE7IT, Automation Engineer May 2010 Abstract: This research was performed in collaboration with the City

### A wave lab inside a coaxial cable

INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

### Physics 101 Hour Exam 3 December 1, 2014

Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep

### Software Audio Processor. Users Guide

Waves R360 Surround Reverb Software Audio Processor Users Guide Waves R360 software guide page 1 of 8 Introduction Introducing the Waves 360 Surround Reverb. This Software audio processor is dedicated

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BMMC (2011 Admission) V SEMESTER CORE COURSE AUDIO RECORDING & EDITING QUESTION BANK 1. Sound measurement a) Decibel b) frequency c) Wave 2. Acoustics

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

### ME 472 Engineering Metrology

ME 472 Engineering Metrology and Quality Control Chp 6 - Advanced Measurement Systems Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana Assistant Professor Coordinate Measuring Machines

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

### Lecture 14. Introduction to the Sun

Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

### Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

### Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### Environmental Effects On Phase Coherent Underwater Acoustic Communications: A Perspective From Several Experimental Measurements

Environmental Effects On Phase Coherent Underwater Acoustic Communications: A Perspective From Several Experimental Measurements T. C. Yang, Naval Research Lab., Washington DC 20375 Abstract. This paper

### Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked

### Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

### A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### (0008854) A981653 REV B. 4125 system setup and deployment quick start guide

(0008854) A981653 REV B 4125 system setup and deployment quick start guide OPERATION IN AIR Do not operate the system while the tow fish in air for extended periods. The system may be enabled to transmit

### Energy - Heat, Light, and Sound

Science Benchmark: 06:06 Heat, light, and sound are all forms of energy. Heat can be transferred by radiation, conduction and convection. Visible light can be produced, reflected, refracted, and separated

### Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

### Physics demonstration of sound waves using Visual Analyser

Physics demonstration of sound waves using Visual Analyser Shahrul Kadri, Rosly Jaafar, Wan Zul Adli and Anis Nazihah Department of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak

### 2After completing this chapter you should be able to

After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

### Ultrasound Condition Monitoring

Ultrasound Condition Monitoring Whitepaper Alan Bandes UE Systems, Inc. Abstract: Instruments based on airborne/structure borne ultrasound technology offer many opportunities for reducing energy waste

### Optiffuser. High-performance, high bandwidth lightweight 1D diffuser.

Optiffuser High-performance, high bandwidth lightweight 1D diffuser. General product information The Optiffuser comes in packs of four panels. Two positives and two negatives (see page 5) per package.

### Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice

### Welcome to the United States Patent and TradeMark Office

Welcome to the United States Patent and TradeMark Office an Agency of the United States Department of Commerce United States Patent 5,159,703 Lowery October 27, 1992 Silent subliminal presentation system

Goals: Lecture 29 Chapter 20 Work with a ew iportant characteristics o sound waves. (e.g., Doppler eect) Chapter 21 Recognize standing waves are the superposition o two traveling waves o sae requency Study

### PHY114 S11 Term Exam 3

PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

### The Physics of Sound

The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Somero SiteShape System

Somero SiteShape System www.somero.com info@somero.com Somero Enterprises, LLC Corporate Office: 82 Fitzgerald Drive Jaffrey, NH 03452 603 532 5900 - phone 603 532 5930 - fax The Somero SiteShape System

### The Free High School Science Texts: A Textbook for High School Students Studying Physics.

The Free High School Science Texts: A Textbook for High School Students Studying Physics. FHSST Authors 1 December 9, 2005 1 See http://savannah.nongnu.org/projects/fhsst Copyright c 2003 Free High School

### Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band.

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Reference: EB968 Date: January 2008 Author: Eric Burwood (National Acoustic Laboratories) Collaborator: Walter

### Ultrasound. Sound waves

Ultrasound Basic Idea Send waves into body which are reflected at the interfaces between tissue Return time of the waves tells us of the depth of the reflecting surface History First practical application,

### Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa

Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),

### Asset Management Made Easier SonarBell Passive Acoustic Marker Speaker : John Pepper

Asset Management Made Easier SonarBell Passive Acoustic Marker Speaker : John Pepper SonarBell Provenance SonarBell developed by UK MoD Defence Science Technology Laboratories (DSTL) to provide: A highly

### The world s first Acoustic Power Equalization Technology Perfect Acoustic Power Equalization. Perfect Time/Phase Alignment.

Consumer Electronics Applications The world s first Acoustic Power Equalization Technology Perfect Acoustic Power Equalization. Perfect Time/Phase Alignment. Acoustic Power Equalization Technology For

### Which physics for full-wavefield seismic inversion?

Which physics for full-wavefield seismic inversion? M. Warner* (Imperial College London), J. Morgan (Imperial College London), A. Umpleby (Imperial College London), I. Stekl (Imperial College London) &

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2

Physics 2220 Module 16 Homework 01. A firecracker explodes in reference frame S at t 1 1.0 seconds. A second firecracker explodes at the same position at t 2 3.0 seconds. In reference frame S', which moves

### Spectrum Level and Band Level

Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

### One Stop Shop For Educators. Georgia Performance Standards Framework for Physical Education

PEK.1: Demonstrates competency in motor skills and movement patterns needed to perform a variety of activities. Description: Students will experience all locomotor movement patterns (e.g., hop, jump, and

### CPI Links Content Guide & Five Items Resource

CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained

### Nexus Technology Review -- Exhibit A

Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.

### Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

### Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany

Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany This convention paper has been reproduced from the author's advance manuscript, without editing,

### Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 13, 2012 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 13, 2012 1:15 to 4:15 p.m., only Answer all questions in all parts of this

### ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

### Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

### Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ

### Open Channel & Partially Filled Pipe Ultrasonic Flow Meters

Open Channel & Partially Filled Pipe Ultrasonic Flow Meters DYNAMETERS series DMDF-OP has three types as below: DMDF-OP-A for partially filled pipe application; DMDF-OP-B for partially filled pipe, channel

### EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

### Chillin Out: Designing an Insulator

SHPE Jr. Chapter May 2015 STEM Activity Instructor Resource Chillin Out: Designing an Insulator Students learn about the three ways heat can be transferred from one object to another. They also learn what

### Engineering with Sound Lesson Plan

Type of lesson: Challenge Teaching Plan: Engineering with Sound Lesson Plan Goal The goal of this lesson is to introduce the students to sound and its properties and have them apply what they learn to

### ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

### (15.) To find the distance from point A to point B across. a river, a base line AC is extablished. AC is 495 meters

(15.) To find the distance from point A to point B across a river, a base line AC is extablished. AC is 495 meters long. Angles

### Principles of Medical Ultrasound. Pai-Chi Li Department of Electrical Engineering National Taiwan University

Principles of Medical Ultrasound Pai-Chi Li Department of Electrical Engineering National Taiwan University What is Medical Ultrasound? Prevention: actions taken to avoid diseases. Diagnosis: the process

### Acoustic Leak Detection. Gander Newfoundland 2006

Acoustic Leak Detection Gander Newfoundland 2006 Overview Background on Leakage and leak Detection Water Loss Management Fundamentals of Correlation Leakage The unintentional escape or loss of water from

### Understanding the Flo-Dar Flow Measuring System

Understanding the Flo-Dar Flow Measuring System Independent tests verify non-contact flowmeter is highly accurate under both open channel and surcharge conditions TM Flo-Dar is the only non-contact open

### telemetry Rene A.J. Chave, David D. Lemon, Jan Buermans ASL Environmental Sciences Inc. Victoria BC Canada rchave@aslenv.com I.

Near real-time transmission of reduced data from a moored multi-frequency sonar by low bandwidth telemetry Rene A.J. Chave, David D. Lemon, Jan Buermans ASL Environmental Sciences Inc. Victoria BC Canada

### b mm ) 61,2cc 7r>2 ; ff!zil s_c, 3Cm left 0ç0//r /24 & Physics 221: Final Exam, Spring-il - 1 k:&- 4 5; 4 ) _1_ 5_C:, 1f imdfd? Name: Section.

Name: Section. No: ) 61,2cc 7r>2 ; ff!zil b mm 1 Ft;I 1f imdfd? s_c, 3Cm left 0ç0//r 7,:1, /e1f 2 - I - - 32. 2-5 _1_ I, 5; 4 ) / - 1 k:&- 4 /24 & I 5; d) what is the overall magnification? c) is it upright