Consortium for Educational Communication

Size: px
Start display at page:

Download "Consortium for Educational Communication"

Transcription

1 Consortium for Educational Communication Module on ENERGY FLOW IN AUTOTROPHIC AND DETRITUS BASED ECOSYSTEMS By Zahoor Ahmad Itoo M. Phil. Scholar Department of Botany Kashmir University Srinagar

2 TEXT 1.1. Physical laws govern energy flow in ecosystems The behaviour of energy in an ecosystem follows laws of thermodynamics. The first law of thermodynamics or the law of conservation of energy, states that energy may be transformed from one form into another but is neither created nor destroyed. Light for example, is a form of energy, it can be transformed into work, heat, or potential energy of food, depending on the situation, but none of it is destroyed. The first law of thermodynamics also states that energy cannot be created or destroyed but only transferred or transformed. Thus, we can potentially account for the transfer of energy through an ecosystem from its input as solar radiation to its release as heat from organisms. Plants and other photosynthetic organisms convert solar energy to chemical energy, but the total amount of energy does not change: the total amount of energy stored in organic molecules plus the amounts reflected and dissipated as heat must equal the total solar energy intercepted by the plant. The second law of thermodynamics may be stated in several ways including the following: (a) No process involving an energy transformation will spontaneously occur unless there is a degradation of energy from a concentrated form into a dispersed form, (b) because some energy is always dispersed into unavailable heat energy, no spontaneous transformation of energy (sunlight) into potential energy (protoplasm) is 100% efficient. Every ecosystem possess certain thermodynamic characteristics: can create and maintain a high state of internal order, or a condition of low entropy (a low amount of disorder). In the ecosystems order, a complex biomass structure is maintained by the total community respiration, which continuously pumps out disorder. Accordingly ecosystems are open, non-equilibrium thermodynamic systems that

3 continuously exchange energy and matter with the environment to decrease internal entropy but increase external entropy (thus conforming to the laws of thermodynamics). 1.2 ENERGY FLOW The behaviour of energy in an ecosystem is called energy flow. Energy flow is a fundamental property of ecosystems that links organisms with each other and to their environment. With respect to energy flow the ecosystems are open systems i.e., they are dependent on an external source of energy, which is the sun. Except for the deep sea hydro-thermal ecosystem, sun is the only source of energy for all ecosystems on earth. Of the incident solar radiation less than 50 per cent of it is photosynthetically active radiation (PAR). Only producers in an ecosystem have the ability to convert light energy into chemical energy and thus act as transducers or converters. Energy flows through an ecosystem in one direction, which is called the food chain. The producers contain the most energy; they are autotrophs and manufacture their own food. In a terrestrial ecosystem, major producers are herbaceous and woody plants. Likewise, primary producers in an aquatic ecosystem are various species like phytoplankton, algae and higher aquatic plants. All other organisms in an ecosystem depend on producers to meet their energy requirements, hence they are known as consumers. Consumers obtain energy by eating the producers, they are also known as heterotrophs. There may be several levels of consumers in an ecosystem, beginning with herbivores and then to the carnivores and omnivores. If they feed on the producers, (i. e., plants) they are called primary consumers, and if the animals eat other animals which in turn eat the plants they are called secondary consumers. Likewise, there are tertiary consumers also. Obviously the primary consumers

4 will be herbivores. Some common herbivores are insects, birds and mammals in terrestrial ecosystem and molluscs in aquatic ecosystem. The consumers that feed on these herbivores are carnivores, or more correctly primary carnivores (though secondary consumers). Those animals that depend on the primary carnivores for food are labeled secondary carnivores. Finally, the decomposers obtain energy from waste and dead organisms, e. g bacteria and fungi. So there is unidirectional flow of energy from the sun to producers and then to consumers, this is in accordance with the first law of Thermodynamics. Further, ecosystems are not exempt from the Second Law of thermodynamics. They need a constant supply of energy to synthesize the molecules they require, to counteract the universal tendency toward increasing disorderliness. Starting from the plants (or producers) food chains or rather webs are formed such that an animal feeds on a plant or on another animal and in turn is food for another. The chain or web is formed because of this interdependency. No energy that is trapped into an organism remains in it for ever. The energy trapped by the producer, hence, is either passed on to a consumer or to a decomposer when the organism dies. Energy transfer during these consumption events is not perfectly efficient. As no energy transfer occurs in an ecosystem unless there is loss of energy as heat. So in a food chain producers have maximum energy followed by primary consumers and secondary consumers and so on. Death of organism is the beginning of the detritus food chain. On average about 10 percent of net energy production at one trophic level is passed on to the next level. Processes that reduce the energy transferred between trophic levels include respiration, growth and reproduction, defecation, and non predatory death (organisms that die but are not eaten by consumers). The nutritional quality of material that is consumed

5 also influences how efficiently energy is transferred, because consumers can convert high-quality food sources into new living tissue more efficiently than low-quality food sources. The low rate of energy transfer between trophic levels makes decomposers generally more important than producers in terms of energy flow. Decomposers process large amounts of organic material and return nutrients to the ecosystem in inorganic forms, which are then taken up again by primary producers. Energy is not recycled during decomposition, but rather is released, mostly as heat. 1 Flow of energy in an ecosystem Fig Energy flow in an autotroph based ecosystems These ecosystems are characterized by a dependence on energy capture by photosynthetic autotrophs and secondarily by movement

6 of that captured energy through the system via herbivory and carnivory. Autotrophic ecosystems are directly dependant on an influx of solar radiation. The sun is the ultimate source of energy for these ecosystems. Living organisms can use energy in basically two forms: radiant or fixed. Radiant energy exists in the form of electromagnetic energy, such as light. Fixed energy is the potential chemical energy found in organic substances. This energy can be released through respiration. Producers utilize the radiant energy of sun which is transformed to chemical form, ATP during photosynthesis. These ecosystems depend on autotrophic energy capture and the movement of this captured energy to herbivores. Organisms that can take energy from inorganic sources and fix it into energy rich organic molecules are called autotrophs. Organisms that require fixed energy found in organic molecules for their survival are called heterotrophs. Heterotrophs who obtain their energy from living organisms are called consumers. Decomposers or detritivores are heterotrophs that obtain their energy either from dead organisms or from organic compounds dispersed in the environment. Energy flow pathway in Cedar Bog Lake The energy flow in this ecosystem was studied by Lindeman (1942) who reported that the total solar input was gcal/ cm 2 /year of which gcal/cm 2 /year remained unutilized. The autotrophs showed a gross production of = 111 gcal/cm 2 /year (i, e., 0.10%). From this energy 23gcal/cm 2 / year (21%) was consumed in respiration, 3.0 gcal/cm 2 /year in decomposition and about 70 gcal/cm 2 /year remained unutilized. The net primary production was therefore, 111 (23+ 0) = 88 gcal/cm 2 /year. Thus, the autotrophs transferred 17% of their net primary production to herbivores and accumulated about 79.5% of food energy. Out of 15 gcal/cm 2 /year the herbivores used 4.5

7 gcal/cm 2 /year (30%) in metabolic activities, 0.5 gcal/cm 2 /year in decomposition and 7% gcal/cm 2 /year remained unutilized. Only 3.0 gcal/cm 2 /year (28.6% of net production) was passed onto carnivores. Thus, carnivores used 60% (1.8 gcal/cm 2 /year) of energy in metabolic activities and 40% (1.2 gcal/cm 2 /year) remained unutilized. Thus, according to Lindman (1942) from gross primary production of 111 gcal/cm 2 /year by autotrophs, a total of 29.3 gcal/cm 2 /year was used in respiration, 3.5 gcal/ cm 2 /year in decomposition and 78.2 gcal/cm 2 /year remained unutilized. It may be noted that there was a progressive decrease in energy at each tropic level. Fig. 2 Energy flow diagram for Cedar Bog Lake, Minnesota (Energy in gcal/cm 2 /year) R. Lindeman From the energy flow diagram shown in (Fig. 2) two things become clear. Firstly, there is one way direction in which energy moves (unidirectional flow of energy). The energy that is captured by the autotrophs does not revert back to sun; that which passes to the herbivores does not pass back to the autotrophs. As it moves progressively through the various trophic levels it is no longer available to the previous level. Thus, due to one way flow of energy the system would collapse if the primary source, the sun, was cut off. Secondly, there occurs a progressive decrease in energy level at each trophic level. This is accounted largely by the energy dissipated as heat in metabolic activities and measured here as respiration coupled with unutilized energy. In Fig. 2 the boxes represent the trophic levels and the arrows depict the energy flow in and out at each level. Energy inflows balance outflows as is required by the first law of thermodynamics, and energy transfer is accompanied by dispersion of energy into unavailable heat (respiration) as required by the second law. Fig. 2 presents a very simplified energy flow model of three trophic levels, from

8 which it becomes evident that the energy flow is greatly reduced at each successive trophic level from producers to herbivores and then to carnivores. Thus, at each transfer of energy from one level to another, major part of energy is lost as heat or other form. There is a successive reduction in energy flow whether we consider it in terms of total flow (i, e., total energy input and total assimilation) or secondary production and respiration components. Thus, shorter the food chain greater would be the available food energy as with an increase in the length of food chain, there is a corresponding more loss of energy Energy flow in detritus-based ecosystems These ecosystems depend less on direct solar energy and more on the flux of dead organic material or detritus produced in this or other ecosystems. Indeed, some ecosystems, such as caves, are completely independent of direct solar energy and are instead completely energy dependant on the influx of detritus. Such ecosystems can be regarded as detritus based ecosystems. In other instances, sub-components of an ecosystem derive their energy entirely from that systems detritus through decomposition. Decomposition of organic material occurs in a variety of ways, among them leaching and fragmentation, but primarily by the activity of organisms that may, in turn, facilitate both leaching and fragmentation. The primary agents of the final stages of decomposition are microbes that act through the process of metabolism. Detritus can be broadly defined as any form of nonliving organic matter, including different types of plant tissue (e.g. leaf litter, dead wood, aquatic macrophytes, algae), animal tissue (carrion), dead microbes, faeces (manure, dung, faecal pellets, guano, frass), as well as products secreted, excreted or exuded from organisms (e.g. extra-cellular polymers, nectar, root exudates and leachates, dissolved organic matter, extra-cellular

9 matrix, mucilage). The relative importance of these forms of detritus, in terms of origin, size and chemical composition, varies across ecosystems (Moore et al. 2004). Detritus is a source of energy and nutrients to living organisms in most food webs. The amount of energy flowing through the detrital pathway can equal or exceed that of the grazing pathway (Heymans et al. 2002; Mulholland et al. 2002). Some food webs, such as those in caves, small streams in forested watersheds, and below-ground are based almost entirely on detritus pathway. For other food webs the detritus pathway can have strong influences on the structure and dynamics of the grazer pathway by providing energy that can sustain higher densities of consumers than would otherwise not be maintained if these consumers fed exclusively on energy derived from the grazer pathway (Moore et al. 2003). Energy flow in a temperate deciduous forest Gene Likens and F. Herbert Boreman have carried out extensive and long-term studies on the Hubbard Brook Experiment forest, a sugar maple, beech, and yellow birch forest in New Hampshire and the data obtained by them is as: Fig. 3 Fate of energy in c/m 2 /yr in the Hubbard Book Experimental forest (data from Gosz et al Scientific American 238: ) From above study it is clear that a substantial portion of energy (75%) from net primary production passes through detritus food chain and only 1% through grazing food chain. The sources of all the energy flowing through the detritus pathway is as follows: Leaves 83% Root death 12% Nonleaf litter fall 2% Organic matter via precipitation 2%

10 Fecal matter 0.9% Exuded by roots 0.1% Animal death traces Total 100% In this forest about 150 C (4%) of this detritus material was not consumed by detritus feeders (bacteria, fungi, many invertebrates) or transferred to carnivores (beetles, centipedes) or omnivores (salamanders, rodents, birds) and thus it accumulated annually on the forest floor.

The main source of energy in most ecosystems is sunlight.

The main source of energy in most ecosystems is sunlight. Energy in Ecosystems: Ecology: Part 2: Energy and Biomass The main source of energy in most ecosystems is sunlight. What is the amount of energy from the sun? 100 W/ft 2 The energy gets transferred through

More information

Energy flow in ecosystems. Lecture 6 Chap. 6

Energy flow in ecosystems. Lecture 6 Chap. 6 Energy flow in ecosystems Lecture 6 Chap. 6 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS SECTION 1 In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using

More information

Section 3: Trophic Structures

Section 3: Trophic Structures Marine Conservation Science and Policy Service learning Program Trophic Structure refers to the way in which organisms utilize food resources and hence where energy transfer occurs within an ecosystem.

More information

Introduction to Ecology

Introduction to Ecology Introduction to Ecology Ecology is the scientific study of the interactions between living organisms and their environment. Scientists who study ecology are called ecologists. Because our planet has many

More information

Energy Flow in the Pond Teacher s Guide February 2011

Energy Flow in the Pond Teacher s Guide February 2011 Energy Flow in the Pond Teacher s Guide February 2011 Grades: 6, 7 & 8 Time: 3 hours With the pond as a model, students explore how energy that originates from the sun keeps changing shape and form as

More information

The animals at higher levels are more competitive, so fewer animals survive. B.

The animals at higher levels are more competitive, so fewer animals survive. B. Energy Flow in Ecosystems 1. The diagram below shows an energy pyramid. Which of the following best explains why the number of organisms at each level decreases while moving up the energy pyramid? The

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Chapter 3. 3.3 Energy Flow in Ecosystems

Chapter 3. 3.3 Energy Flow in Ecosystems Chapter 3 3.3 Energy Flow in Ecosystems Key Questions: 1) What happens to energy stored in body tissues when one organism eats another? 2) How does energy flow through an ecosystem? 3) What do the three

More information

5.1 Ecosystems, Energy, and Nutrients

5.1 Ecosystems, Energy, and Nutrients CHAPTER 5 ECOSYSTEMS 5.1 Ecosystems, Energy, and Nutrients Did anyone ever ask you the question: Where do you get your energy? Energy enters our world from the Sun but how does the Sun s energy become

More information

ECOSYSTEM 1. SOME IMPORTANT TERMS

ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM:- A functional unit of nature where interactions of living organisms with physical environment takes place. STRATIFICATION:- Vertical distribution of different

More information

Ecosystems Processes: Energy Flow

Ecosystems Processes: Energy Flow Ecosystems Processes: Energy Flow 6 STRUCTURE 6.1 Introduction 6.2 Objectives 6.3 Understanding Energy Flow 6.4 Energy in Ecological Systems 6.5 Food Chains 6.6 Understanding Food Chains 6.7 Conclusion

More information

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology Biotic

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Matter and Energy in Ecosystems

Matter and Energy in Ecosystems Matter and Energy in Ecosystems The interactions that take place among biotic and abiotic factors lead to transfers of energy and matter. Every species has a particular role, or niche, in an ecosystem.

More information

ENERGY FLOW THROUGH LIVING SYSTEMS

ENERGY FLOW THROUGH LIVING SYSTEMS reflect Enter the word domino as a search term on the Internet; you can fi nd some amazing domino runs. You can make your own by setting up a series of dominoes in a line. When you push the fi rst domino

More information

Key Idea 2: Ecosystems

Key Idea 2: Ecosystems Key Idea 2: Ecosystems Ecosystems An ecosystem is a living community of plants and animals sharing an environment with non-living elements such as climate and soil. An example of a small scale ecosystem

More information

CCR Biology - Chapter 13 Practice Test - Summer 2012

CCR Biology - Chapter 13 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 13 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A group of organisms of the same

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

Lesson 1. Objectives: ocus: Subjects:

Lesson 1. Objectives: ocus: Subjects: Lesson 1 The Web of Life Objectives: 1. Understand the concept of an ecosystem. 2. Understand the interdependence of members of an ecosystem. Subjects: 1. Ecology 2. Language 3. Art MATERIALS: Copies of

More information

AP Biology Unit I: Ecological Interactions

AP Biology Unit I: Ecological Interactions AP Biology Unit I: Ecological Interactions Essential knowledge 1.C.1: Speciation and extinction have occurred throughout the Earth s history. Species extinction rates are rapid at times of ecological stress.

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

Grassland Food Webs: Teacher Notes

Grassland Food Webs: Teacher Notes Grassland Food Webs: Teacher Notes Alan Henderson ecosystem Objectives After completing this activity students will be able to: Create a food web and identify producers and consumers. Assign organisms

More information

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS Period Date REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. All of the following are density-dependent factors

More information

Section 5.1 Food chains and food webs

Section 5.1 Food chains and food webs Section 5.1 Food chains and food webs The ultimate source of energy in an ecosystem comes from sunlight This energy is converted to an organic form using photosynthesis which is then passed between organisms

More information

Energy Flow through an Ecosystem

Energy Flow through an Ecosystem OpenStax-CNX module: m47790 1 Energy Flow through an Ecosystem Miranda Dudzik Based on Energy Flow through Ecosystems by OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Name Period Overview: 1. What is an ecosystem? 2. Where does energy enter most ecosystems? How is it converted to chemical energy and then passed through the ecosystem? How is it lost? Remember this: energy

More information

Lesson Plan Two - Ecosystems

Lesson Plan Two - Ecosystems Lesson Plan Two - Ecosystems Summary Students discuss what living things need to survive. They identify the abiotic and biotic components of an ecosystem and describe the roles and interactions of producers

More information

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment.

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. STUDY GUIDE ECOLOGY CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. 2. A Hierarchy of interactions: cells tissues organs

More information

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment.

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment. SECTION 13.1 KEY CONCEPT ECOLOGISTS STUDY RELATIONSHIPS Study Guide Ecology is the study of the relationships among organisms and their environment. VOCABULARY ecology community MAIN IDEA: Ecologists study

More information

1.2 The Biosphere and Energy

1.2 The Biosphere and Energy 1.2 The Biosphere and Energy All activities require a source of energy a fuel. For example, to sustain a campfire, you need to keep it supplied with wood. To reach a destination by car, you need to have

More information

FOOD CHAINS AND FOOD WEBS PHYTOPLANKTON ZOOPLANKTON SILVERSIDE BLUEFISH

FOOD CHAINS AND FOOD WEBS PHYTOPLANKTON ZOOPLANKTON SILVERSIDE BLUEFISH FOOD CHAINS AND FOOD WEBS Food Chains All living organisms (plants and animals) must eat some type of food for survival. Plants make their own food through a process called photosynthesis. Using the energy

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Life Science Study Guide. Environment Everything that surrounds and influences (has an effect on) an organism.

Life Science Study Guide. Environment Everything that surrounds and influences (has an effect on) an organism. Life Science Study Guide Environment Everything that surrounds and influences (has an effect on) an organism. Organism Any living thing, including plants and animals. Environmental Factor An environmental

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

food webs reflect look out! what do you think?

food webs reflect look out! what do you think? reflect Imagine for a moment that you stay after school one day to clean up the classroom. While cleaning, you move some plants away from the sunny windows. A week later, you remember to move the plants

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

THE ECOSYSTEM - Biomes

THE ECOSYSTEM - Biomes Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.

More information

Food Webs and Food Chains Grade Five

Food Webs and Food Chains Grade Five Ohio Standards Connection: Life Sciences Benchmark B Analyze plant and animal structures and functions needed for survival and describe the flow of energy through a system that all organisms use to survive.

More information

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the Name: ate: 1. Missing from the diagram of this ecosystem are the 5. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology.. biotic factors and decomposers.

More information

7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s

7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s 7 Energy Flow Through an Ecosystem investigation 2 c l a s s se s s i o n s Overview Students create a food web of a kelp forest ecosystem with which they explore the flow of energy between ecosystem organisms.

More information

Use this diagram of a food web to answer questions 1 through 5.

Use this diagram of a food web to answer questions 1 through 5. North arolina Testing Program EO iology Sample Items Goal 4 Use this diagram of a food web to answer questions 1 through 5. coyotes 3. If these organisms were arranged in a food pyramid, which organism

More information

Food Web Crasher. An introduction to food chains and food webs

Food Web Crasher. An introduction to food chains and food webs Food Web Crasher An introduction to food chains and food webs Activity Students create a physical food web and watch what happens when an aquatic nuisance species is introduced into the ecosystem. Grade

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

www.irishseedsavers.ie Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans.

www.irishseedsavers.ie Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans. www.irishseedsavers.ie POND LIFE FACT SHEET Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans. A pond is a small body of fresh water shallow enough for sunlight

More information

The Balance of Nature Food Chains 101 (Suitable for grades 4-12)

The Balance of Nature Food Chains 101 (Suitable for grades 4-12) Environmental Education using Live Birds of Prey Thank you to Xcel Energy Foundation and their Environmental Partnership Program The Balance of Nature Food Chains 101 (Suitable for grades 4-12) OBJECTIVE

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

CHAPTER TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM. recent years ecology has become an ubiquitous

CHAPTER TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM. recent years ecology has become an ubiquitous 16 CHAPTER II TEE VILLAGE PMAYAKDRICHI AS AH ECOSYSTEM In recent years ecology has become an ubiquitous word. It has begun to enter into discussions on economic development,industrial growth, standards

More information

NOTE TO TEACHER: It is appropriate to introduce the mitochondria (where energy is made) as a major structure common to all cells.

NOTE TO TEACHER: It is appropriate to introduce the mitochondria (where energy is made) as a major structure common to all cells. 5.2.1 Recall the cell as the smallest unit of life and identify its major structures (including cell membrane, cytoplasm, nucleus, and vacuole). Taxonomy level: 1.1 and 1.2-A Remember Factual Knowledge

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey

Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey Food Chains (and webs) Flow of energy through an ecosystem Grade 5 Austin Carter, Dale Rucker, Allison Hursey References: Columbus Public Schools Curriculum Guide- Grade 5 GK-12 Biological Science Lesson

More information

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2. Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.1 ) Energy Flow 1) Student Name: Teacher Name: Jared George Date:

More information

Processes Within an Ecosystem

Processes Within an Ecosystem Grade 7 Science, Quarter 1, Unit 1.1 Processes Within an Ecosystem Overview Number of instructional days: 23 (1 day = 50 minutes) Content to be learned Identify which biotic and abiotic factors affect

More information

Life processes. All animals have to carry out seven life processes. These are: 2. Respiration taking in one gas and getting rid of another

Life processes. All animals have to carry out seven life processes. These are: 2. Respiration taking in one gas and getting rid of another Food chains Life processes All animals have to carry out seven life processes. These are: 1. Movement being able to move its body 2. Respiration taking in one gas and getting rid of another 3. Reproduction

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

GLOBAL CIRCULATION OF WATER

GLOBAL CIRCULATION OF WATER Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally

More information

1. Biodiversity & Distribution of Life

1. Biodiversity & Distribution of Life National 5 Biology Unit 3 Life on Earth Summary notes 1. Biodiversity & Distribution of Life Perhaps the best place to start in this topic is with Biomes. Biomes are regions of our planet which have a

More information

Prairie Food Chains & Webs Producers, Consumers & Decomposers

Prairie Food Chains & Webs Producers, Consumers & Decomposers Kansas Prairies s, s & Decomposers Science, Life Science, Reading, Math Materials Vocabulary worksheet Food Chain worksheet Overview To explore the organisms found on a prairie and identify the various

More information

Marine Ecosystems and Biodiversity

Marine Ecosystems and Biodiversity This website would like to remind you: Your browser (Apple Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. lesson Marine Ecosystems and Biodiversity

More information

What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid

What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid Name Period Date What s For Lunch? Exploring the Role of GloFish in Its Ecosystem, Food Chain and Energy Pyramid Objective The learner will define terms related to relationships and energy transfer in

More information

Producers, Consumers, and Food Webs

Producers, Consumers, and Food Webs reflect Think about the last meal you ate. Where did the food come from? Maybe it came from the grocery store or a restaurant. Maybe it even came from your backyard. Now think of a lion living on the plains

More information

D. Categorize Words. E. Find the Odd Word

D. Categorize Words. E. Find the Odd Word Answer Key Vocabulary Practice A. Synonyms or Antonyms 1. synonym 2. antonym 3. antonym 4. synonym 5. antonym 6. antonym B. Stepped-Out Vocabulary 1. A species that has an unusually large effect on its

More information

Rainforest Food Web Tropical Rainforests Temperate Rainforests

Rainforest Food Web Tropical Rainforests Temperate Rainforests Rainforest Food Web The list of plants and animals endemic to rainforest biome is exhaustive, and that makes the rainforest food web one of the most complex food webs of the world. Continue reading...

More information

Prairie Food Chains & Webs Producers, Consumers, & Decomposers

Prairie Food Chains & Webs Producers, Consumers, & Decomposers Kansas Prairies Prairie Food Chains & Webs Producers, s, & Decomposers Life Science, Math, Reading, Science Materials Student Worksheet A: Vocabulary Student Worksheet B: Food Chain Overview To explore

More information

Worksheet: The food chain

Worksheet: The food chain Worksheet: The food chain Foundation Phase Grade 1-3 Learning area: Natural Science Specific Aim 2: Investigating phenomena in natural sciences Activity Sheet Activity 1: What is a food chain? Every time

More information

Nitrogen Cycling in Ecosystems

Nitrogen Cycling in Ecosystems Nitrogen Cycling in Ecosystems In order to have a firm understanding of how nitrogen impacts our ecosystems, it is important that students fully understand how the various forms of nitrogen cycle through

More information

8.2 - A Local Ecosystem:

8.2 - A Local Ecosystem: 8.2 - A Local Ecosystem: 1. The distribution, diversity and numbers of plants and animals found in ecosystems are determined by biotic and abiotic factors: Distinguish between the abiotic and biotic factors

More information

PLANET EARTH: Seasonal Forests

PLANET EARTH: Seasonal Forests PLANET EARTH: Seasonal Forests Teacher s Guide Grade Level: 6-8 Running Time: 42 minutes Program Description Investigate temperate forests and find some of the most elusive creatures and welladapted plant

More information

Rain Forests. America's. Web of Life. Rain Forest Ecology. Prince William Network's OVERVIEW OBJECTIVES SUBJECTS

Rain Forests. America's. Web of Life. Rain Forest Ecology. Prince William Network's OVERVIEW OBJECTIVES SUBJECTS Rain Forest Ecology National Science Education Standards Standard C: Life Sciences Populations and ecosystems. Standard C: Life Sciences Diversity and adaptation of organisms. Standard F: Science in Personal

More information

Food Chains and Food Webs

Food Chains and Food Webs Program Support Notes by: Spiro Liacos B.Ed. Produced by: VEA Pty Ltd Commissioning Editor: Sandra Frerichs B.Ed, M.Ed. Executive Producers: Edwina Baden-Powell B.A, CVP. Sandra Frerichs B.Ed, M.Ed. You

More information

Grade 10 - Sustainability of Ecosystems - Pre-Assessment. Grade 7 - Interactions Within Ecosystems. Grade 10 - Sustainability of Ecosystems

Grade 10 - Sustainability of Ecosystems - Pre-Assessment. Grade 7 - Interactions Within Ecosystems. Grade 10 - Sustainability of Ecosystems Purpose: This document is for grade 10 teachers to use as a pre-assessment for the Sustainability of Ecosystems unit. It assesses students understanding of the of the end of unit knowledge outcomes from

More information

food chains reflect How are these organisms important to one another? organism: a living thing

food chains reflect How are these organisms important to one another? organism: a living thing reflect Different plants and animals live together. Look at the picture of the garden. What organisms live there? Grass, trees, bugs, and birds live there. Fish and frogs live there, too. Can you think

More information

Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013

Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013 Science Grade 7 Unit 01 & 02: Science Safety & Flow of Energy 2012 2013 1 2 Using the diagram above of a grassland ecosystem, complete the following: Draw and label an energy pyramid to represent this

More information

CSS 560 Principles of Ecology for Environmental Educators

CSS 560 Principles of Ecology for Environmental Educators CSS 560 Principles of Ecology for Environmental Educators Journaling task (15:00 min/each) Draw a diagram that shows the major components (boxes) and interactions (arrows) of a terrestrial ecosystem Conceptual

More information

Lesson 7: The Principles of Ecology

Lesson 7: The Principles of Ecology Lesson 7: The Principles of Ecology These brilliant red "feathers" are actually animals called tube worms. They live in an extreme environment on the deep ocean floor, thousands of meters below the water

More information

CHAPTER 20 COMMUNITY ECOLOGY

CHAPTER 20 COMMUNITY ECOLOGY CHAPTER 20 COMMUNITY ECOLOGY MULTIPLE CHOICE 1. The relationship between a predator and its prey is best illustrated by a. a snake eating a bird. c. a lion eating a zebra. b. a fox eating a mouse. d. a

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Primary producers. Primary consumers (herbivores) Secondary consumers (carnivores) Tertiary consumers

Primary producers. Primary consumers (herbivores) Secondary consumers (carnivores) Tertiary consumers Primary producers Primary consumers (herbivores) Secondary consumers (carnivores) Tertiary consumers The way biomass is distributed among trophic levels in the food web provides clues to the efficiency

More information

Plants, like all living organisms have basic needs: a source of nutrition (food), water,

Plants, like all living organisms have basic needs: a source of nutrition (food), water, WHAT PLANTS NEED IN ORDER TO SURVIVE AND GROW: LIGHT Grades 3 6 I. Introduction Plants, like all living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

Trophic levels and Food chain. Dr. P.U. Zacharia Head, Demersal Fisheries Division CMFRI, Kochi

Trophic levels and Food chain. Dr. P.U. Zacharia Head, Demersal Fisheries Division CMFRI, Kochi Trophic levels and Food chain Dr. P.U. Zacharia Head, Demersal Fisheries Division CMFRI, Kochi Trophic levels and Food chain At the base of the food chain lies the primary producers. Primary producers

More information

Creating Chains and Webs to Model Ecological Relationships

Creating Chains and Webs to Model Ecological Relationships Creating Chains and Webs to Model Ecological Relationships Overview This hands-on activity supports the HHMI short film The Guide and the 2015 Holiday Lectures on Science: Patterns and Processes in Ecology.

More information

CPI Links Content Guide & Five Items Resource

CPI Links Content Guide & Five Items Resource CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained

More information

Pond Ecosystem Field Study MOLS

Pond Ecosystem Field Study MOLS This multi-week lab involves field studies comparing ecosystem-level ecology between 2 freshwater ponds in Marshfield Outdoor Learning Sanctuary. We will be investigating a correlation between weather

More information

Analysis of the energy flow in the mulberry Dike-carp pond farming system

Analysis of the energy flow in the mulberry Dike-carp pond farming system Roskilde University 4 th semester Project Analysis of the energy flow in the mulberry Dike-carp pond farming system Group 6 Natural Science Basic Studies (Nat-Bas) Supervisor: Ken Haste Andersen Group

More information

Section 1 The Earth System

Section 1 The Earth System Section 1 The Earth System Key Concept Earth is a complex system made up of many smaller systems through which matter and energy are continuously cycled. What You Will Learn Energy and matter flow through

More information

6. Which of the following is not a basic need off all animals a. food b. *friends c. water d. protection from predators. NAME SOL 4.

6. Which of the following is not a basic need off all animals a. food b. *friends c. water d. protection from predators. NAME SOL 4. NAME SOL 4.5 REVIEW - Revised Habitats, Niches and Adaptations POPULATION A group of the same species living in the same place at the same time. COMMUNITY-- All of the populations that live in the same

More information

10.1 The function of Digestion pg. 402

10.1 The function of Digestion pg. 402 10.1 The function of Digestion pg. 402 Macromolecules and Living Systems The body is made up of more than 60 % water. The water is found in the cells cytoplasm, the interstitial fluid and the blood (5

More information

Nano Ecology. Activity 8: Core Concept: Nanoparticles may disrupt food chains. Class time required: Approximately 40-60 minutes of class time

Nano Ecology. Activity 8: Core Concept: Nanoparticles may disrupt food chains. Class time required: Approximately 40-60 minutes of class time Activity 8: Nano Ecology Core Concept: Nanoparticles may disrupt food chains. Class time required: Approximately 40-60 minutes of class time Teacher Provides: A copy of student handout Nano Ecology for

More information

Grade Level Expectations for the Sunshine State Standards

Grade Level Expectations for the Sunshine State Standards for the Sunshine State Standards FLORIDA DEPARTMENT OF EDUCATION http://www.myfloridaeducation.com/ The seventh grade student: The Nature of Matter uses a variety of measurements to describe the physical

More information

Plants, like all other living organisms have basic needs: a source of nutrition (food),

Plants, like all other living organisms have basic needs: a source of nutrition (food), LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal

More information

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan ENVIRONMENTAL IMPACT OF FOOD PRODUCTION AND CONSUMPTION Palaniappa Krishnan Bioresources Engineering Department, University of Delaware, USA Keywords: Soil organisms, soil fertility, water quality, solar

More information

Communities, Biomes, and Ecosystems

Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

Pond Water Web Lesson Plan

Pond Water Web Lesson Plan Pond Water Web Lesson Plan Purpose: As a result of this lesson, students will become familiar with common organisms found in a pond and discover their importance in a balanced aquatic habitat as they create

More information

THE PLANT KINGDOM: THE WATER CYCLE

THE PLANT KINGDOM: THE WATER CYCLE THE PLANT KINGDOM: THE WATER CYCLE Material: The Water Cycle Nomenclature The Water cycle Model Water Ice Heat Source (lamp with a clamp) Tables Presentation 1: Key Experience 1. Say, Today we are going

More information

Importance of Wildlife

Importance of Wildlife Importance of Wildlife The wildlife comprises all living organism (plants, animals, microorganisms) in their natural habitats which are neither cultivated or domesticated nor tamed. But in its strictest

More information

Plant Parts. Background Information

Plant Parts. Background Information Purpose The purpose of this lesson is for students to learn the six basic plant parts and their functions. Time Teacher Preparation: 30 minutes Student Activity: 60 minutes Materials For the teacher demonstration:

More information

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world. GRADE 6 SCIENCE STRAND A Value and Attitudes Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers must reinforce Gospel truths and values so that students

More information