AP Biology Unit I: Ecological Interactions

Size: px
Start display at page:

Download "AP Biology Unit I: Ecological Interactions"

Transcription

1 AP Biology Unit I: Ecological Interactions Essential knowledge 1.C.1: Speciation and extinction have occurred throughout the Earth s history. Species extinction rates are rapid at times of ecological stress. Human impact on ecosystems Essential knowledge 2.A.1: All living systems require constant input of free energy. Organisms use free energy to maintain organization, grow and reproduce. Reproduction and rearing of offspring requires free energy beyond that which is used for maintenance and growth. Different organisms use various reproductive strategies in response to energy availability. Seasonal reproduction in birds Life-history strategy (biennial plants, reproductive diapause) Changes in free energy availability can result in changes in population size. Change in energy resource level such as sunlight or in the producer level can affect the number and size of other trophic levels. Essential knowledge 2.A.2: Organisms capture and store free energy for use in biological processes. Autotrophs capture free energy from physical sources in the environment. Photosynthetic organisms capture free energy present in sunlight. Heterotrophs capture free energy present in carbon compounds produced by other organisms. Essential knowledge 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. Molecules and atoms from the environment are necessary to build new molecules. Carbon moves from the environment to organisms where it is used to build carbohydrates, proteins, lipids or nucleic acids. Carbon is used in storage compounds and cell formation in all organisms. Essential knowledge 2.D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. Organism activities are affected by interactions with biotic and abiotic factors. Predator prey relationships Water and nutrient availability, temperature, salinity, ph The stability of populations, communities and ecosystems is affected by interactions with biotic and abiotic factors. Water and nutrient availability Essential knowledge 2.D.3: Biological systems are affected by disruptionsto their dynamic homeostasis. Disruptions to ecosystems impact the dynamic homeostasis or balance of the ecosystem. Human impact

2 Essential knowledge 4.A.5: Communities are composed of populations of organisms that interact in complex ways. The structure of a community is measured and described in terms of species composition and species diversity. Mathematical or computer models are used to illustrate and investigate population interactions within and environmental impacts on a community. Predator/prey relationships spreadsheet model Graphical representation of field data Mathematical models and graphical representations are used to illustrate population growth patterns and interactions. 1. Reproduction without constraints results in the exponential growth of a population. 2. A population can produce a density of individuals that exceeds the system s resource availability. 3. As limits to growth due to density-dependent and density independent factors are imposed, a logistic growth model generally ensues. 4. Demographics data with respect to age distributions and fecundity can be used to study human populations. Essential knowledge 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. Energy flows, but matter is recycled. Changes in regional and global climates and in atmospheric composition influence patterns of primary productivity. Organisms within food webs and food chains interact. Food webs and food chains are dependent on primary productivity. Models allow the prediction of the impact of change in biotic and abiotic factors. 1. Competition for resources and other factors limits growth and can be described by the logistic model. 2. Competition for resources, territoriality, health, predation, accumulation of wastes and other factors contribute to density dependent population regulation. Human activities impact ecosystems on local, regional and global scales. 1. As human populations have increased in numbers, their impact on habitats for other species has been magnified. 2. In turn, this has often reduced the population size of the affected species and resulted in habitat destruction and, in some cases, the extinction of species. Many adaptations of organisms are related to obtaining and using energy and matter in a particular environment. Essential knowledge 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. Interactions between populations affect the distributions and abundance of populations. 1. Competition, parasitism, predation, mutualism and commensalism can affect population dynamics. 2. Relationships among interacting populations can be characterized by positive and negative effects, and can be modeled mathematically (predator/prey, epidemiological models, invasive species). 3. Many complex symbiotic relationships exist in an ecosystem, and feedback control systems play a role in the functioning of these ecosystems. A population of organisms has properties that are different from those of the individuals that make up the population. The cooperation and competition between individuals contributes to these different properties. Species-specific and environmental catastrophes, geological events, the sudden influx/depletion of abiotic resources or increased human activities affect species distribution and abundance. Loss of keystone species Essential knowledge 4.B.4: Distribution of local and global ecosystems changes over time. Human impact accelerates change at local and global levels. Introduction of new diseases can devastate native species Essential knowledge 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem. Natural and artificial ecosystems with fewer component parts and with little diversity among the parts are often less resilient to changes in the environment. Keystone species, producers, and essential abiotic and biotic factors contribute to maintaining the diversity of an ecosystem. The effects of keystone species on the ecosystem are disproportionate relative to their abundance in the ecosystem, and when they are removed from the ecosystem, the ecosystem often collapses.

3 What students should be able to do to demonstrate high achievement: Big Idea 1: The Process of evolution explains the diversity and unity of life 1. Analyze data related to questions of speciation/extinction throughout Earth s history: identify patterns of speciation and/or extinction, determine rates of speciation and/or extinction. Big Idea 2: Biological systems utilize energy for growth, reproduction, and to maintain homeostasis 1. Analyze data to identify possible patterns and relationships between a biotic or abiotic factor and a biological system, identify and explain any anomalies in the pattern or relationship, and predict consequences of a change in a biotic or abiotic factor(s) to the system. 2. Predict 1 2 consequences to organisms, populations, and ecosystems if sufficient free energy is not available (e.g., death, changes in population size, changes to number and size of trophic levels in ecosystems). 3. Describe 2 3 examples of how a cooperative behavior benefits both the individual and the population (e.g., mutualistic relationships, niche partitioning) that involves timing and coordination of activities/events. Big Idea 3: Living systems store, retrieve, transmit, and respond to information 1. Justify how changes in internal or external clues affect the behavior of individuals and their interactions within a population and between related individuals. 2. Describe how behavior is modified in response to external and internal cues for both animals and plants using appropriate examples from each. Big Idea 4: Biological systems interact 1. Pose scientific questions and apply mathematical routines to analyze interactions among community components. 2. Predict the effect of a change in one of the components on the interactions within the community and matter and energy flow. 3. Analyze data to develop and refine qualitative and quantitative models for species and population, abundance, densities, distribution, and interactions and predict the effect(s) of human activity on the biological system. 4. Analyze evidence to develop models and predictions as to the effect that changes in the level of variation within populations and species diversity will have on fitness and system stability. 5. Refine models showing organism interaction and matter and energy flow in a biological system and predicting the effects of a change in one of the components. 6. Analyze data to identify patterns depicting species and population abundance distribution and interactions such as predator-prey, competition, and human activity effects. 7. Justify the claim that variation within populations and increased species diversity account for increased population fitness and system stability.

4 Binkley et al. article discussion 1) Which journal was the article published in? 2) What was the year of publication? 3) What was the guiding question the article was designed to answer? 4) Who is the article written for (who is the intended audience)? 5) What is the purpose of the abstract section of such journal articles? 6) Contrast the bottom-up versus the top-down control mode of deer population control: 7) Summarize the deer population dynamics between 1906 and 2001 (see Figure 1): 8) Describe two types of data that were collected from aspen trees in the descriptive study: 9) Describe the three different areas where aspen trees were surveyed: 10) Why were trees surveyed across these three different areas? 11) How strong was the correlation between aspen tree diameter and age (see scatterplot in Figure 3)? 12) According to data presented in figure 4, which years had a higher than expected number of aspen trees? Which years had lower than expected recruitment? Hypothesize a reason for the relationship: 13) According to Figure 5, it took aspen that were seedlings in the 1920 to 1930 time-range a long time to reach a height of 1.5 m. What could account for this finding? 14) Describe and explain the relationship you see in the historic photos shown in Figure 7: 15) How did the pattern of aspen recruitment from 1920 to 1930 compare across the three areas sampled? 16) How did grazing by livestock change the fire regime in the 1880s and how did this affect aspen recruitment (see text on P. 235). 17) What was cited as evidence that deer population was not kept artificially low due to competition for food from livestock in the 1880s? 18) In the conclusion, what do the authors suggest about the role of top-down versus bottom-up control in regulating deer population? 19) The authors conclude by stating that some uncertainty remains within the overall story, as can be expected for case studies that involve population ecology, land management, people, and large land area and time scales. However, what value/role do the authors suggest this case study has for education purposes?

5 What is the effect of plant abundance and/or quality on herbivore abundance? Claim: Evidence: Density-Dependent Population Regulation Factors: Competition for resources Predation Disease Toxic Territoriality Intrinsic factors

6 What is the effect of reproduction on survivorship of the parent(s)? Explain this relationship:

7 Interpret the Data 1. What proportion of the solar energy that reaches the marsh is incorporated into gross primary production? (A proportion is the same as a percentage divided by 100. Both measures are useful for comparing relative efficiencies across different ecosystems). 2. How much energy is lost by primary producers as respiration in this ecosystem? How much is lost as respiration by the insect population? 3. If all of the detritus leaving the marsh is plant material, what proportion of all net primary production leaves the marsh as detritus each year? Additional Practice Question 1. If an insect that eats plant seeds containing 200 J of energy, uses 60 J of that energy for respiration, and excretes 100 J in its feces, what is the insect s net secondary production? What is its production efficiency? Rate of Primary Productivity (Photosynthesis) Patterns in Terrestrial Ecosystems Category Effect Reason Temperature Light-availability Water-availability Nutrient-availability (especially N & P) Herbivory (predation)

8 Rate of Primary Productivity Patterns (Photosynthesis) in Aquatic Ecosystems Category Effect Reason Temperature Light-availability Nutrient-availability (especially N in oceans & P in fresh-water) Herbivory (predation)

9

10 2011 Form B Biology Free Response Questions 2006 Form B AP Biology Free Response Question 2007 Form B AP Biology Free Response Question

11

12

AP biology self study guide for unit 9: Population & community ecology and. Unit 10: Ecosystems, the biosphere, and conservation

AP biology self study guide for unit 9: Population & community ecology and. Unit 10: Ecosystems, the biosphere, and conservation AP biology self study guide for unit 9: Population & community ecology and Unit 10: Ecosystems, the biosphere, and conservation Enduring understanding 2.A: Growth, reproduction and maintenance of the organization

More information

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask:

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask: B-6.1 Explain how the interrelationships among organisms (including predation, competition, parasitism, mutualism, and commensalism) generate stability within ecosystems. ecosystem - biotic community (all

More information

Ecology - Exchange of energy and matter

Ecology - Exchange of energy and matter - Exchange of energy and matter You should be able to: (a) briefly describe the non-cyclical nature of energy flow (b) establish the relationship of the following in food webs: producer, consumer, herbivore,

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Chapter 2. pp. 33-61 Flexbook. pp. 709-746 Principles of Ecology Ecology the study of interactions that take place between organisms and their environments Living things are affected

More information

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Matter and Energy in Ecosystems

Matter and Energy in Ecosystems Matter and Energy in Ecosystems The interactions that take place among biotic and abiotic factors lead to transfers of energy and matter. Every species has a particular role, or niche, in an ecosystem.

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Introduction to Ecology

Introduction to Ecology Introduction to Ecology Ecology is the scientific study of the interactions between living organisms and their environment. Scientists who study ecology are called ecologists. Because our planet has many

More information

Relationships in Ecosystems. Vocabulary

Relationships in Ecosystems. Vocabulary Relationships in Ecosystems Vocabulary Relationships in Ecosystems Big Ideas Diversity and Evolution of Living Organisms Explore the scientific theory of evolution by relating how the inability of a species

More information

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS Period Date REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. All of the following are density-dependent factors

More information

EVPP 111 Lecture Exam #1 Study Guide Spring 2004

EVPP 111 Lecture Exam #1 Study Guide Spring 2004 EVPP 111 Lecture Exam #1 Study Guide Spring 2004 Human population issues What are some of the environmental problems/issues that are caused/exacerbated by the rapid increase in human population? To what

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Before You Read Use the What I Know column to list the things you know about ecology. Then list the questions you have about ecology in the What I Want to Find Out column. K W L What

More information

AP Biology Learning Objective Cards

AP Biology Learning Objective Cards 1.1 The student is able to convert a data set from a table of numbers that reflect a change in the genetic makeup of a population over time and to apply mathematical methods and conceptual understandings

More information

Ecology- an ecosystem: a Biome: o They are either terrestrial or aquatic. rainforests, deserts, coral reefs

Ecology- an ecosystem: a Biome: o They are either terrestrial or aquatic. rainforests, deserts, coral reefs Topic 17: Ecology Ecology- The environment is an organism s surroundings o It includes:! biotic factors: Ecosystems! abiotic factors: an ecosystem: In order for an ecosystem to maintain life it must: -

More information

Bio EOC Topics for Ecology, Evolution and Natural Selection:

Bio EOC Topics for Ecology, Evolution and Natural Selection: Bio EOC Topics for Ecology, Evolution and Natural Selection: UEvolutionU Difference between macroevolution and microevolution Sexual reproduction and natural selection are mechanisms of microevolution

More information

8 key ideas in Ecology

8 key ideas in Ecology 8 Key Ideas in Ecology Learning goals for Biology 318 Page 1 of 9 8 key ideas in Ecology 1. Autecology Organismas try to maintain constant internal conditions. a. Salt-water balance (2) b. Light capture

More information

Ecology PS 12 PS 13:

Ecology PS 12 PS 13: Ecology PS 12: Matter cycles and energy flows through living and nonliving components in ecosystems. The transfer of matter and energy is important for maintaining the health and sustainability of ecosystems.

More information

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the Name: ate: 1. Missing from the diagram of this ecosystem are the 5. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology.. biotic factors and decomposers.

More information

4 Ecology. Chapter summary a reminder of the issues to be revised

4 Ecology. Chapter summary a reminder of the issues to be revised 4 Ecology Chapter summary a reminder of the issues to be revised 1 Ecology is the study of organisms in relation to their environment. An ecosystem, such as a lake or woodland, is a stable and settled

More information

2015 2016 Environmental Science Scope & Sequence

2015 2016 Environmental Science Scope & Sequence 2015 2016 Environmental Science Scope & Sequence The suggested time frames in this document are for a year long environmental science class with approximately 45 minute class periods. All of the material

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy A. Ecology I. Ecology 1. eco house & logy study of 2. The study of interactions among and between organisms in their abiotic environment B. Biotic - living environment 1.Includes

More information

Science Standard 8 Ecology Grade Level Expectations

Science Standard 8 Ecology Grade Level Expectations Science Standard 8 Ecology Grade Level Expectations Science Standard 8 Ecology Organisms are linked to one another in an ecosystem by the flow of energy and the cycling of materials. Humans are an integral

More information

8 th Grade Science Organisms and their Environment Review

8 th Grade Science Organisms and their Environment Review 8 th Grade Science Organisms and their Environment Review #1 The tree is an example of a in the food web. Producers perform photosynthesis. A: Prey B: Decomposer C: producer D: Herbivore C. Producer #2

More information

Ecosystem Ecology. Community interacts with abiotic factors. Objectives

Ecosystem Ecology. Community interacts with abiotic factors. Objectives Ecosystem Ecology Community interacts with abiotic factors Objectives Compare the processes of energy flow and chemical cycling as they relate to ecosystem dynamics. Define and list examples of producers,

More information

UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID. Italics indicate text already on slide

UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID. Italics indicate text already on slide UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID Italics indicate text already on slide SLIDE 1 Definition of food chain The transfer of food energy from the source in plants through a series

More information

STAAR Science Tutorial 52 TEK 8.11D: Food Webs & Symbiosis

STAAR Science Tutorial 52 TEK 8.11D: Food Webs & Symbiosis Name: Teacher: Pd. Date: STAAR Science Tutorial 52 TEK 8.11D: Food Webs & Symbiosis TEK 8.11A: Describe producer/consumer, predator/prey, and parasite/host relationships as they occur in food webs within

More information

Eastern Regional High School. F 2. Like nutrients and water, energy also recycles through an ecosystem.

Eastern Regional High School. F 2. Like nutrients and water, energy also recycles through an ecosystem. Eastern Regional High School Honors Biology Name: Period: Date: Unit 14 Introduction to Ecology Worksheet The Science of Ecology Part 1 - True or False Write true if the statement is true or false if the

More information

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism Ecology List some limiting factors that would affect a plant (such as a corn plant) population. Light, carbon dioxide concentration, temperature, nutrients in soil, water List some limiting factors that

More information

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

Ecosystem ecology emphasizes energy flow and chemical recycling

Ecosystem ecology emphasizes energy flow and chemical recycling AP Biology Chapter 54 notes Ecosystems Ecosystem ecology emphasizes energy flow and chemical recycling An ecosystem consists of all the organisms in a community and all the abiotic factors with which they

More information

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS ENERGY PATTERNS OF ENERGY FLOW IN ECOSYSTEMS WHAT IS AN ECOSYSTEM? Biological community plus all abiotic factors affecting the community Ecosystem first proposed by Arthur Tansley Boundaries not fixed

More information

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers Ecosystem Ecology 1. Overview of material and energy flows in ecosystems 2. Primary production 3. Secondary production and trophic efficiency 4. Ecological Pyramids Trophic levels energy flow through ecosystems

More information

Section 5.1 Food chains and food webs

Section 5.1 Food chains and food webs Section 5.1 Food chains and food webs The ultimate source of energy in an ecosystem comes from sunlight This energy is converted to an organic form using photosynthesis which is then passed between organisms

More information

Study Guide B. Answer Key. Interactions in Ecosystems

Study Guide B. Answer Key. Interactions in Ecosystems Interactions in Ecosystems Answer Key SECTION 1. HABITAT AND NICHE 1. a habitat is all of the biotic and abiotic factors in the area where an organism lives, while a niche includes all physical, chemical,

More information

8 th grade Review TOPIC: Ecology Do Now: Give an example of a biotic factor. Notes: (found on Ms. Harris s Carey website)

8 th grade Review TOPIC: Ecology Do Now: Give an example of a biotic factor. Notes: (found on Ms. Harris s Carey website) 8 th grade Review TOPIC: Ecology Do Now: Give an example of a biotic factor. Notes: (found on Ms. Harris s Carey website) ECOLOGY I. ECOSYSTEMS 1. ECOSYSTEM all the living & nonliving things in an environment

More information

Science Standards of Learning for Virginia Public Schools Correlation with National Science Standards

Science Standards of Learning for Virginia Public Schools Correlation with National Science Standards Standards of Learning for Virginia Public Schools Correlation with National Standards Key P = Pre-activity E = Extension activity C = Core activity S = Supplemental activity Standard Strands Finding Common

More information

Organism Interactions and Population Dynamics. 1. Which of the following interactions is an example of symbiosis?

Organism Interactions and Population Dynamics. 1. Which of the following interactions is an example of symbiosis? Organism Interactions and Population Dynamics 1. Which of the following interactions is an example of symbiosis? A. a population of hummingbirds migrates during the summer B. a mother bear feeds and protects

More information

Introduction to Ecology. Lab practical next week. 1. Types of Ecology. What is ecology? Organismal ecology. Population ecology

Introduction to Ecology. Lab practical next week. 1. Types of Ecology. What is ecology? Organismal ecology. Population ecology Introduction to Ecology Reading: Chapter 50 Introduction, today Chapter 52 Population ecology, today and W Chapter 54 Ecosystem ecology, W&F Outline of Lecture 1. Branches of ecology 2. Factors affecting

More information

Chapter 4 Interactions of Life Review Matching

Chapter 4 Interactions of Life Review Matching Chapter 4 Interactions of Life Review Matching a. population density i. producers q. ecosystem b. community j. ecology r. autotroph c. population k. carrying capacity s. competition d. habitat l. symbiosis

More information

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy.

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy. The Biosphere Matter of Energy, Interdependence in Nature Q: How do Earth s living and nonliving parts interact and affect the survival of organisms? 3.1 How do we study life? WHAT I KNOW SAMPLE ANSWER:

More information

trophic levels environment abiotic interactions producers consumers decomposers food chain components trophic interactions community food webs biotic

trophic levels environment abiotic interactions producers consumers decomposers food chain components trophic interactions community food webs biotic AGUSTINIANO CIUDAD SALITRE SCHOOL NATURAL SCIENCE AND ENVIRONMENTAL EDUCATION SIXTH GRADE MAKE UP WORKSHOP NAME: COURSE: DATE: ECOSYSTEM Fill in the blanks using the word box: trophic levels environment

More information

Ecology. Abiotic Factors: non-living physical and chemical factors which pffect the ability of organisms to survive and reproduce.

Ecology. Abiotic Factors: non-living physical and chemical factors which pffect the ability of organisms to survive and reproduce. Biotic vs. Abiotic Ecology Abiotic Factors: non-living physical and chemical factors which pffect the ability of organisms to survive and reproduce. Some Abiotic Factors light intensity temperature range

More information

Ecology - Interactions in Communities

Ecology - Interactions in Communities Ecology - Interactions in Communities Symbiotic Relationships ( living together ) symbiosis - dissimilar organisms living together symbiont lives in /on a second species, host parasitism and mutualism

More information

3 Types of Interactions

3 Types of Interactions CHAPTER 1 3 Types of Interactions SECTION Interactions of Living Things BEFORE YOU READ After you read this section, you should be able to answer these questions: What determines an area s carrying capacity?

More information

Ecosystems and Communities

Ecosystems and Communities Ecosystems and Communities Interdependence in Nature Q: How do abiotic and biotic factors shape ecosystems? 4.1 What factors affect global climate? WHAT I KNOW SAMPLE ANSWER: The global climate is affected

More information

Ecology. Initial Vocab and Practice. Page 1 in notes

Ecology. Initial Vocab and Practice. Page 1 in notes 2015 1 Ecology Initial Vocab and Practice Page 1 in notes 2 The study of the interactions of living organisms with one another and with their environment. 3 Organism/species an individual living thing.

More information

Part 1. Interactions among living things

Part 1. Interactions among living things Part 1 Interactions among living things Interactions Among Living Things Environment- All of the living and non-living things with which an organism may interact. Ecology- The study of the relationships

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology Name Period Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect on the species involved. 1. What is a community? List six organisms that would be found in your

More information

How do organisms interact?

How do organisms interact? Lesson 1 Energy Flow in Ecosystems Lesson 2 Relationships in Ecosystems Lesson 3 Adaptation and Survival How do organisms interact? ecosystem population community food chain food web predator prey energy

More information

CPO Science and the NGSS

CPO Science and the NGSS CPO Science and the NGSS It is no coincidence that the performance expectations in the Next Generation Science Standards (NGSS) are all action-based. The NGSS champion the idea that science content cannot

More information

Grade Stand Sub-Strand Standard Benchmark GRADE 6

Grade Stand Sub-Strand Standard Benchmark GRADE 6 Grade Stand Sub-Strand Standard Benchmark OF OF OF A. Scientific World View B. Scientific Inquiry C. Scientific Enterprise understand that science is a way of knowing about the world that is characterized

More information

Biology Overview. High School Core Science Standards Biology

Biology Overview. High School Core Science Standards Biology Overview The biology standards provide students with a basic knowledge of living organisms and the interaction of these organisms with the natural world. The standards establish the scientific inquiry

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology Biotic

More information

Keystone Biology Exam Information: Module A: Cell and Cell Processes

Keystone Biology Exam Information: Module A: Cell and Cell Processes Keystone Biology Exam Information: Module A: Cell and Cell Processes Basic Biological Principles- Day 1 Describe the characteristics of life shared by prokaryotic and eukaryotic organisms. Compare cellular

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using the sun's

More information

Saint Thomas the Apostle School. Grade 7 Life Science. Scope and Sequence. Jennifer Croze

Saint Thomas the Apostle School. Grade 7 Life Science. Scope and Sequence. Jennifer Croze Saint Thomas the Apostle School Grade 7 Life Science Scope and Sequence Jennifer Croze 2015-2016 Major Topic Description Standards Addressed Studying Life Living organisms are often MS-ETS1-1 described

More information

Georgia Performance Standards: Science Grades Frames. Frames Tasks

Georgia Performance Standards: Science Grades Frames. Frames Tasks How to read the Frames Standards Correlations The Frames Standards Correlations include information on how you and your students can use Frames to meet your curriculum and technology standards. Since you

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy Overview of Chapter 3 o Ecology o Energy, the ability to do work First Law of Thermodynamics Second Law of Thermodynamics o Photosynthesis and Cellular Respiration o Flow

More information

Biology Chapter 4 Section 2 Review

Biology Chapter 4 Section 2 Review Name: Class: Date: Biology Chapter 4 Section 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is a biotic factor that affects the size of

More information

tundra desert coniferous forest deciduous forest rainforest grassland aquatic biome habitat environment ecosystem species

tundra desert coniferous forest deciduous forest rainforest grassland aquatic biome habitat environment ecosystem species Science Unit 6: Vocabulary List One tundra desert coniferous forest deciduous forest rainforest grassland aquatic biome habitat environment ecosystem species The coldest of the biomes, located at the top

More information

7 th Grade Power GLCE s (revised 4/13) Cell Structure and Function

7 th Grade Power GLCE s (revised 4/13) Cell Structure and Function 7 th Grade Power GLCE s (revised 4/13) Cell Structure and Function (L.OL.M.2 Cell Functions- All organisms are composed of cells, from one cell to many cells. In multicellular organisms, specialized cells

More information

AP Biology Lab 10: Energy Dynamics

AP Biology Lab 10: Energy Dynamics Name: Period: AP Biology Lab 10: Energy Dynamics Purpose: What factors govern energy capture, allocation, storage, and transfer between producers and consumers in a terrestrial ecosystem? Background: Almost

More information

AP Biology Summer Assignment Due at the beginning of the first Red/Gold day of class 1

AP Biology Summer Assignment Due at the beginning of the first Red/Gold day of class 1 AP Biology 2016-2017 Summer Assignment Due at the beginning of the first Red/Gold day of class 1 Welcome to AP Biology! This is going to be an exciting and challenging year. This is a fastpaced class.

More information

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.

Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2. Biology Keystone (PA Core) Quiz Ecology - (BIO.B.4.1.1 ) Ecological Organization, (BIO.B.4.1.2 ) Ecosystem Characteristics, (BIO.B.4.2.1 ) Energy Flow 1) Student Name: Teacher Name: Jared George Date:

More information

Ecosystems and Energy

Ecosystems and Energy 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers &

More information

Lecture 20: Population and Community Ecology. I. Background

Lecture 20: Population and Community Ecology. I. Background Lecture 20: Population and Community Ecology I. Background A. Biological processes affecting populations 1. Population ecology is the study of populations in relation to environment a. Environment influences

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS SECTION 1 In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using

More information

Earth as a Living System

Earth as a Living System Earth as a Living System FOCUS ON ECOSYSTEM FUNCTIONS AND ECOSYSTEM SERVICES THROSTURTH@HI.IS Earth as a Living System Earth itself is a system of biological communities Biota: All the organisms of all

More information

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work?

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work? Chapter 28: How Do Ecosystems Work? Introduction to Ecology Ecology - Increasing Levels of Complexity: Population: All members of a particular species living within a defined area Organism Community: All

More information

AP Biology Summer Assignment

AP Biology Summer Assignment Name Biology Mrs. Slomnicki Part 1 AP Biology Summer Assignment Read Chapters 45 48 in your textbook. Fill in the following guided worksheets as you read. I have included the most important key phrases

More information

Unit 1 - Fundamental Biology Skills and Knowledge

Unit 1 - Fundamental Biology Skills and Knowledge PREP TM AP* Biology Prep Course Syllabus Foundational Topics Review 10 units that cover fundamental biology topics typically covered in a general biology course. This content is perfect to use as a summer

More information

Differences Between 1997 Illinois Learning Standards and 2014 Illinois Learning Standards (NGSS)

Differences Between 1997 Illinois Learning Standards and 2014 Illinois Learning Standards (NGSS) Differences Between 1997 Illinois Learning Standards and 2014 Illinois Learning Standards (NGSS) 1997 Illinois Learning Standards in Science 2014 Illinois Learning Standards (NGSS) Grouped by grade spans:

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Environmental Science

Environmental Science Environmental Science UNIT I: Introduction to Environmental Science The student will demonstrate the ability to use scientific skills necessary to identify and analyze environmental issues. a. Define environmental

More information

AP BIOLOGY SUMMER ASSIGNMENT

AP BIOLOGY SUMMER ASSIGNMENT AP BIOLOGY SUMMER ASSIGNMENT AP BIOLOGY includes topics in a college course for biology. One topic, Ecology, is usually very briefly mentioned in lecture in the year course. There are so many topics to

More information

3.2 Energy flows through ecosystems

3.2 Energy flows through ecosystems 3.2 Energy flows through ecosystems Printed Page 60 [Notes/Highlighting] To understand how ecosystems function and how to best protect and manage them, ecosystem ecologists study not only the biotic and

More information

Effective June 2008 All indicators in Standard B-6 1 / 16

Effective June 2008 All indicators in Standard B-6 1 / 16 B-6.1 Explain how the interrelationships among organisms (including predation, competition, parasitism, mutualism, and commensalism) generate stability within ecosystems. Taxonomy Level: 2.7-B Understand

More information

Ecology Review Questions

Ecology Review Questions 1. The food chain above shows (A) one autotroph and two heterotrophs (B) one producer, one autotroph, and one decomposer (C) one producer and two omnivores (D) one heterotroph and two autotrophs 2. Assume

More information

EOC ECOLOGY SAMPLE QUESTIONS

EOC ECOLOGY SAMPLE QUESTIONS 1 EOC ECOLOGY SAMPLE QUESTIONS Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the organization

More information

The main source of energy in most ecosystems is sunlight.

The main source of energy in most ecosystems is sunlight. Energy in Ecosystems: Ecology: Part 2: Energy and Biomass The main source of energy in most ecosystems is sunlight. What is the amount of energy from the sun? 100 W/ft 2 The energy gets transferred through

More information

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors Ecosystem Ecology Orgnaisms (biotic factors) interact with abiotic factors 1 Matter and Energy Matter has mass and occupies space: it is the stuff you and everything else is made of. Energy is what you

More information

S T U D E N T J O U R N A L

S T U D E N T J O U R N A L S T U D E N T J O U R N A L Name: Date: How does energy flow in a food chain and a food web? Part I: The Chain vs. The Web Draw one example food chain using your food web. Use arrows to show energy flow.

More information

Unit 5: Structure of the ecosystems

Unit 5: Structure of the ecosystems Unit 5: Structure of the ecosystems 1. Ecosystems 2. The physical environment 3. Living beings relationships 4. Trophic structure of the ecosystem 5. Matter and energy in ecosystems 6. Ecological niche

More information

Primary Production and Energy Flow Chapter 18

Primary Production and Energy Flow Chapter 18 Primary Production and Energy Flow Chapter 18 Sunlight to photosynthesizer to herbivore to carnivore to decomposer!!! 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb A Correlation of Essentials of Human Anatomy Marieb To the Next Generation Science Standards Life A Correlation of, HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS1-1. Construct an explanation

More information

CCR Biology - Chapter 14 Practice Test - Summer 2012

CCR Biology - Chapter 14 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 14 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Zebras live on the savannas of

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Westerville City Schools Science Power Standards Safety Net Skills * Grade 7

Westerville City Schools Science Power Standards Safety Net Skills * Grade 7 Westerville City Schools Science Power Standards Safety Net Skills * Grade 7 Standard 1 Earth and Space Sciences Students will be able to describe the positions of matter and energy throughout the lithosphere,

More information

National 5. Unit 3. Life on earth. Ink exercise 1. Biodiversity and the distribution of life.

National 5. Unit 3. Life on earth. Ink exercise 1. Biodiversity and the distribution of life. National 5 Unit 3 Life on earth Ink exercise 1 Biodiversity and the distribution of life. Once completed and marked- Think about and list below the areas I need to work on: Multiple choice Tick one answer

More information

Grade 8 FCAT 2.0 Science Achievement Level Descriptions

Grade 8 FCAT 2.0 Science Achievement Level Descriptions Grade 8 FCAT 2.0 Science Achievement Level Descriptions Florida Department of Education/Office of Assessment December 2012 Grade 8 FCAT 2.0 Science Reporting Category Nature of Science Students performing

More information

1 Everything Is Connected

1 Everything Is Connected CHAPTER 1 1 Everything Is Connected SECTION Interactions of Living Things BEFORE YOU READ After you read this section, you should be able to answer these questions: What do organisms in an ecosystem depend

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers

More information

Curriculum Map: Life Sciences Grade 8. Month. Unit. Essential Questions (List 1-3 Essential Questions)

Curriculum Map: Life Sciences Grade 8. Month. Unit. Essential Questions (List 1-3 Essential Questions) Month Unit 2016-2017 Curriculum Map: Life Sciences Grade 8 September Scientific Inquiry October Origin of Life/Cellular Processes Essential Questions (List 1-3 Essential Questions) Learning Outcomes/Objectives

More information

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world. GRADE 6 SCIENCE STRAND A Value and Attitudes Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers must reinforce Gospel truths and values so that students

More information

Section 3: Trophic Structures

Section 3: Trophic Structures Marine Conservation Science and Policy Service learning Program Trophic Structure refers to the way in which organisms utilize food resources and hence where energy transfer occurs within an ecosystem.

More information

A biological community is an assemblage of populations of various species living close enough for potential interaction

A biological community is an assemblage of populations of various species living close enough for potential interaction Ch 54 Community Ecology A biological community is an assemblage of populations of various species living close enough for potential interaction Ecologists call relationships between species in a community

More information