Projectile Motion Vocabulary
|
|
|
- Angelica Andrews
- 9 years ago
- Views:
Transcription
1 Projectile Motion Vocabulary Term Displacement vector Definition Projectile trajectory range 1 Page
2 What is a displacement vector? Displacement Vector of (10 m, 45 o ) 10 m θ = 45 o When you throw a ball it follows a curved path. The position of the ball is described by its displacement vector. Vector Addition Larry walks 10 meters West and 20 meters North. Use Pythagorean s theorem to determine Larry s displacement. Pythagorean Theorem Given Formula Solution a = 20 m a 2 +b 2 =c =c 2 b = 10 m = c = c 2 c = m 2 Page
3 Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. The path a projectile follows is called its. 2. The trajectory of a projectile is a. 3. The horizontal and vertical motions of a projectile are completely of one another. a. In the absence of air resistance, there is no net horizontal force on the projectile; therefore the projectile travels with a constant horizontal velocity. In the picture below the horizontal velocity is constant: 5 m/s. Notice how the vertical velocity changes. 3 Page
4 4 Page
5 b. In the absence of air resistance, gravity is the only vertical force on the projectile; therefore the projectile travels with a uniformly accelerated vertical motion. Every second, the vertical velocity of the projectile changes by 9.8 m/s (10 m/s) 4. Horizontal and vertical motion are completely of each other. Therefore, the velocity of a projectile can be separated into horizontal (v x ) and vertical components (v y ). v x = velocity in the x-direction v y = velocity in the y-direction 5 Page
6 5. For a projectile beginning and ending at the same height, the time it takes to rise to its highest point equals the time it takes to fall from the highest point back to the original position. 6. For a projectile beginning and ending at the same height, the initial speed is equal to its final speed. 6 Page
7 Projectile Motion What is a displacement vector? (p. 134) What is a projectile? (p. 137) What is trajectory and what type of shape does a projectile follow? (p. 137) What is range? (p. 137) What does it mean that the horizontal and vertical components of a projectile s velocity are completely independent of one another? Note the horizontal velocity of the ball in the picture below. Why doesn t it change? Why does the vertical velocity change? 7 Page
8 At the instant a horizontally held rifle is fired over level ground, a bullet held at the side of the rifle is released and drops to the ground. Ignoring air resistance, which bullet strikes the ground first? What is the equation to calculate the vertical velocity of a projectile? (p. 138) What is the equation to calculate the horizontal distance a projectile travels? (p.139) What is the equation to calculate the vertical distance a projectile travels? (p. 139) Complete the table below calculating the horizontal and vertical positions of a ball rolling off a cliff at 20 meters per second: (use data table on p. 139) Time (sec) Horizontal Position (m) Vertical drop (m) 8 Page
9 Range of a Projectile List two factors that affect how far a projectile will travel are: (p. 140) Which angle below produces the furthest range? (p. 140) What combination of angles produce the same range? Is there a pattern? (p. 140) Check Questions 1. What is the word for the horizontal distance a projectile travels? 2. What launch angle gives a projectile its greatest range? 3. Why does a projectile move in a curved path? 4. A ball kicked off the ground at an angle of 20 degrees and a ball kicked at an angle of degrees have the same range. 9 Page
10 Horizontal and Vertical Velocities A projectiles horizontal velocity is constant. A projectiles vertical velocity changes 9.8 m/s. v y = gt v y = vertical velocity g = 10 m/s 2 t = time Vertical Velocity Practice Problems 3. Chris drops a water balloon off the top of the school. What is the balloons vertical velocity if it strikes the ground 5 seconds later? 4. A package falls off an airplane. How fast is the package traveling if it is in the air for 12 seconds? 5. A skydiver jumps out of a plane. How fast is he traveling 8 seconds later right before he pulls his parachute? 10 Page
11 Horizontal and Vertical Distance d x = v x t d x = horizontal distance v x = horizontal velocity t = time d y = 4.9*t 2 d y = vertical distance t = time 1. While chasing the Road Runner, Wile E. Coyote makes wrong turn and ends up sliding horizontally off the edge of a high cliff. He leaves the edge of the cliff while traveling 35 m/s. He hits the bottom 4 seconds later. a. Find the horizontal distance the coyote travels. Given Formula Solution v x = 35 m/s d x = v x t d x = (35 m/s) x (4 s) = 140 m t = 4 s a. Find the height of the cliff. Given Formula Solution t = 4 s d y = 4.9t 2 d y = (4.9) x (4 s) 2 = 78.4 m 2. Repeat the above problem with 5 seconds as the time. 11 Page
12 Class/HomeWork 1. While chasing the Road Runner, Wile E. Coyote makes wrong turn and ends up sliding horizontally off the edge of a high cliff. He leaves the edge of the cliff while traveling with a horizontal velocity of 50 m/s. He hits the bottom 3 seconds later. b. Find the horizontal distance the coyote travels. c. Find the height of the cliff. 2. Billy throws a water balloon off the top of the school in attempt to hit Mr. Beatty. If Billy throws the balloon with a horizontal velocity of 3 m/s and the balloon is in the air for 6 seconds determine the: (a) Horizontal distance the balloon travels. (b) The height of the school. 12 Page
13 3. A monkey throws a banana horizontally at 10 m/s from the top of a tree. The banana hits the ground 6 seconds later. a. How far from the base of the tree does it land? b. How high is the tree? c. How fast was the banana moving vertically (v y ) as it hit the ground? d. How fast horizontally was the banana moving as it hit the ground? 4. A bowling ball rolls off a high cliff at 5 m/s. Complete the chart below that describes its motion during each second it is in the air. Time (s) Horizontal Velocity (m/s) Vertical Velocity (m/s) Horizontal Distance (m) Vertical Distance (m) Page
14 5. Chris throws a water balloon horizontally off the top of the school at 8 m/s attempting to hit his friend s car. The balloon is in the air for 4 seconds before striking the ground. a. How far away is Chris teacher standing? b. What is the height of the high school? c. What is the vertical velocity of the ball just before it strikes the ground? d. What is the horizontal velocity of the ball just before it strikes the ground? 6. A ball is projected horizontally at velocity of 10 m/s from the top of a 50 m high cliff. How high is the ball 2.5 seconds after it is released? 7. A ball is projected horizontally at velocity of 10 m/s from the top of a 50 m high cliff. What is the horizontal distance from the base of the cliff that the object lands? 14 Page
15 Investigation 6A Physics Research Question How can you predict the distance a projectile will travel? Toss a ball some distance and you can imagine in your mind the arc it follows, first rising then falling to the ground. The path the ball follows is the subject of this Investigation. Projectile motion describes objects moving under the influence of gravity, including thrown balls, coasting spacecraft, and even meteors. The range is the horizontal distance a projectile travels between launch and touch down. In this experiment you will see how the range depends on the launch angle. Procedure Part I 1. Set up by marking a tape line on the floor. This line is where you set the front edge of the launcher. 2. One person launches while several group members stand to either side to spot where the marble first touches the ground. 3. Place a marble in the barrel and then pull the pin back and slide it into one of the five slots. 4. Use your thumb to flick the pin out of the slot and launch the marble. 5. Use only the plastic marbles, and follow all safety rules. 6. Spotting the landing point is tricky. It often takes several launches to figure out where the marble lands. Investigate 1. What two variables most affect the range of the marble? (Hint: Both are adjusted on the Marble Launcher) 2. If you wish to study the effect of changing one variable, what must be done with the other one? Procedure Part II 1. Choose which release slot on the barrel of the marble launcher to use for all your range measurements. 2. Measure the range every ten degrees from 10 to 90 degrees, and also at 45 degrees. 15 Page
16 Table 1: Range versus angle data Launch Angle (degrees) Range (meters) Analysis 1. Make a graph with launch angle on the x-axis and range on the y-axis. Use your graph to find the angle that launches the marble with the greatest range. 2. The Marble Launcher starts the marble more than 10 cm above the floor. Suppose the marble were launched from floor level. Do you think it would go a shorter, longer, or about the same distance? Explain why. 3. You are challenged to launch a marble to travel a distance of 3.00 meters. At what angle will you set the launcher? 4. Referring to your answer for question 3, state another angle that would give you the same result. 16 Page
17 The Physics of Golf Physics Research Question How does contact angle affect trajectory and distance? Hypothesis Procedure Part 1. Choose only one golf club to use for all your range measurements. Select an angle of 0 degrees and hit the ball. Record how far (the range) it travels in table 1 below. 2. Measure the range every ten degrees from 10 to 90 degrees, and also at 45 degrees. 3. How does the angle affect the trajectory of the golf ball? 4. How does the angle affect the distance (range) a golf ball is launched? Table 1: Range versus angle data Launch Angle (degrees) Range (meters) Analysis 5. Make a graph with launch angle on the x-axis and range on the y-axis. Use your graph to find the angle that launches the golf ball with the greatest range. 6. You are challenged to launch a golf ball to travel a distance of 200 meters. At what angle will you hit it? 7. Referring to your answer for question 3, state another angle that would give you the same result. 17 Page
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
Chapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
Web review - Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
Exam 1 Review Questions PHY 2425 - Exam 1
Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I
WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1
Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally
Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
Review Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
Chapter 10: Linear Kinematics of Human Movement
Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship
AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics
AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly
TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Supplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
Work-Energy Bar Charts
Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
One- and Two-dimensional Motion
PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of
Potential / Kinetic Energy Remedial Exercise
Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:
Acceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
Physics 590 Homework, Week 6 Week 6, Homework 1
Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal
The Bullet-Block Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
Friction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =
Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx
Freely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
Honors Physics HW Mixed Review of 2-D Motion
Honors Physics HW Mixed Review of -D Motion Name Date. In 974, Mike Austin shot the longest shot on a golf tournament. The ball went a distance of 47 m. Suppose the ball was shot horizontally off a cliff
Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.
Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
5.1 The First Law: The Law of Inertia
The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing
Episode 207: Projectile motion
Episode 207: Projectile motion This episode looks at the independence of vertical and horizontal motion. It concerns objects accelerating vertically when projected horizontally or vertically. The crucial
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile
Review Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
AP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
Paper Airplanes & Scientific Methods
Paper Airplanes 1 Name Paper Airplanes & Scientific Methods Scientific Inquiry refers to the many different ways in which scientists investigate the world. Scientific investigations are done to answer
ACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
NEWTON S LAWS OF MOTION
Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
Experiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
Speed, Velocity and Acceleration Lab
Speed, Velocity and Acceleration Lab Name In this lab, you will compare and learn the differences between speed, velocity, and acceleration. You will have two days to complete the lab. There will be some
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam #1 Math 350, Fall 004 Sept. 30, 004 ANSWERS i Problem 1. The position vector of a particle is given by Rt) = t, t, t 3 ). Find the velocity and acceleration vectors
Exam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
P211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
SPEED, VELOCITY, AND ACCELERATION
reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration
Football Learning Guide for Parents and Educators. Overview
Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football
Roanoke Pinball Museum Key Concepts
Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.
Midterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).
Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y
WORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
Parachute Jumping, Falling, and Landing David C. Arney, Barbra S. Melendez, Debra Schnelle 1
Parachute Jumping, Falling, and Landing David C. Arney, Barbra S. Melendez, Debra Schnelle 1 Introduction It is extremely important that leaders of airborne units understand the safety, medical, and operational
Resistance in the Mechanical System. Overview
Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when
Physics 160 Biomechanics. Angular Kinematics
Physics 160 Biomechanics Angular Kinematics Questions to think about Why do batters slide their hands up the handle of the bat to lay down a bunt but not to drive the ball? Why might an athletic trainer
3. KINEMATICS IN TWO DIMENSIONS; VECTORS.
3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
Polynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
CS100B Fall 1999. Professor David I. Schwartz. Programming Assignment 5. Due: Thursday, November 18 1999
CS100B Fall 1999 Professor David I. Schwartz Programming Assignment 5 Due: Thursday, November 18 1999 1. Goals This assignment will help you develop skills in software development. You will: develop software
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
2 Newton s First Law of Motion Inertia
2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
