6. Solve for x. Sides Have: Want: Function: ( ) =

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "6. Solve for x. Sides Have: Want: Function: ( ) ="

Transcription

1 Physics, Mr. Kent Daily Worksheet: Trig in Physics Name: 1. In we use three functions,,. 2. You re always given an and one and you re always asked to find. 3. Label the sides: 4. Provide the 3 trigonometric functions in equation format: Questions 5-8: Use the following triangle: 5. Set up the three trig equations: Sin ( ) = Cos ( ) = Tan ( ) = 6. Solve for x. Sides Have: Want: Function: ( ) =

2 7. Solve for y using the Pythagorean Theorem. y = 8. Solve for y using the Cosine function. y = 9. There are 2 ways to solve for the second missing side: a. b. 10. In ΔABC, angle A is the right angle. Angle C = 52 o. AB = 18. Draw the triangle then find AC and BC. AC =, BC = 11. One way of remembering the trig functions Sin = O/H, Cos = A/H and Tan = O/A is 12. What extra step must you perform to use trig functions in physics? 13. Draw the right triangle then solve for Normal Force

3 Questions 14 16: Draw the right triangle 14. A ball travels through the air at 25 m/s at an angle of 50 o over horizontal. 15. A jet taking off from Logan Airport is travelling at 70 m/s at an angle of 12 o over the runway. 16. John pushes on a table top. He exerts a force of 80 N at an angle of 70 o with the table top. 17. Calculate Normal Force using your problem 13 triangle. 18. Calculate Horizontal Velocity using your problem 14 triangle. 19. Calculate downward force using y our problem 16 triangle. What is Normal Force?

4 Physics, Mr. Kent Daily Worksheet: Projectile Motion #1 Name: 1. Definition of Projectile : 2. Definition of Projectile Motion : 3. A ball rolls at 2.5 m/s on a frictionless surface. How far does it travel in 12 seconds? 4. What formula should you use for constant (unaccelerated) motion? Problems 5 7: Relate to the following diagram 5. Provide the missing values in the above diagram. 6. How long will it take for Jordan to reach his peak? 7. What will be Jordan s Hang Time?

5 8. Let's say I toss a ball toward the back of the room. What will its path look like? (draw it including the ball at different spots) 9. Let's say I shoot a pool ball off of a table? What will its path look like? (draw it including the ball at different spots) 10. What shape from geometry describes the path of most projectiles?. What projectile motion does not follow a parabola? 11. Is the vertical velocity (v x ) of a projectile constant or variable?. 12. What happens to the vertical velocity (v y ) of a tossed ball as it rises?. Why? 13. What happens to the vertical velocity (v y ) of a tossed ball as it falls?. Why? 14. What is the vertical velocity (v y ) of a tossed ball at its peak?. Why? 15. If we ignore air resistance, does horizontal velocity (v x ) change?. The horizontal velocity (v x ) of a projectile is 16. Draw the velocity of a projectile and its perpendicular components in two ways:

6 17. A ball is thrown at 12 m/s at an angle of 55 degrees above horizontal. Draw a triangle, calculate the initial horizontal and vertical velocities of the ball, then draw a parabola showing the ball s complete path. Include a dot with its 3 initial velocities. 18. Loretta shoots an arrow at 20 m/s at an angle of 10 degrees over horizontal. Draw a triangle, calculate the initial horizontal and vertical velocities of the arrow, then draw a parabola showing the arrows complete path. Include a dot with its 3 initial velocities.

7 Physics, Mr. Kent Classwork: Projectile Motion #1 Name: 1. Tiger Woods hits a golf ball down the fairway. Draw the flight of the ball (include the fairway). 2. A baseball rolls rapidly off the edge of a table. Draw the flight of the ball (include the table). 3. A person strikes a ping pong ball directly upward. When the ball leaves the paddle, it is travelling at 6.5 m/s. a. What is the ball s velocity at its peak? b. How long does it take the ball to reach that peak? c. How high does the ball travel? d. How long does the ball stay in the air? 4. A field goal kicker strikes a ball causing it to travel at 17 m/s 25 degrees above horizontal. Draw the complete flight of the ball. Include a dot for initial velocity. Calculate all initial velocities. Draw and label them in your diagram.

8 Physics, Mr. Kent Projectile Motion #2 Name: 1. Projectiles travel along a. A ball tossed upward: b. A cannonball shot horizontally: 2. A tossed ball moves & at the same time Because there s no horizontal velocity is. 5. Is there a vertical force exerted on projectiles? If so, what? a. Effect of that force on v y of rising projectiles: b. Effect of that force on v y of falling projectiles:

9 Questions 6-8: Steven Gostkowski attempts a field goal. When the ball leaves his foot, it is traveling at a speed of 25 m/s at 20 o over the football field. How far will the ball travel down the field? 6. Draw a velocity triangle and solve for v ix and v iy. 7. Determine the hang time of the football. 8. How far forward does the ball travel? 9. The classic Projectile Motion problem has 3 steps. How far will a projectile travel horizontally? Step Velocities Involved 10. A child throws a stone up into the air. When the stone leaves her hand, it is travelling at 15 m/s at an angle of 80 o over horizontal. How far does the rock land from the child? a. Draw a triangle and find the initial horizontal and vertical velocities. b. Find hang time. c. Find horizontal distance

10 Physics, Mr. Kent Projectile Motion Quiz #1 Name: Questions 1 & 2: Draw the right triangle and solve for both missing sides. 1. Draw triangle ABC with angle A as the right angle. Angle B = 55 o. AC = 10 m. Find the lengths of sides AB and BC 2. Draw triangle ABC with angle A as the right angle. Angle B = 25 o. AB = 10 m. Find the lengths of sides AC and BC 3. Big Pappi hits a line drive to center field. When the ball leaves the bat, the ball is travelling at 30 m/s at an angle of 23 o over the field. What are the ball s initial horizontal and vertical velocities? v x = v y =, Draw a triangle. 4. A golfer strikes a ball with his 5 iron causing it to travel initially at 50 m/s at an angle of 35 o over the horizontal fairway. How far forward does the ball travel? a. Draw a triangle and calculate the initial velocities. v x = v y = b. Calculate the ball s hang time. c. How far will the ball travel forward?

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Physics 2A Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 2A Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 2A Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

Physics 160 Biomechanics. Projectiles

Physics 160 Biomechanics. Projectiles Physics 160 Biomechanics Projectiles What is a Projectile? A body in free fall that is subject only to the forces of gravity and air resistance. Air resistance can often be ignored in shot-put, long jump

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Physics Unit 2: Projectile Motion

Physics Unit 2: Projectile Motion Physics Unit 2: Projectile Motion Jan 31 10:07 AM What is a projectile? A projectile is an object that is launched, or projected, by some means and continues on its own inertia. The path of the projectile

More information

People s Physics book

People s Physics book The Big Idea In this chapter, we aim to understand and explain the parabolic motion of a thrown object, known as projectile motion. Motion in one direction is unrelated to motion in other perpendicular

More information

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

Chapter 4 Two-Dimensional Kinematics

Chapter 4 Two-Dimensional Kinematics Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 1 4-1 Motion

More information

Chapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc.

Chapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc. Chapter 3 Kinematics in Two or Three Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar

More information

physics 111N motion in a plane

physics 111N motion in a plane physics 111N motion in a plane position & displacement vectors ym! the position vector points from the origin to the object t2.83 s 15 10 5 0 5 10 15 xm we re plotting the plane (e.g. billiard table viewed

More information

A Review of Vector Addition

A Review of Vector Addition Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

2 Using the definitions of acceleration and velocity

2 Using the definitions of acceleration and velocity Physics I [P161] Spring 2008 Review for Quiz # 3 1 Main Ideas Two main ideas were introduced since the last quiz. 1. Using the definitions of acceleration and velocity to obtain equations of motion (chapter

More information

Projectile Motion Vocabulary

Projectile Motion Vocabulary Projectile Motion Vocabulary Term Displacement vector Definition Projectile trajectory range 1 Page What is a displacement vector? Displacement Vector of (10 m, 45 o ) 10 m θ = 45 o When you throw a ball

More information

Teaching Time: Projectiles

Teaching Time: Projectiles 27206_U04L18_184-195.indd Page a184 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit 4 27206_U04L18_184-195.indd Page a185 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit

More information

Physics General Physics I

Physics General Physics I Physics 1114 - General Physics I Midterm Solutions 1. Your cat drops from a shelf 1.22 m above the floor and lands on all four feet. His legs bring him to a stop in a distance of 12 cm. Ignoring air resistance,

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

The bowling ball hit the ground first. The softball hit the ground first. The bowling ball and softball hit the ground at the same time.

The bowling ball hit the ground first. The softball hit the ground first. The bowling ball and softball hit the ground at the same time. North arolina Testing Program EO Physics Sample Items Goal 3 1. bowling ball was dropped from the same height and at the same time that a softball was thrown horizontally. Neglecting air resistance, which

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Monkey

More information

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its (1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Section 10.4: Motion in Space: Velocity and Acceleration

Section 10.4: Motion in Space: Velocity and Acceleration 1 Section 10.4: Motion in Space: Velocity and Acceleration Velocity and Acceleration Practice HW from Stewart Textbook (not to hand in) p. 75 # 3-17 odd, 1, 3 Given a vector function r(t ) = f (t) i +

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

More information

Football Learning Guide for Parents and Educators. Overview

Football Learning Guide for Parents and Educators. Overview Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football

More information

Physics - Workman Practice/Review for Exam on Chapter 3

Physics - Workman Practice/Review for Exam on Chapter 3 Physics - Workman Practice/Review for Exam on Chapter 3 1. Which of the following is a physical quantity that has a magnitude but no direction? a. vector b. scalar c. resultant d. frame of reference 2.

More information

Cartesian Coordinate System. Also called rectangular coordinate system x- and y- axes intersect at the origin Points are labeled (x,y)

Cartesian Coordinate System. Also called rectangular coordinate system x- and y- axes intersect at the origin Points are labeled (x,y) Physics 1 Vectors Cartesian Coordinate System Also called rectangular coordinate system x- and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference line

More information

Physics 590 Homework, Week 6 Week 6, Homework 1

Physics 590 Homework, Week 6 Week 6, Homework 1 Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

Projectile Motion - Worksheet

Projectile Motion - Worksheet Projectile Motion - Worksheet From the given picture; you can see a skateboarder jumping off his board when he encounters a rod. He manages to land on his board after he passes over the rod. 1. What is

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Physics 100A Homework 3 Chapter A sailboat runs before the wind with a constant speed of 4.5 m/s in a direction 32 north of west.

Physics 100A Homework 3 Chapter A sailboat runs before the wind with a constant speed of 4.5 m/s in a direction 32 north of west. Phsics A Homework 3 Chapter 4 4. A sailboat runs before the wind with a constant speed of 4.5 m/s in a direction 3 north of west.. Picture the Problem: The ector inoled in this problem is depicted at right.

More information

Web review - Ch 3 motion in two dimensions practice test

Web review - Ch 3 motion in two dimensions practice test Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

Quiz 10 Motion. Name: Group:

Quiz 10 Motion. Name: Group: Quiz 10 Motion Name: Group: 1. Two balls are released at the same time on the two tracks shown below. Which ball wins? a. The ball on the low road b. The ball on the high road c. They tie 2. What will

More information

Projectile Motion. AP Physics B

Projectile Motion. AP Physics B Projectile Motion AP Physics B What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

M OTION. Chapter2 OUTLINE GOALS

M OTION. Chapter2 OUTLINE GOALS Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

More information

Lecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A container explodes and breaks into three fragments that fly off 120 apart from each

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

TWO DIMENSIONAL VECTORS AND MOTION

TWO DIMENSIONAL VECTORS AND MOTION TWO DIMENSIONAL VECTORS AND MOTION 1. Two nonzero vectors have unequal magnitudes of X and Y. Which of the following could be the length of their sum? (i) 0 (ii) X+Y (iii) X (iv) Y a. (i), (iii), and (iv)

More information

FREE FALL AND PROJECTILE MOTION

FREE FALL AND PROJECTILE MOTION FREE FALL AND PROJECTILE MOTION 1 Let s review equations and then split them into X (horizontal) and Y (vertical). GENERAL HORIZONTAL VERTICAL V f = V i + aδt V fx = V ix + a x t V fy = V iy + a y t x

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information

Forces. Lecturer: Professor Stephen T. Thornton

Forces. Lecturer: Professor Stephen T. Thornton Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

More information

Physics of Sports. Goal: Explain the physics behind a particular aspect of your favorite sport.

Physics of Sports. Goal: Explain the physics behind a particular aspect of your favorite sport. Physics of Sports Goal: Explain the physics behind a particular aspect of your favorite sport. Overview: In this project, you will tie together all of the physics principles you ve learned about in order

More information

Mary Lee McJimsey (Physics BSc) High School Physics Teacher North Central High School Spokane, WA

Mary Lee McJimsey (Physics BSc) High School Physics Teacher North Central High School Spokane, WA PHYSICIST PROFILE Mary Lee McJimsey (Physics BSc) High School Physics Teacher North Central High School Spokane, WA Attend Mary Lee McJimsey s high school physics class, and you may be surprised! Rather

More information

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

More information

Vector Definition. Chapter 1. Example 2 (Position) Example 1 (Position) Activity: What is the position of the center of your tabletop?

Vector Definition. Chapter 1. Example 2 (Position) Example 1 (Position) Activity: What is the position of the center of your tabletop? Vector Definition Chapter 1 Vectors A quantity that has two properties: magnitude and direction It is represented by an arrow; visually the length represents magnitude It is typically drawn on a coordinate

More information

Projectile Motion Introduction:

Projectile Motion Introduction: Projectile Motion Introduction: A projectile is a body in free fall that is subject only to the forces of gravity (9.81ms ²) and air resistance. An object must be dropped from a height, thrown vertically

More information

Projectile Motion. Pre-lab Assignment. Pre-lab Questions and Exercises. Introduction. Projectile Motion

Projectile Motion. Pre-lab Assignment. Pre-lab Questions and Exercises. Introduction. Projectile Motion Projectile Motion Pre-lab Assignment Derive algebraic expressions for the range and total time-of-flight of a projectile launched with initial speed v o from a height h at an angle above horizontal. Hint:

More information

Chapter 3 Solutions. Figure 3.7a. (b) Thus (c) velocity: At. Figure 3.7b

Chapter 3 Solutions. Figure 3.7a. (b) Thus (c) velocity: At. Figure 3.7b Chapter 3 Solutions 3.7.IDENTIFY and Use Eqs. (3.4) and (3.12) to find and as functions of time. The magnitude and direction of and can be found once we know their components. (a) Calculate x and y for

More information

Physics 201, Lect. 6 Feb.4, 2010

Physics 201, Lect. 6 Feb.4, 2010 Physics 201, Lect. 6 Feb.4, 2010 Chapter 3: Motion in two- and three-dimensions Examples and application Projectile motion: Typical 3D 2D example; X-Y independent motions; X: constant speed; Y: constant

More information

PSI AP Physics B Kinematics Multiple-Choice Questions

PSI AP Physics B Kinematics Multiple-Choice Questions PSI AP Physics B Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Honors FORCE Study Guide KEY

Honors FORCE Study Guide KEY Honors FORCE Study Guide KEY Answer the following questions for each objective in your notebook: Objective 1: Students will know the different types of forces and how they affect the movement of objects.

More information

11 Trigonometric Functions of Acute Angles

11 Trigonometric Functions of Acute Angles Arkansas Tech University MATH 10: Trigonometry Dr. Marcel B. Finan 11 Trigonometric Functions of Acute Angles In this section you will learn (1) how to find the trigonometric functions using right triangles,

More information

The Range of Projectiles: The Shot Put

The Range of Projectiles: The Shot Put Chapter 2 Physics in Action SECTION 5 The Range of Projectiles: The Shot Put Section Overview In this section, students create and compare mathematical and physical models of a projectile s motion to improve

More information

Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

More information

APPENDIX A APPENDIX A STSE. Science-Technology-Society and the Environment PHYSICS 3204 CURRICULUM GUIDE 115

APPENDIX A APPENDIX A STSE. Science-Technology-Society and the Environment PHYSICS 3204 CURRICULUM GUIDE 115 APPENDIX A STSE Science-Technology-Society and the Environment PHYSICS 304 CURRICULUM GUIDE 115 Important Note These STSE modules are intended for teacher reference. Each is designed to target specific

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Newton s 3 rd Law Study Guide Chapter 7

Newton s 3 rd Law Study Guide Chapter 7 1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle

More information

Lecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter ,

Lecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter , Lecture 4 Vectors Motion and acceleration in two dimensions Cutnell+Johnson: chapter 1.5-1.8, 3.1-3.3 We ve done motion in one dimension. Since the world usually has three dimensions, we re going to do

More information

Motion Lesson 1: Review of Basic Motion

Motion Lesson 1: Review of Basic Motion Motion in one and two dimensions: Lesson 1 Semi-notes Motion Lesson 1: Review of Basic Motion Note. For these semi notes we will use the bold italics convention to represent vectors. Complete the following

More information

Lesson 03: Kinematics

Lesson 03: Kinematics www.scimsacademy.com PHYSICS Lesson 3: Kinematics Translational motion (Part ) If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics,

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Motion in Two Dimensions

Motion in Two Dimensions Motion in Two Dimensions 1. The position vector at t i is r i and the position vector at t f is r f. The average velocity of the particle during the time interval is a.!!! ri + rf v = 2 b.!!! ri rf v =

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

CHAPTER 2, Lsn 2-1 to 2-5 TEST REVIEW

CHAPTER 2, Lsn 2-1 to 2-5 TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER 2, Lsn 2-1 to 2-5 TEST REVIE 1. The graph shows the variation with time t of the acceleration a of an object. hich of the following

More information

Euler s Formula and Trig Identities

Euler s Formula and Trig Identities Euler s Formula and Trig Identities Steven W. Nydick May 5, 0 Introduction Many of the identities from trigonometry can be demonstrated relatively easily using Euler s formula, rules of exponents, basic

More information

Newton s 3 rd Law Study Guide Chapter 7

Newton s 3 rd Law Study Guide Chapter 7 1. The Big Idea is 2. If you lean over and push on a wall, why don t you fall over? 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? Section 7.1 Forces and

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Midterm Exam 1 October 2, 2012

Midterm Exam 1 October 2, 2012 Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

More information

Chapter Rules for significant digits are covered on page 7 of the text and pages 1-3 in the lab book.

Chapter Rules for significant digits are covered on page 7 of the text and pages 1-3 in the lab book. Chapter 1 1. To express the answer in seconds, convert years to days (use 364 days in one year), days to hours and hours to seconds. Use the factor/label method. 2. Rules for significant digits are covered

More information

1) 25 m. 2) 45 m. 3) 75 m. 4) 90 m. 5) 150 m. 1) 4 s. 2) 5 s. 3) 6 s. 4) 7 s. 5) 8 s. 1) 50 m. 2) 60 m. 3) 150 m. 4) 180 m.

1) 25 m. 2) 45 m. 3) 75 m. 4) 90 m. 5) 150 m. 1) 4 s. 2) 5 s. 3) 6 s. 4) 7 s. 5) 8 s. 1) 50 m. 2) 60 m. 3) 150 m. 4) 180 m. Base your answers to questions 1 and 2 on the followin information. An object is thrown off a cliff above level round with an initial horizontal velocity of 15 m/s. It takes 4 seconds for the object to

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Projectile motion Mathematics IA

Projectile motion Mathematics IA Projectile motion Mathematics IA Introduction Projectile motion is the motion of an object that is moving in air and experiences the force of gravity. 1 My interest in the topic of projectile motion stemmed

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions

Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, 2009 Chapter 3: Mo?on in Two and Three Dimensions Displacement, Velocity and Acceleration Displacement describes the location of

More information

2.1 The Tangent Ratio

2.1 The Tangent Ratio 2.1 The Tangent Ratio In this Unit, we will study Right Angled Triangles. Right angled triangles are triangles which contain a right angle which measures 90 (the little box in the corner means that angle

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Physics 201 Homework 5

Physics 201 Homework 5 Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

More information

Vectors and the Inclined Plane

Vectors and the Inclined Plane Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

More information

What assumptions are being made by modelling an object as a projectile? Time (t seconds)

What assumptions are being made by modelling an object as a projectile? Time (t seconds) Galileo s projectile model In this activity you will validate Galileo s model for the motion of a projectile, by comparing the results predicted by the model with results from your own experiment. Information

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS

SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS This work covers elements of the syllabus for the Engineering Council Exam D225 Dynamics of Mechanical Systems C103 Engineering Science. This

More information

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo: Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

More information

Projectile Motion. Video Support Notes. Senior Secondary. 33mins. Physics. Video Education Australasia Bringing Learning to Life.

Projectile Motion. Video Support Notes. Senior Secondary. 33mins. Physics. Video Education Australasia Bringing Learning to Life. Video Education Australasia Bringing Learning to Life Video Support Notes Senior Secondary Projectile Motion 33mins Teacher Notes by Roy Preece Produced by Video Education Australasia Commissioning Editor

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

2) When you look at the speedometer in a moving car, you can see the car's.

2) When you look at the speedometer in a moving car, you can see the car's. Practice Kinematics Questions Answers are at the end Choose the best answer to each question and write the appropriate letter in the space provided. 1) One possible unit of speed is. A) light years per

More information

The Pythagorean Packet Everything Pythagorean Theorem

The Pythagorean Packet Everything Pythagorean Theorem Name Date The Pythagorean Packet Everything Pythagorean Theorem Directions: Fill in each blank for the right triangle by using the words in the Vocab Bo. A Right Triangle These sides are called the of

More information

Higher Physics Our Dynamic Universe Notes

Higher Physics Our Dynamic Universe Notes Higher Physics Our Dynamic Universe Notes Teachers Booklet Previous knowledge This section builds on the knowledge from the following key areas from Dynamics and Space Booklet 1 - Dynamics Velocity and

More information

Physics 1120: 2D Kinematics Solutions

Physics 1120: 2D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 Physics 1120: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The inital velocity and the constant acceleration of the ball

More information