# Section 7.1 Solving Right Triangles

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Section 7.1 Solving Right Triangles Note that a calculator will be needed for most of the problems we will do in class. Test problems will involve angles for which no calculator is needed (e.g., 30, 45, 60,10, etc.). So, you will still need those unit circle values. We ll use right triangle trigonometry to find the lengths of all of the sides and the measures of all of the angles. In some problems, you will be asked to find one or two specific pieces of information, but often you ll be asked to solve the triangle, that is, to find all lengths and measures that were not given. Example 1: Find x and y. x y

2 Example : In ABC with right angle C, A = 40 and AC = 1. Find BC. Round the answer to the nearest hundredth.

3 Example 3: Draw a diagram to represent the given situation. Then find the indicated measures to the nearest tenth of a degree. An isosceles triangle has sides measuring 0 inches, 54 inches and 54 inches. What are the measures of its angles? 3

4 Example 4: Draw a diagram to represent the given situation. Then find the indicated measure to the nearest tenth. A 16 foot ladder is leaned against the side of a building. If the ladder forms a 41 angle with the ground, how high up the side of the building does the ladder reach? 4

5 Angle of Elevation; Angle of Depression: 5

6 Example 5: Draw a diagram to represent the given situation. Then find the indicated measure to the nearest tenth. The angle of elevation to the top of a building from a point on the ground 15 feet away from the building is 8. How tall is the building? 6

7 Example 6: Draw a diagram to represent the given situation. Then find the indicated measure to the nearest tenth. Dave is at the top of a hill. He looks down and spots his car at a 60 angle of depression. If the hill is 48 meters high, how far is his car from the base of the hill? 7

8

9 Section 7. - Area of a Triangle In this section, we ll use a familiar formula and a new formula to find the area of a triangle. 1 You have probably used the formula K = bh to find the area of a triangle, where b is the length of the base of the triangle and h is the height of the triangle. We ll use this formula in some of the examples here, but we may have to find either the base or the height using trig functions before proceeding. Here s another approach to finding area of a triangle. Consider this triangle: C b a A c B 1 The area of the triangle ABC is: K = bcsin( A) It is helpful to think of this as Area = ½*side*side*sine of the included angle. Example 1: Find the area of the triangle

10 Example : Find the area of the triangle Example 3: Find the area of an isosceles triangle with legs measuring 1 inches and base angles measuring 5 degrees each. Round to the nearest hundredth. Example 4: In triangle ABC; a = 1, b = 0 and sin( C ) = Find the area of the triangle.

11 Example 5: In triangle KLM, k = 10 and m = 8. Find all possible measures of the angle L if a) the area of the triangle is 0 unit squares. b) the area of the triangle is 5 unit squares. c) the area of the triangle is 80 unit squares. 3

12 Formula for Area of a Regular Polygon Given a Side Length S N A = π 4 tan N, where S = length of a side, N = number of sides. Example 6: A regular hexagon is inscribed in a circle of radius 1. Find the area of the hexagon. For reference, a pentagon has 5 sides, a hexagon has 6 sides, a heptagon has 7 sides, an octagon has 8 sides, a nonagon has 9 sides and a decagon has 10 sides. 4

13 Area of a segment of a circle You can also find the area of a segment of a circle. The shaded area of the picture is an example of a segment of a circle. O B A To find the area of a segment, find the area of the sector with central angle θ and radius OA. Then find the area of OAB. Then subtract the area of the triangle from the area of the sector. Area of segment = Area of sector AOB - Area of = 1 1 r θ r sin( θ ) AOB Example 7: Find the area of the segment of the circle with radius 8 inches and central angle measuring 4 π. 5

14 Section The Law of Sines and the Law of Cosines Sometimes you will need to solve a triangle that is not a right triangle. This type of triangle is called an oblique triangle. To solve an oblique triangle you will not be able to use right triangle trigonometry. Instead, you will use the Law of Sines and/or the Law of Cosines. You will typically be given three parts of the triangle and you will be asked to find the other three. The approach you will take to the problem will depend on the information that is given. If you are given SSS (the lengths of all three sides) or SAS (the lengths of two sides and the measure of the included angle), you will use the Law of Cosines to solve the triangle. If you are given SAA (the measures of two angles and one side) or SSA (the measures of two sides and the measure of an angle that is not the included angle), you will use the Law of Sines to solve the triangle. Recall from your geometry course that SSA does not necessarily determine a triangle. We will need to take special care when this is the given information. Please read this before class! Here are some facts about solving triangles that may be helpful in this section: If you are given SSS, SAS or SAA, the information determines a unique triangle. If you are given SSA, the information given may determine 0, 1 or triangles. This is called the ambiguous case of the law of sines. If this is the information you are given, you will have some additional work to do. Since you will have three pieces of information to find when solving a triangle, it is possible for you to use both the Law of Sines and the Law of Cosines in the same problem. When drawing a triangle, the measure of the largest angle is opposite the longest side; the measure of the middle-sized angle is opposite the middle-sized side; and the measure of the smallest angle is opposite the shortest side. Suppose a, b and c are suggested to be the lengths of the three sides of a triangle. Suppose that c is the biggest of the three measures. In order for a, b and c to form a triangle, this inequality must be true: a + b > c. So, the sum of the two smaller sides must be greater than the third side. 1

15 An obtuse triangle is a triangle which has one angle that is greater than 90. An acute triangle is a triangle in which all three angles measure less than 90. If you are given the lengths of the three sides of a triangle, where c > a and c > b, you can determine if the triangle is obtuse or acute using the following: If a + b > c, the triangle is an acute triangle. If a + b < c, the triangle is an obtuse triangle. Your first task will be to analyze the given information to determine which formula to use. You should sketch the triangle and label it with the given information to help you see what you need to find. If you have a choice, it is usually best to find the largest angle first.

16 THE LAW OF SINES AND THE LAW OF COSINES Here s the Law of Sines. In any triangle ABC, C b a A c B sin A a = sin B b = sin C c. USED FOR SAA, SSA cases! SAA: One side and two angles are given SSA: Two sides and an angle opposite to one of those sides are given Example 1: Find x. 3

17 4 Here s the Law of Cosines. In any triangle ABC, C ab b a c B ac c a b A bc c b a cos cos cos + = + = + = USED FOR SAS, SSS cases! SAS: Two sides and the included angle are given SSS: Three sides are given b a c A C B

18 Example : In ABC, a = 5, b = 8, and c = 11. Find the measures of the three angles to the nearest tenth of a degree. 5

19 Example 3: In XYZ, X = 6, Z = 78 and y = 18. Solve the triangle. Give exact answers. 6

20 Example 4: In ABC, A = 50, b = 9 and a = 6. Solve the triangle and round all answers to the nearest hundredth. 7

21 Example 5: Two sailboats leave the same dock together traveling on courses that have an angle of 135 between them. If each sailboat has traveled 3 miles, how far apart are the sailboats from each other? 8

22 Example 6: In ABC, B = 60, a = 17 and c = 1. Find the length of AC. 9

23 Note: SSA case is called the ambiguous case of the law of sines. There may be two solutions, one solution, or no solutions. You should throw out the results that don t make sense. That is, if sin A > 1 or the angles add up to more than SSA Case (Two sides and an angle opposite to those sides) 10

24 11

25 Example 7: In PQR, P = 11, p = 5 and q = 7. How many possible triangles are there? Solve the triangle. Round the answers to three decimal places. 1

26 Example 8: In XYZ, Y =, y = 7, x = 5. How many possible triangles are there? Solve the triangle and round all answers to the nearest hundredth. 13

27

### SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

### (15.) To find the distance from point A to point B across. a river, a base line AC is extablished. AC is 495 meters

(15.) To find the distance from point A to point B across a river, a base line AC is extablished. AC is 495 meters long. Angles

### Sample Test Questions

mathematics College Algebra Geometry Trigonometry Sample Test Questions A Guide for Students and Parents act.org/compass Note to Students Welcome to the ACT Compass Sample Mathematics Test! You are about

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

### Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain

AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent

### Semester 2, Unit 4: Activity 21

Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

### Section 2.4 Law of Sines and Cosines

Section.4 Law of Sines and osines Oblique Triangle A triangle that is not a right triangle, either acute or obtuse. The measures of the three sides and the three angles of a triangle can be found if at

### 4 th Grade Summer Mathematics Review #1. Name: 1. How many sides does each polygon have? 2. What is the rule for this function machine?

. How many sides does each polygon have? th Grade Summer Mathematics Review #. What is the rule for this function machine? A. Pentagon B. Nonagon C. Octagon D. Quadrilateral. List all of the factors of

Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

### 8-5 Angles of Elevation and Depression. The length of the base of the ramp is about 27.5 ft.

1.BIKING Lenora wants to build the bike ramp shown. Find the length of the base of the ramp. The length of the base of the ramp is about 27.5 ft. ANSWER: 27.5 ft 2.BASEBALL A fan is seated in the upper

### 8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

### 5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

### Chapter 5 Resource Masters

Chapter Resource Masters New York, New York Columbus, Ohio Woodland Hills, California Peoria, Illinois StudentWorks TM This CD-ROM includes the entire Student Edition along with the Study Guide, Practice,

### Mathematics Placement Examination (MPE)

Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

### Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

### SECTION 1-6 Quadratic Equations and Applications

58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

### SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3?

SAT Math Hard Practice Quiz Numbers and Operations 5. How many integers between 10 and 500 begin and end in 3? 1. A bag contains tomatoes that are either green or red. The ratio of green tomatoes to red

### Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

### 1.1 Practice Worksheet

Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Introduction Assignment

PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

### Possible Stage Two Mathematics Test Topics

Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material

### GRADE 11 MATH: TRIGONOMETRIC FUNCTIONS

GRADE 11 MATH: TRIGONOMETRIC FUNCTIONS UNIT OVERVIEW Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students extend trigonometric functions

### Introduction and Mathematical Concepts

CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

### Trigonometry WORKSHEETS

WORKSHEETS The worksheets available in this unit DO NOT constitute a course since no instructions or worked examples are offered, and there are far too many of them. They are offered here in the belief

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### 12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54

1. Find the seventh term in the following sequence: 2, 6, 18, 54 2. Write a numerical expression for the verbal phrase. sixteen minus twelve divided by six Answer: b) 1458 Answer: d) 16 12 6 3. Evaluate

### Regents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014

Regents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014 i May 2014 777777 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 New York

### 2009 Chicago Area All-Star Math Team Tryouts Solutions

1. 2009 Chicago Area All-Star Math Team Tryouts Solutions If a car sells for q 1000 and the salesman earns q% = q/100, he earns 10q 2. He earns an additional 100 per car, and he sells p cars, so his total

### Chapter 3B - Vectors. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 3B - Vectors A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Vectors Surveyors use accurate measures of magnitudes and directions to

### (1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

### FORM 3 MATHEMATICS SCHEME C TIME: 30 minutes Non Calculator Paper INSTRUCTIONS TO CANDIDATES

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and elearning Educational Assessment Unit Annual Examinations for Secondary Schools 2011 C FORM 3 MATHEMATICS SCHEME

### 4.7 Triangle Inequalities

age 1 of 7 4.7 riangle Inequalities Goal Use triangle measurements to decide which side is longest and which angle is largest. he diagrams below show a relationship between the longest and shortest sides

### 1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

### Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Summer Math Exercises. For students who are entering. Pre-Calculus

Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn

### Exact Values of the Sine and Cosine Functions in Increments of 3 degrees

Exact Values of the Sine and Cosine Functions in Increments of 3 degrees The sine and cosine values for all angle measurements in multiples of 3 degrees can be determined exactly, represented in terms

### a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

### Math BINGO MOST POPULAR. Do you have the lucky card? B I N G O

MOST POPULAR Math BINGO Do you have the lucky card? Your club members will love this MATHCOUNTS reboot of a classic game. With the perfect mix of luck and skill, this is a game that can be enjoyed by students

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### YOU CAN COUNT ON NUMBER LINES

Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### PROBLEM 2.9. sin 75 sin 65. R = 665 lb. sin 75 sin 40

POBLEM 2.9 A telephone cable is clamped at A to the pole AB. Knowing that the tension in the right-hand portion of the cable is T 2 1000 lb, determine b trigonometr (a) the required tension T 1 in the

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations

Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Benchmark (standard or reference point by which something is measured) Common denominator (when two or more fractions have the same denominator)

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### Graphing and Solving Nonlinear Inequalities

APPENDIX LESSON 1 Graphing and Solving Nonlinear Inequalities New Concepts A quadratic inequality in two variables can be written in four different forms y < a + b + c y a + b + c y > a + b + c y a + b

### MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.

MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the

Tennessee Department of Education Task: Representing the National Debt 7 th grade Rachel s economics class has been studying the national debt. The day her class discussed it, the national debt was \$16,743,576,637,802.93.

### for the Common Core State Standards 2012

A Correlation of for the Common Core State s 2012 to the Common Core Georgia Performance s Grade 2 FORMAT FOR CORRELATION TO THE COMMON CORE GEORGIA PERFORMANCE STANDARDS (CCGPS) Subject Area: K-12 Mathematics

### Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

### Graphing Trigonometric Skills

Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

### Warm-Up 1. 1. What is the least common multiple of 6, 8 and 10?

Warm-Up 1 1. What is the least common multiple of 6, 8 and 10? 2. A 16-page booklet is made from a stack of four sheets of paper that is folded in half and then joined along the common fold. The 16 pages

### Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

### Section 2.3 Solving Right Triangle Trigonometry

Section.3 Solving Rigt Triangle Trigonometry Eample In te rigt triangle ABC, A = 40 and c = 1 cm. Find a, b, and B. sin 40 a a c 1 a 1sin 40 7.7cm cos 40 b c b 1 b 1cos40 9.cm A 40 1 b C B a B = 90 - A

### Understanding Advanced Factoring. Factor Theorem For polynomial P(x), (x - a) is a factor of P(x) if and only if P(a) = 0.

61 LESSON Understanding Advanced Factoring Warm Up New Concepts 1. Vocabulary A polynomial of degree one with two terms is a.. True or False: The GCF of -x 4 y 5 - xy + is xy. (11) (). Divide 4x - x +

### Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

### Tenths, Hundredths, and Thousandths

Mastery Drill Tenths, Hundredths, and Thousandths You remember that and can be written as common fractions or as decimal fractions. = 0. 0 = 0.0 two two Mixed numbers in or can also be written both ways.

### Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence

Version 005 Eam Review Practice Problems NOT FOR A GRADE aleander 5575 This print-out should have 47 questions Multiple-choice questions may continue on the net column or page find all choices before answering

### Edmund Gunter and the Sector

Edmund Gunter and the Sector C J Sangwin LTSN Maths, Stats and OR Network, School of Mathematics and Statistics, University of Birmingham, Birmingham, B15 2TT, UK Telephone 0121 414 6197, Fax 0121 414

### Surface Area and Volume Cylinders, Cones, and Spheres

Surface Area and Volume Cylinders, Cones, and Spheres Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable

### TRIGONOMETRY FOR ANIMATION

TRIGONOMETRY FOR ANIMATION What is Trigonometry? Trigonometry is basically the study of triangles and the relationship of their sides and angles. For example, if you take any triangle and make one of the

### 12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

### PowerScore Test Preparation (800) 545-1750

Question 1 Test 1, Second QR Section (version 1) List A: 0, 5,, 15, 20... QA: Standard deviation of list A QB: Standard deviation of list B Statistics: Standard Deviation Answer: The two quantities are

### Trigonometry Review Workshop 1

Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

### CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION

CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION A traverse is a series of straight lines called traverse legs. The surveyor uses them to connect a series of selected points called traverse

### C relative to O being abc,, respectively, then b a c.

2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

### Solutions Manual for How to Read and Do Proofs

Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve

### FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

### G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:

Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These

### Question Bank Trigonometry

Question Bank Trigonometry 3 3 3 3 cos A sin A cos A sin A 1. Prove that cos A sina cos A sina 3 3 3 3 cos A sin A cos A sin A L.H.S. cos A sina cos A sina (cosa sina) (cos A sin A cosa sina) (cosa sina)

### how to use dual base log log slide rules

how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102

### CHAPTER 1. LINES AND PLANES IN SPACE

CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2

DOE-HDBK-1014/2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release; distribution

### 7-2 Solving Exponential Equations and Inequalities. Solve each equation. 1. 3 5x = 27 2x 4 SOLUTION:

7-2 Solving Exponential Equations and Inequalities Solve each equation. 1. 3 5x = 27 2x 4 3. 2 6x = 32 x 2 12 2. 16 2y 3 = 4 y + 1 10 4. 49 x + 5 = 7 8x 6 3. 2 6x = 32 x 2 5. SCIENCE Mitosis is a process

### Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8

Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156-159 Module 4: Lesson 7: 220-223 2. Reason both contextually