In an isosceles triangle, the sides and the

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "In an isosceles triangle, the sides and the"

Transcription

1 51 LSSON Properties of Isosceles and quilateral Triangles Warm Up New oncepts Math Reasoning nalyze oes Theorem 51-1 also apply to equilateral triangles? How do you know? 1. Vocabulary triangle with two congruent sides is a(n).. In RST, R S and m T = 80. etermine m R. (13) (18) 3. Multiple hoice Which statement is always true? (13) If a triangle is isosceles, then it is equilateral. If a triangle is equilateral, then it is isosceles. oth and. Neither nor. In an isosceles triangle, the sides and the angles of the triangle are classified by their position in relation to the triangle s congruent sides. leg of an isosceles triangle is one of the two congruent sides of the triangle. In the diagram, and are the legs. The verte angle of an isosceles triangle is the angle formed by the legs of the triangle. The verte angle is. The base of an isosceles triangle is the side opposite the verte angle. The base of is. base angle of an isosceles triangle is one of the two angles that have the base of the triangle as a side. In, and are base angles. Theorem 51-1: Isosceles Triangle Theorem If a triangle is isosceles, then its base angles are congruent. LMN is isosceles. Therefore, M N. L M N orollary If a triangle is equilateral, then it is equiangular. Online onnection ample 1 Proving the Isosceles Triangle Theorem Prove the Isosceles Triangle Theorem. Given: is an isosceles triangle with. is the midpoint of. Prove: 336 Saon Geometry

2 Statements Reasons 1. is isosceles 1. Given.. efinition of isosceles triangle 3. = 3. efinition of midpoint. 5.. efinition of congruent segments 5. Refleive Property SSS Triangle ongruence Postulate PT The onverse of the Isosceles Triangle Theorem is also true, as is the onverse of orollary Theorem 51-: onverse of the Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are also congruent. orollary If a triangle is equiangular, then it is equilateral. Hint If you are not sure which side of the triangle is the base and which sides are the legs, sketch a triangle and label the angles and sides with as much information as possible. ample Using the Isosceles Triangle Theorem and Its onverse a. Triangle F is isosceles, and its verte angle is at. If m = 36, determine m and m F. The base angles of F are and, so by the Isosceles Triangle Theorem, F. y the definition of congruent angles, m F = m, so they each measure 36. Therefore, m + m + m F = 180 Triangle ngle Sum Theorem 36 + m + 36 = 180 Substitute m = 108 Solve b. The perimeter of GHJ is 1 inches, and G H. If GH = 5 inches, find GJ. y the onverse of the Isosceles Triangle Theorem, GJ HJ. Since the perimeter is 8 inches and GH = 5 inches, P = GH + HJ + GJ Formula for perimeter 1 = 5 + HJ + GJ Substitute. 1 = 5 + GJ + GJ efinition of congruent segments 1 = 5 + GJ Simplify. GJ = 3.5 in. Solve. Lesson

3 ample 3 Using Relationships in quilateral Triangles triangle is equiangular and has a perimeter of.5 centimeters. etermine the length of each side. y orollary 51--1, the triangle is equilateral. Let the length of each side be s. The perimeter is the sum of the three sides. P = s + s + s Formula for perimeter.5 = 3s Substitute and simplify. s = 7.5 cm Solve. Math Reasoning onnect How are Theorems 51-3 and 51- related to each other as conditional statements? Theorem 51-3 If a line bisects the verte angle of an isosceles triangle, then it is the perpendicular bisector of the base. Theorem 51- If a line is the perpendicular bisector of the base of an isosceles triangle, then it bisects the verte angle. The diagram illustrates both of these theorems. The altitude TU bisects the verte angle and is a perpendicular bisector of the base of the triangle. T ample Proving Theorems 51-3 and 51- a. Prove Theorem Given: is isosceles, bisects Prove: is the perpendicular bisector of Statements Reasons 1. is isosceles, 1. Given bisects.. efinition of angle bisector efinition of isosceles triangle.. Refleive Property SS Triangle ongruence Postulate PT 7. = 7. efinition of congruent segments PT 9. and form adjacent 9. efinition of adjacent angles angles If lines form congruent adjacent angles, they are perpendicular 11. is bisector of 11. efinition of perpendicular bisector U 338 Saon Geometry

4 b. Write a paragraph proof of Theorem 51-. Given: is isosceles, is the perpendicular bisector of Prove: bisects Since is isosceles,. y the Refleive Property,. oth and are right triangles, since is the perpendicular bisector of and forms two right angles at. Therefore, by the Hypotenuse-Leg Right Triangle ongruence Theorem. y PT,. Therefore, by the definition of an angle bisector, bisects. Math Reasoning Model Picture the telephone pole with cables securing it to the ground from each side. re the cables all coplanar? re any two of them coplanar? ample 5 pplication: Infrastructure This figure shows the north and east view of a telephone pole that is secured by four cables of equal length. a. plain why the base angles, PQ and PRQ, are congruent. In PR, the cable lengths P and RP are equal, so P RP by the definition of congruent segments. Therefore, PR is isosceles by definition. pplying the Isosceles Triangle Theorem, the base angles of PR are congruent, so PQ PRQ. P Q North View P Q ast View R b. Prove that these angles are also congruent to the base angles and. y the Refleive Property of ongruence, PQ PQ. It is given in the problem that P P, so by the Hypotenuse-Leg Right Triangle ongruence Theorem, PQ PQ. y PT,. Since P is isosceles, by the Isosceles Triangle Theorem. It is given that R, so by the Transitive Property of ongruence, R. Lesson Practice ( ) ( ) ( ) ( 3) a. For the isosceles triangle shown, determine the missing angle measures. b. The perimeter of XYZ is 15. centimeters, and X Z. If XY = 6.3 centimeters, determine XZ. 7 c. If the verte angle of an isosceles triangle measures 0, what are the measures of each of its base angles? d. triangle is equiangular and its perimeter is 7 feet. etermine the length of each side. Lesson

5 ( 5) e. ngineering This diagram shows the side-view profile of a bridge. etermine the angle that each half of the bridge makes with the horizontal. 150 ft ft Practice istributed and Integrated 1. In FGHJ, m H < m FJG, GH = - 1, and FG = + 8. Find the range of values for. (Inv ) F G. From the statement, If Fabian s socks are clean, then they are in the dresser, what can you conclude about what will happen when Fabian s socks are clean? (1) J H 3. a. etermine this figure s perimeter. b. etermine its area. (0) 8 in. 15 in. 16 in. *. Write plain how you would find the geometric mean (50) of and 7. 1 in. 17 in. y (Inv 3) 5. What is the measure of each eterior angle in a regular heagon? 6. Using the diagram, find the length of to the nearest hundredth (35) of a centimeter. * 7. In PQR, PR QR and m R = 118. (51) a. Identify the verte angle. b. etermine m P. y (9) 8. lgebra polyhedron has 10 more edges than vertices. How many faces does the polyhedron have? 6 cm 9. Find the unknown length of the side in the triangle shown. (9) * 10. Write plain why each angle of an equilateral triangle measures 60. (51) 13 m 1 m 11. rt In order to design part of her tile pattern correctly, Teresa (3) needs to make the consecutive angles shown supplementary. How can she ensure the angles will be supplementary? y 1. lgebra Two lines are perpendicular. One line has an equation y = 1 m - and the (37) other line has an equation of y = n Find one value for m and n. * 13. onstruction builder needs to position a support brace as shown. (50) What is the length of the support brace, to the nearest tenth? 3 30 Saon Geometry

6 1. Justify plain why, then find. (6) 15. onve pentagon PQRST has vertices P(0, 0), Q(-, ), R(-1, ), S(, y), (5) and T(, ). QR = ST and RS =. Find (, y) Surveying Kristi, a map surveyor, is using an east-west baseline to (18) locate various landmarks. She measures the clockwise angle from the baseline to the line passing through her surveying instrument and the landmark. Kristi takes two sightings from a clock tower, as this diagram shows. a. What measure is the angle between the two sightings? b. What theorem did you use in part a? lock Tower 1 80 aseline 17. In the diagram shown at right, what information is needed (30) to conclude that TUV F? U F 18. Generalize Triangle GHI has vertices G(0, 0) and H(a, b). Find (5) coordinates for a point I so that GHI is a right triangle. T V Use the LL ongruence Theorem to show that OPQ RST. (36) T P S O Q R 0. What is the equation of a line perpendicular to y = - + 1, passing through (37) the origin? 1. ell Phone Towers Three cell phone towers are the vertices of (39) a triangle at right. The measure of M is 10 less than the measure of K. The measure of L is one degree greater than the measure of M. Which two towers are closest together? *. nalyze Give a two-column proof of the onverse of the (51) Isosceles Triangle Theorem. Given: Prove: is isosceles. Hint: rop an altitude from point to the base of. * 3. Find the value of and y on the triangle shown. (50) Tower L *. Multi-Step etermine whether each set of numbers can be the side lengths of a triangle. If they can be a triangle, determine whether it is an acute, obtuse, or right triangle. a. 99, 3 13, 1 b. 7, 8, 3 c. 8, 7, 1 (33, 39) Tower M Tower K y Lesson 51 31

7 5. etermine the perimeter and area of this figure. Give eact answers. (0) 5 in. 10 in If KLM F, what side of F corresponds to side KM? (5) 7. Using the diagram, find PY in terms of if PV = 3 and YU =. Point P is the (38) incenter of the triangle. T Y P U X V Z 8. Multiple hoice The intercepted arc of an inscribed angle is a semicircle (7) if and only if the measure of the angle is * 9. Find the value of in this figure. (51) 6 - _ Prove Theorem 39-: If one angle of a triangle is larger than another Q (8) angle, then the side opposite the first angle is longer than the side opposite the second angle. Given: m P > m R Prove: QR > QP Hint: There are two cases you must consider. One where QR < QP and one where QR = QP. P R 3 Saon Geometry

8 5 LSSON Properties of Rectangles, Rhombuses, and Squares Warm Up 1. Find the area of the regular quadrilateral. lassify this quadrilateral. (15). Vocabulary quadrilateral with two pairs of parallel sides is a. 3. Find the perimeter of this composite figure. Then, name each quadrilateral in the figure. (19) (0) 1.5 cm 8.7 m New oncepts The diagonals of parallelograms have special properties. Recall that a rhombus is a parallelogram with four congruent sides, a rectangle is a parallelogram with four right angles, and a square shares the properties of both a rectangle and a rhombus. One property of the diagonals of a parallelogram has already been introduced: they bisect each other. Three more are introduced in this lesson. Properties of a Rectangle: ongruent iagonals Math Reasoning nalyze re the diagonals of a square congruent? How do you know? The diagonals of a rectangle are congruent. P Q PR QS If a quadrilateral is a parallelogram, it is a rectangle if and only if the above property is true. S R ample 1 Using iagonals of a Rectangle Online onnection rectangular barn door has diagonal braces. If is 6 feet, what is the length of? = = 6 = 1 = 1 iagonals of a rectangle are congruent iagonals of a parallelogram bisect each other Substitute. Segment ddition Postulate efinition of segment congruence Lesson 5 33

9 ploration Using ontruction Techniques to raw a Rhombus In this eploration, you will use simple construction techniques to construct a quadrilateral, then classify it. You may wish to review onstruction Lab 1 before this eploration. 1. raw JK. Set your compass to JK. Place the compass point at J and draw an arc above JK L. hoose and label a point L on the arc. What is the relationship between JK and JL?. Place the compass point at L and draw an arc to the right of L. L J K 3. Place the compass point at K and draw an arc that intersects the arc you drew in step. Label the point of intersection M. How are JK, KM, ML, and LJ related?. How do you know that the quadrilateral you have L drawn is a rhombus? 5. raw the diagonals JM and LK and label their point of intersection P. Measure LPM. What can you determine about the diagonals? J K 6. y measuring angles, determine the relationship between the diagonals and the angles of the rhombus. J K M Math Language Model Sketch a trapezoid and a kite. oes it seem like either figure has perpendicular diagonals? Properties of a Rhombus: Perpendicular iagonals The diagonals of a rhombus are perpendicular. H K HJ IK I J If a quadrilateral is a parallelogram, it is a rhombus if and only if the above property is true. Since a square is both a rhombus and a rectangle, its diagonals are both perpendicular and congruent. Properties of a Rhombus: iagonals as ngle isectors ach diagonal of a rhombus bisects opposite angles. ecause opposite angles of a rhombus are equal, when they are bisected by a diagonal, four congruent angles result , and If a quadrilateral is a parallelogram, it is a rhombus if and only if the above property is true. 3 Saon Geometry

10 ample Using Properties of iagonals of a Rhombus F is a rhombus. Find the measure of each angle. a. m Since m is 90, then we know that m + m = 90 (3 + 1) + ( + 10) = 90 Substitute. + = 90 Simplify. = 17 Solve. Now substitute the value of to find the measure of. m = m = 3(17) + 1 Substitute for. m = 63 Simplify. b. m Since the diagonals of a rhombus bisect the angles, m = m. m = + 10 m = m = 7 F (3 + 1) ( + 10) Hint It may be possible to classify a parallelogram using more than one of the properties in this lesson. ample 3 Using Properties of Parallelograms UVWX is a parallelogram. ecide what type of parallelogram it is by using the properties of rectangles and rhombuses. a. etermine whether the diagonals are congruent and classify the parallelogram. UW = ( -1-6) + ( - 1) = 58 VX = (1 - ) + (-1-6) = 58 Since UW = VX, then the diagonals are congruent. y the ongruent iagonals Property of a Rectangle, the shape must be a rectangle. U 6 O y V X 6 W b. etermine whether the diagonals are perpendicular and classify the parallelogram. slope of UW = _ = - 3_ slope of VX = _ = _ 7 3 Since - 3_ 7 _ 7 = -1, UW is perpendicular to VX. 3 This implies that the parallelogram is a rhombus. Since the shape is both a rectangle and a rhombus, it is also a square. Lesson 5 35

11 ample pplication: rchitecture rectangular building is designed with steel support braces placed diagonally in the interior. etermine the length of the steel brace that will be used for diagonal. a + b = c = c c = 130 ft F = 130 ft F = 130 ft Pythagorean Theorem Substitute Solve Substitute iagonals of a rectangle are congruent Substitute 50 ft 10 ft F Lesson Practice a. In rectangle MNOP, MO = 5. inches. What is the length of NP? ( 1) WXYZ is a rhombus. Using the diagram, answer the questions that follow. b. Find m OXY. X W ( ) (6-1) c. Find m OYZ. ( ) O Z ( + ) Y d. Quadrilateral RSTU has a center point, V. If RT SU, and RT SU, ( 3) classify the quadrilateral. e. rchitecture building is made with a rhombus-shaped courtyard. If the longer diagonal walkway is 50 feet and the shorter one is 0 feet, what is the perimeter of the courtyard to the nearest foot? ( ) Practice istributed and Integrated 1. raw a net for this polyhedron. (Inv 5). Multi-Step Find the orthocenter of JKL with vertices J(3, 6), K(3, -9), and L(-5, -5). (3) 3. Write ompare a regular octagonal prism and a cylinder. onsider what happens as the number of sides of the base of a prism increases. (9). arpentry cabinetmaker needs to position a support brace as shown. What is the length of the support brace? 7 (50) * 5. rt Joni wants to use a square piece of paper for an art project. (5) plain how she could easily determine if a piece of paper is square. 36 Saon Geometry

12 6. The circumference of a circle is 113 feet. If a sector has an area of 1 ft, what is the measure of the arc to the nearest degree? (35) 7. rror nalysis Henrietta is trying to find the slope of the line that passes through the point (8, 0) and is perpendicular to the line y = + 1. Her answer is y = 1 +. Is she correct? Why or why not? (37) 8. re these two triangles similar? Give a reason to support your answer. (6) P 8 Q 16 U R 0 T 10 S 9. Generalize plain how a parallelogram could be similar to a rectangle. (1) y * 10. lgebra rhombus has two angles that each measure (5) (9 + 1) and two angles that each measure (0 + 5). Find the measure of each of the four angles in the rhombus. * 11. Find the geometric mean of 11 and 5. (50) * 1. hemistry This diagram shows the atoms and bonds in a water molecule. The (51) bond angle at the oygen (O) atom is always The distances from the oygen atom to each hydrogen (H) atom are equal. What are the measures of the other two angles, to the nearest tenth? H O?? H 13. Multiple hoice Which statement has a false converse? (10) If two angles are supplementary, then they sum to 180. If a triangle has two congruent angles, then it is isosceles. If a number is an even prime, then the number is. If two angles are complementary, then they are both acute. 1. nalyze For a triangle with vertices L(0, 0), M(6, 0), and N(3, y) to be equilateral, (5) what must be the value of y? * 15. Multi-Step The vertices of a square KLMN are K(0, 1), L(, -), M(1, -6) and (5) N(-3, -3). Show that the diagonals are congruent perpendicular bisectors of each other. 16. If a circle has a circumference of 6, and an arc in that circle has a length of, (35) what is the angle measure of the associated sector? y (7) y 17. lgebra In the circle shown, find the measure of I. H 18. In isosceles triangle PQR, PQ = 8, QR = 8, and m Q = 86. (51) a. Identify the verte angle. b. etermine m R. 19. What is the relationship between angles intercepted by the same (7) arc? I 5m 8m 10m F G * 0. Write a paragraph proof showing that if one side of a triangle (31) is longer than another side, then the angle opposite the first side is larger than the angle opposite the second side. Given: RS > RQ Prove: m RQS > m S Q R P S Lesson 5 37

13 1. In isosceles triangle, and each base angle measures 0. (51) etermine m. y. lgebra Write an inequality to show the largest value for that (33) makes the triangle obtuse if the longest side is 9 units In a right triangle, one leg is 36 feet long, and the hypotenuse is (9) 39 feet long. What is the length of the third side? 9 *. Fence onstruction homeowner wants to build a fence gate with reinforcing (5) diagonal braces. How can he make sure the gate is rectangular without measuring the angles? * 5. Predict This figure is formed from three congruent rectangles. (0) a. etermine the perimeter of the figure. b. onsider the figure formed by etending the pattern to four congruent rectangles. etermine the perimeter of the new figure. c. etermine a formula for the perimeter of a figure in the same pattern formed from n congruent rectangles. 3 cm cm 1 cm 1 cm 6. To measure the distance F across the lake, a surveyor at S locates (6) points, F, G, and H as shown. What is the length of F? 7. Write escribe how to circumscribe a circle around an obtuse triangle. (38) 8. is a parallelogram. If is 3 times longer than and the (3) perimeter of is 1, how long is each side? 9. Suppose you are to prove. State the assumption you would (8) make to start an indirect proof. * 30. Hiking Yvette was planning on going around a thick, circular clump of trees, (3) but she found a shortcut through it. If the diameter of the circular area is 100 meters, how much shorter is her direct path, to the nearest meter, than traveling around the trees? F 30 feet G feet 0 feet S 6 feet H 3.5 feet 38 Saon Geometry

14 53 LSSON Right Triangles Warm Up 1. Vocabulary The name given to a triangle with one 90º angle is. (13). Find the area of a right triangle with legs that are 11 inches and 17 inches long. (18) 3. right triangle has legs that are 8 units and units long. What is the ratio of the triangle s hypotenuse to its shortest leg? (9) New oncepts Some right triangles are used so frequently that it is helpful to remember some of their particular properties. These triangles are called special right triangles. The two most common special right triangles are the triangle and the triangle. Since the triangle has two angles with equal measures, it is also an isosceles right triangle. Properties of a Triangle: Side Lengths In a right triangle, both legs are congruent and the length of the hypotenuse is the length of a leg multiplied by. Hint The name of each special right triangle gives the measure of its angles triangles are often used because they are one half of a square. aution When the denominator of a fraction has a square root in it, it must be rationalized. In this eample, multiplying both the top and bottom of the fraction by eliminates the root in the denominator. 5 5 ample 1 Finding the Side Lengths in a Triangle a. Use the properties of a right triangle to find the length of the hypotenuse of the triangle. The length of the hypotenuse is equal to the length of a leg times. Since the leg is inches long, the hypotenuse has a length of inches. b. Use the properties of a right triangle to find the length of a leg of the triangle. The length of the hypotenuse is equal to the length of the leg times. To find the length of a leg when given the hypotenuse, divide by instead. The length of a leg of the triangle is 3 = 3 feet. 5 3 ft 5 in. Lesson 53 39

15 ample Finding the Perimeter of a Triangle with Unknown Measures Find the perimeter of the triangle. 1 yd 5 The length of the hypotenuse is equal to the length of the leg times. Therefore, the hypotenuse is 1 yards long. The perimeter can be found by adding the lengths of the three sides together. P = P = + 1 P 0.97 Therefore, the perimeter is approimately 1 yards. Though it is often faster to use the properties of triangles to find unknown lengths, the Pythagorean Theorem can still be used to determine lengths in special right triangles. ample 3 pplying the Pythagorean Theorem with Right Triangles Find the length of the missing sides to the nearest foot, using the Pythagorean Theorem ft Math Reasoning Verify Use the properties of triangles to find. Is the result the same? Since the legs are congruent, let represent the length of the legs of the triangle. Therefore, a + b = c + = 15 = 1565 = _ 1565 = Therefore, the missing side length is approimately 88 feet. Online onnection Saon Geometry

16 ample pplication: Park onstruction square park is to be fenced around the perimeter with a snow fence for an upcoming outdoor concert. There is a diagonal path that is 30 feet long through the park. How much snow fence is required? Use the -Step Problem-Solving Process. Hint good way to check your work is to consider the possible bounds (minimum and maimum) the answer could have. oes your answer fall between the bounds of the minimum and maimum? In this case, any answer over 170 feet or under 0 feet would clearly be incorrect. Understand The fence is to be placed around the perimeter, so the perimeter must be found. The diagonal of the square is given. diagram would be a helpful visual aid to understand this problem. Plan First, draw a diagram. Identify the lengths that need to be found and use the properties of triangles to solve for them. dd the length of each side together to find the perimeter. Solve This involves finding the length of the legs of the triangle created by two adjacent sides of the park and the diagonal path. Path 30 = _ 30 = 30 = Therefore, the length of the side of the square park is 15 feet. To find the perimeter of the park, the formula for the perimeter of a square will be used. P = l P = (15 ) P = 860 P 116. Therefore, the perimeter of the park, and thus the amount of fencing needed, is approimately 116 feet. heck Here, since the diagonal is longer than a side, each side must be less than 30 feet. So the perimeter must be less than 30, or 170 feet. The answer of 116 feet seems to make sense because it is less than 170 feet. 5 Lesson Practice ( 1) ( 1) a. Find the length of this triangle s hypotenuse. b. Find the length of this triangle s missing side. 63 m 5 31 yd 5 Lesson

17 ( ) ( 3) ( ) c. Find the perimeter of the triangle, to the nearest tenth of an inch. d. Find the length of the missing sides to the nearest mile. e. square building has a diagonal length of 150 feet. What would be the square footage of one floor of the building? 5 18 in. 5 8 mi Practice istributed and Integrated 1. onstruction The measurements in the diagram are from the attic space in a new home. If the angle measure of 7 is an inaccurate label on the diagram, what is the range of degrees that the mislabeled angle could be? It is given that the side opposite the mislabeled angle is the longest side of the triangle, and the side opposite the 8 is the shortest side. (39) 5.5 ft 7 7 ft 8. figure has 1 congruent edges and 8 vertices. lassify the figure. (9) b * 3. Find the eact value of the length of leg a in the triangle. (53). enter of Gravity re the orthocenter and the centroid both centers of gravity? If not, which one is? (3) a 5 5 cm * 5. Is the following statement always, sometimes, or never true? (5) parallelogram is a rectangle. T 6. Find the value of and y in the figure at right to the nearest tenth. (50) 7. composite figure is formed by a rectangle with a square removed at one corner. The rectangle measures 6 1 inches by 5 inches. The removed square has side lengths of 3 1 inches. a. etermine the perimeter of the figure. b. etermine the area of the figure. (0) 7 5 y * 8. Write Is every right isosceles triangle a triangle? plain. (53) 9. Identify each line or segment that intersects the circle shown. (3) L y * 10. lgebra The value of the side length in a triangle is inches. (53) What would be the algebraic epression for the length of the triangle s hypotenuse? 11. Write a similarity statement to eplain why the two (6) triangles shown are similar. 100 N M K Saon Geometry

18 1. nalyze What information must be known about two similar triangles in order to () find the ratio of their perimeters? * 13. nalyze Write a flowchart proof showing that if a triangle is equilateral, then (51) it is equiangular. 1. What is the total area of the shaded sectors if the diameter of the circle is (35) 8 meters? Write your answer in terms of π. 15. Find the distance from (-5, ) to the line = 13. () y 16. lgebra If in, = (1 + 11), m = 1, m = 1, and (30) = 7 units, and in F, = (5 + 18), m F = 1, m F = 1, and F = 7 units, what is the value of? 17. Justify Give a possible value for the length of XY. plain your answer. 18. What is the value of b in the proportion _ 5 = _ 7 b? (1) (Inv ) X Y H Z G I 19. rt n artist is making a round ceramic plate with a pattern of lines on it. (7) If m KLM = 0, and m MP = 30, find m KNP. 0. Suppose a chord of a circle is 10 inches long, and the radius of the circle is (3) also 10 inches. What is the measure from the chord to the center of the circle? N L * 1. Multiple hoice What would be the perimeter of a triangle with a (53) hypotenuse of 73 feet, to the nearest foot? 5 feet 176 feet 10 feet 198 feet K M P. esign gift bo has the net shown in this figure. Use the net to provide a countereample to the following statement. (1, Inv 5) If the net of a three-dimensional figure has all lateral faces congruent, then the figure is closed. * 3. WXYZ is the rectangle shown. Find XY. (5). Multi-Step Find the centroid of F with vertices (-3, ), (3) (9, 8), and F(3, -). W 10. in. 1.6 in. O X 5. It is given that F. If is 3 units, is 1 units, (1) and is 11 units, what is the length of F? Z Y 6. If two sides of one triangle are proportional to two sides of another triangle, (6) and if their corresponding included angles are congruent to each other, then the triangles are similar by. Lesson

19 * 7. Find the eact value of the length of the hypotenuse in the triangle. (53) 16 yd 5 8. Use the Hypotenuse-ngle ongruence Theorem to prove that F. (36) F * 9. Write plain why the following statement is true. (5) If a quadrilateral is a square, then it is a rhombus. * 30. Surveying Renée takes the bearings of landmarks at,, and from the same (51) position,. Landmark earing from : hurch Steeple 3 : lock Tower : Water Tower Suppose Renée chose point to be equidistant from the church steeple and the water tower. What must be true about the clock tower s distance from each of the other two landmarks? Why? 35 Saon Geometry

20 5 LSSON Representing Solids Warm Up 1. Vocabulary prism with si square faces is called a.. Name each of the pictured solids. If the solid is a prism or pyramid, classify it. 3. ccording to uler s Formula, if a polyhedron has 7 faces and 10 vertices, how many edges does it have? (9) (9) (9) New oncepts In a perspective drawing, nonvertical parallel lines appear to meet at a point called a vanishing point. If you look straight down a highway, it appears that the edges of the highway eventually come together at a vanishing point, Math Language The vanishing point is the point in a perspective drawing on the horizon where parallel lines appear to meet. like point in the diagram. In a perspective drawing, the horizon is the horizontal line that contains the vanishing point(s). drawing with just one vanishing point is called one-point perspective. ample 1 rawing in One-Point Perspective raw a rectangular prism in one-point perspective. Use a pencil with an eraser. Step 1 raw a square and a horizontal line above it representing the horizon. Mark a vanishing point on the horizon. Step raw a dashed line from the vanishing point to each of the four corners of the square. Step 3 Using the dashed lines drawn in Step, draw the sides of a smaller square. Online onnection Step onnect the two squares and erase the reference lines and the horizon that are located behind the prism. This prism is drawn from a one-point perspective. Lesson 5 355

21 drawing with two vanishing points is said to have two-point perspective. Look at the following eample to see how a drawing can be made from a two-point perspective. ample rawing in Two-Point Perspective raw a rectangular prism in two-point perspective in which the vanishing points are above the prism. Math Reasoning Model ould you also make a two-point perspective drawing by placing the vanishing points below the original line segment? Step 1 raw a horizontal line that represents the horizon. Place two vanishing points on the horizon. raw a vertical line segment below the horizontal line and between the two vanishing points, representing the front edge of the prism. Step raw dashed lines from each vanishing point to the top and bottom of the vertical line as shown. Step 3 raw vertical segments between the dashed lines from Step as shown and draw segments to connect them to the first segment. Step raw dashed perspective lines from the segments drawn in Step 3 to each of the vanishing points as shown. Step 5 raw a dashed vertical line between the two intersections of the perspective lines just drawn. Sketch the segments that make the top of the prism. Step 6 rase the horizon line and the dashed perspective lines. Keep the dashed lines inside the prism that represent the edges that are hidden. This prism is drawn from a two-point perspective. n isometric drawing is a way of drawing a three-dimensional figure using isometric dot paper, which has equally spaced dots in a repeating triangular pattern. The drawings can be made by using three aes that intersect to form 10 angles, as shown in the diagram Saon Geometry

22 ample 3 reating Isometric rawings reate an isometric drawing of a rectangular prism. raw the three aes on the isometric dot paper as shown above. Use this verte as the bottom corner of the prism. raw the bo so that the edges of the prism run parallel to the three aes. Shading the top, front, and side of the prism will add the perception of depth. In a two-point perspective drawing, it appears that one edge of the solid is the front of the diagram. In a one-point perspective drawing, it appears that a face of the solid is the front. ample pplication: rafting Hint n architecture firm is planning to construct a rectangular building on a corner lot. The client would like a drawing that shows the building as though someone is looking at it from one edge. Should the drawing be from a one-point or two-point perspective? Make a sketch of what the drawing should look like. Since the front of the drawing will be an edge of the building, a two-point perspective drawing is appropriate. The diagram shows a completed view of the building. Lesson Practice ( 1) ( ) ( 3) ( ) a. raw a rectangular prism in one-point perspective in which the vanishing point is to the left of the square. b. raw a cube in two-point perspective with the vanishing points and horizon below the vertical line. c. Make an isometric drawing of a triangular prism. d. rafting Morgan wants to make a wooden bookshelf with two shelves. The bookshelf will be 1 meter wide, 1 meter deep, and 1.5 meters tall. To decide how much wood to buy, Morgan will draw his plans for the bookshelf. Should the drawing be from a one-point or two-point perspective? Sketch what Morgan s drawing should look like. Lesson 5 357

23 Practice istributed and Integrated * 1. raw a triangular prism in one-point perspective so that the vanishing point is (5) below the prism.. Write plain why the following statement is true. If a quadrilateral is a square, then it is a rectangle. (5) y (3) y 3. lgebra Find the length of ZP in the diagram.. What is the shortest distance from (5, 3) to the line y = - + 8? () Z P Y 11 X 13-3 * 5. rchitecture n architect is creating different perspective drawings for a new (5) building. The building is a rectangular prism and the client would like a drawing that focuses on the front façade of the building. Should the architect create the drawing using a one-point or two-point perspective? Sketch a sample drawing of the building. 6. figure has a heagonal base and triangular lateral faces. lassify the figure. (9) 7. Multi-Step Graph the line and find the slope of the line that passes through the points L(, 1) and M(3, -1). Then find a perpendicular line that passes through point N(-, -). (37) 8. Find the value of and y in the triangle shown to the nearest tenth. (50) 13 y 9. What is the sum of the eterior angles of a conve 13-sided polygon? (Inv 3) Is the following statement always, sometimes, or never true? (5) parallelogram is a rectangle. * 11. Trace the figure at right on your paper. Then locate the (5) vanishing point and the horizon line. y 1. lgebra In, m = 90, = (3-7), and (30) m = 60, and in F, m F = 90, = (5-17), and m F = 60. What value of will make F? 13. The point where three or more lines intersect is the. (3) * 1. Use the Hypotenuse-ngle ongruence Theorem to prove (36) that RST UVW. * 15. Find the eact length of the hypotenuse of a right (53) triangle with a leg that is 57 feet long. S R T V U W 358 Saon Geometry

24 16. Formulate Four congruent circles are cut out of a square as shown. Write an (0) epression for the area of the shaded region in terms of the radius of each circle, r. r 17. viation Four jet aircraft are flying in a triangular formation. Jets,, and (51) form a line perpendicular to the flight heading, while jet is midway between the other two. Jet flies directly in front of jet. If m = 37, what does the verte angle of the triangular formation measure? Which theorem did you use? * 18. Use an indirect proof to prove that if two altitudes, X and Y of are (8) congruent, then the triangle must be isosceles. Given: X Y, X and Y are altitudes. Prove: isosceles. * 19. Find the area, to the nearest hundredth, of a right triangle with a (53) hypotenuse of 17 centimeters. y 0. lgebra If a chord perpendicular to a radius cuts the radius in two pieces that are (3) 7 and inches long, respectively, what are the two possible lengths of the chord to the nearest tenth? * 1. Justify How does a two-point perspective differ when the vanishing points are (5) located close together compared with when they are located further apart? Justify your reasoning with drawings.. Find the geometric mean of and 5. (50) 3. Multiple hoice If the diagonals of parallelogram JKLM intersect at P, which of (3) the following is true? JP = LP JP = KP JL = KM JM = KM *. onstruction The support of a shelf forms a right triangle, (53) with the shelf and the wall as the legs. actly how long is this support? shelf ( in.) * 5. nalyze NPQ and STV are similar isosceles triangles. How many () of their si sides do you need numerical values for in order find all the other side lengths and the perimeters of both triangles? plain. wall 5 support Lesson 5 359

25 6. Using the diagram on the right, find the length of MP if OP = 5, (38) NO = 8, and MN = 18. M 7. ycling Katya and Sareema start from the same location and bicycle in opposite directions for miles each. Katya turns to her right 90 and continues for another mile. Sareema turns 5 to her left and continues for another mile. t this point, who is closer to the starting point? (Inv ) 8. rror nalysis arius drew this net of a number cube. plain his error. (Inv 5) N O 1 3 P nalyze Square RSTU has vertices at R(0, ) and S(0, 0). What are the possible (5) coordinates of T and U? 30. esign white triangle with vertices at (0, 0), (, 0), and (0, ) is used to create (11) a logo. blue triangle is added to the design so that its vertices are the midpoints of the sides of the white triangle. The blue triangle divides the white triangle into three smaller white triangles. Smaller blue triangles are placed in each small white triangle so that their vertices are the midpoints of the sides of the small white triangles. 3 y 1 O 1 3 a. Find the coordinates of the vertices of the large blue triangle. b. Find the coordinates of the vertices of each small blue triangle. c. Which of the triangles are congruent, if any? Justify your answer. 360 Saon Geometry

26 55 LSSON Triangle Midsegment Theorem Warm Up 1. Vocabulary Two triangles with congruent corresponding angles and corresponding sides that are proportional in length are. (1) etermine if the triangles in each pair are similar. If they are, state the theorem or postulate that proves it. (6). 3.. New oncepts midsegment of a triangle is a segment that joins the midpoints of two sides of the triangle. very triangle has three midsegments. Math Language The midpoint of a segment is the point that divides a segment into two congruent segments. M The midsegment is always half the length of the side that does not have a midsegment endpoint on it. N P Theorem 55-1: Triangle Midsegment Theorem The segment joining the midpoints of two sides of a triangle is parallel to, and half the length of, the third side. RQ PM and RQ = _ 1 PM M Q N R P Online onnection ample 1 Using the Triangle Midsegment Theorem In the diagram, is a midsegment of. Find the values of and y. y 5 7 From the Triangle Midsegment Theorem, = _ 1, so =. = (7) Therefore, = 1. From the definition of a midsegment, =. So, y = 5. Lesson

27 ample Proving the Triangle Midsegment Theorem Given: is the midpoint of and is the midpoint of. and = _ 1 Prove: Statements Reasons 1. is the midpoint of ; is the midpoint of 1. Given. = ; =. efinition of midpoint 3. + = ; 3. Segment ddition Postulate + =. + = ;. Substitute + = 5. = _ 1 ; = _ 1 5. Solve Refleive Property of ongruence SS Triangle Similarity Theorem efinition of similar polygons If corresponding angles are congruent, lines cut by a transversal are parallel 10. = _ efinition of similar polygons and step 5 Math Reasoning nalyze Is Theorem 55- a conditional statement that is related to 55-1? If so, what is their relationship? Theorem 55- If a line is parallel to one side of a triangle and it contains the midpoint of another side, then it passes through the midpoint of the third side. Since UV RT and RU US, SV VT. R U S V T The measure of QT can be determined using Theorem 55-. Since RU = US in triangle QRS, then U is the midpoint of RS. y Theorem 55-, since TU QS and U is the midpoint of RS, then T is the midpoint of QR. Since T is the midpoint of QR, then QT = TR. The measure of QT is 13 units. R T U 10 Q S 36 Saon Geometry

28 ample 3 Identifying Midpoints of Sides of a Triangle Triangle MNP has vertices M(-, ), N(6, ), and P(, -1). QR is a midsegment of MNP. Find the coordinates of Q and R. R and Q are the midpoints of MN and NP. Use the Midpoint Formula to find the coordinates of Q and R. Q (_ 6 +,_ + (-1) ) = Q (, _ 1 ) R (_ - + 6,_ + ) = R(, 3) M(-, ) y - O - - R P(, -1) N(6, ) Q 6 The midsegment of a triangle creates two triangles that are similar by -Similarity. In the diagram, since, then and. This shows that. midsegment triangle is the triangle formed by the three midsegments of a triangle. Triangle F is a midsegment triangle. Midsegment triangles are similar to the original triangle and to the triangles formed by each midsegment. In the figure, F F F. F ample pplying Similarity to Midsegment Triangles Triangle STU is the midsegment triangle of PQR. a. Show that STU PQR. Hint It may help to sketch the similar triangles separately so they can be compared more easily. Since STU is the midsegment triangle of PQR, by the definition of midsegment: ST = _ 1 PR; SU = _ 1 QR; TU = _ 1 QP Therefore, STU PQR by SSS similarity. - 3 S 19 Q + 7 T b. Find PQ. P U R QR is twice SU, and T is the midpoint of QR, so QT = SU. + 7 = 19 = 6 Since S is the midpoint of PQ, PQ = PS. PQ = ( - 3) = [(6) - 3] = The length of PQ is units. Lesson

29 ample 5 pplication: Maps student determined that Toledo Street is the midsegment of the triangle formed by olumbus venue, Park venue, and William Street. The distance along Park venue between olumbus venue and William Street is 160 meters, and the distance along Toledo Street in the same span is 80 meters. William Street is 0 meters long. Find the distance from the corner of olumbus and William to the corner of William and Toledo ( in the diagram) to the nearest meter. olumbus venue Toledo Street Park venue 160 m 80 m 0 m William Street Since Toledo Street is the midsegment of the triangle, it creates two similar triangles. Use the lengths of Toledo Street and Park venue to find the similarity ratio of 160:80. Name the shorter segment and write a proportion. _ = _ = (80)(0) = 10 m Lesson Practice ( 1) a. TU is a midsegment of QRS. Find the values of and y. y T 8 R 1 U Q S Hint This proof is similar to the proof of Theorem 55-1, given in ample. Start by showing that the two triangles in the diagram are similar. ( ) b. Prove Theorem 55-. Given: and is the midpoint of. Prove: is the midpoint of. 36 Saon Geometry

30 ( 3) ( ) c. Triangle FGH has vertices at F(-, ), G(6, ), and H(,-1). is a midsegment of FGH. Find the coordinates of and. d. Find the perimeter of the midsegment triangle, XYZ. 5 1 X Z F(-, ) O y G(6, ) 6 H(, -1) + Y 3 + ( 5) e. In the diagram, th Street is a midsegment of the triangle formed by aker, Lowry, and 5th Streets. Jeremiah leaves his house at the corner of 5th and aker and walks down 5th Street. He then turns left and walks up Lowry Street until he reaches the corner at Lowery and th Street. How far has Jeremiah walked? aker Street th Street 11 m 5th Street 10 m Lowery Street Practice istributed and Integrated * 1. raw a triangular prism in one-point perspective so that the vanishing point (5) is below the prism.. Multiple hoice Which of the following statements is not true of a rhombus? ll sides are congruent. The diagonals are perpendicular. The diagonals are congruent. The diagonals bisect the angles. (5) 3. Model Trains Gary is building a track for his model trains. He wants to ensure that the two sides of the tracks run parallel to each other, so he places crossbeams at regular intervals along them. What could Gary check to ensure the tracks are parallel? (Inv 1). rror nalysis fter reading the Triangle Inequality Theorem, which states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side, Ken reasons that the theorem would mean the same if it were written, The sum of the lengths of any two sides of a triangle cannot be less than the length of the third side. Is Ken correct? plain. (39) * 5. Trace the figure shown on your paper. Then draw the vanishing points and the (5) horizon line of the figure. 6. nalyze In which regular polygon is each eterior angle equal to each interior angle? (Inv 3) Lesson

31 7. How many edges does a figure with 8 vertices and 6 faces have? (9) 8. viation pilot determines that after flying 00 kilometers on one leg of a trip and 5 kilometers on a second leg of a trip, that she has enough fuel to fly another 715 kilometers. oes she have enough fuel to get back to her starting point? plain. (39)? 00 km 5 km * 9. nalyze Give a paragraph proof showing that if a triangle is equiangular, then it is (51) equilateral. 10. Golf In his first shot of a golf tournament, illustrated here, Mitch has hit the ball (53) too far to the left from where it should be. How far does he need to hit the ball to get it straight to the green from where it is now? Give your answer to the nearest tenth of a yard. still to go 1st shot green 135 yard 5 tee *11. raw a cube in two-point perspective. (5) *1. Segment is a midsegment of. (55) Refer to the diagram to determine the coordinates of and. 13. In QRS, m Q = 55, and m R = 86. (6) In TUV, m T = 55, and m V = 39. Is QRS TUV? plain. y (3, ) (-, 3) (0, -) - 1. The ratio of the angle measures in a quadrilateral is 1::5:6. Find the measure (1) of each angle. *15. Segment UT is a midsegment of XYZ. Find the values of and y. X (55) y 16. Multi-Step Find the orthocenter of GHI with vertices G(-8, -9), H(-, -1), (3) and I(-, -9). T U Find the geometric mean of 1 and 5. (50) 5-1 y 18. lgebra Solve the equation ( + 3) =. Provide a justification for 3 () 366 each step. Saon Geometry Z 30 Y

32 19. nalyze triangle has vertices L(0, 0), M(8, 0), and N(, y). What value of (5) y makes LMN equilateral? * 0. Write plain why the median and the altitude from the verte angle of an (51) isosceles triangle are identical. Refer to any theorems you need to justify your eplanation. * 1. elow is the beginning of a paragraph proof of the Triangle Inequality (31) Theorem. Write the rest of the proof. Hint: Use the Isosceles Triangle Theorem. Given: Prove: + >, + >, + > One side of is as long or longer than each of the other sides. Let this side be. Then + > and + >. Therefore what remains to prove is + >. Locate on such that = If a chord is bisected inches from the center of a circle with a diameter of (3) 6 inches, what is the length of half of the chord to the nearest tenth of an inch? y 3. lgebra Find the measure of ST in the circle at right. y (7) *. The midpoints of the sides of are as follows: midpoint of (55) : (, 1); midpoint of : (1, 3); and midpoint of : F(1, 0). raw the midsegment triangle. Find the coordinates of,, and, and then draw. S (7 - ) V U T (5 + 0) 5. Travel Marco travels from Yuma to lamo and then from lamo to (53) Gadsden. ach unit on the triangle represents 30 miles. How far does he need to travel to get from Gadsden to Yuma, if he were to travel a straight path between them, rounded to the nearest mile? lamo y 5 units 5 Yuma 6. Landscaping square field is to be hydro-seeded. The field has a (53) diagonal length of 5 yards. How many square feet need to be hydro-seeded? Gadsden 7. etermine if these two triangles are similar. If so, state the similarity (6) and the reason. 8. Find the geometric mean of 11 and 1.5. (50) 9. Write Sketch this situation or eplain why it is impossible. Two parallel lines are intersected by a transversal so that the same-side interior angles are complementary. (Inv 1) J M 1 N L 8 K 16 y 30. lgebra Points Q, R, and S are midpoints of FGH. If FH = + 1 (55) and QR = - 3, what is the length of QR? G R Q F S H Lesson

33 56 LSSON Right Triangles Warm Up 1. Vocabulary (n) triangle has three sides that are congruent.. If a right triangle has a hypotenuse of 13 centimeters and a base of 5 centimeters, what is its height? 3. If an isosceles triangle has a verte angle of 0, what is the measure of a base angle? (51) (9) (51) New oncepts The triangle is another special triangle. Like the triangle, properties of the triangle can be used to find missing measures of a triangle if the length of one side is known. Math Reasoning onnect triangle can be used to prove attributes in a square. What quadrilaterals can be formed using triangles? In the diagram, two triangles are shown net to each other, with the shorter legs aligned Placing the two triangles together so that they share a common leg makes an equilateral triangle. Since all the equilateral triangle s sides are congruent, this shows that the hypotenuse of the triangle is twice the length of the shortest leg. Properties of Triangles In a triangle, the length of the hypotenuse is twice the length of the short leg, and the length of the longer leg is the length of the shorter leg times lgebraically, these relationships can be written as follows. PR = a PQ = a QR = a 3 Q 30 Online onnection ample 1 Finding Side Lengths in a a a Triangle 60 P Find the values of and y. Give your a R answer in simplified radical form. y The shortest leg must be opposite the smallest angle, so the leg with a measure of is the short leg. The hypotenuse is twice the short leg, so y =. The long leg is 3 times the short leg, so = Saon Geometry

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

More information

Lesson 9.1 The Theorem of Pythagoras

Lesson 9.1 The Theorem of Pythagoras Lesson 9.1 The Theorem of Pythagoras Give all answers rounded to the nearest 0.1 unit. 1. a. p. a 75 cm 14 cm p 6 7 cm 8 cm 1 cm 4 6 4. rea 9 in 5. Find the area. 6. Find the coordinates of h and the radius

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry. Chapter 2 CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

More information

Geometry Final Assessment 11-12, 1st semester

Geometry Final Assessment 11-12, 1st semester Geometry Final ssessment 11-12, 1st semester Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name three collinear points. a. P, G, and N c. R, P, and G

More information

(n = # of sides) One interior angle:

(n = # of sides) One interior angle: 6.1 What is a Polygon? Regular Polygon- Polygon Formulas: (n = # of sides) One interior angle: 180(n 2) n Sum of the interior angles of a polygon = 180 (n - 2) Sum of the exterior angles of a polygon =

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example: Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

More information

Cumulative Test. 161 Holt Geometry. Name Date Class

Cumulative Test. 161 Holt Geometry. Name Date Class Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

More information

PARALLEL LINES CHAPTER

PARALLEL LINES CHAPTER HPTR 9 HPTR TL OF ONTNTS 9-1 Proving Lines Parallel 9-2 Properties of Parallel Lines 9-3 Parallel Lines in the oordinate Plane 9-4 The Sum of the Measures of the ngles of a Triangle 9-5 Proving Triangles

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINAL EXAM REVIEW GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

More information

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units 1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

More information

FS Geometry EOC Review

FS Geometry EOC Review MAFS.912.G-C.1.1 Dilation of a Line: Center on the Line In the figure, points A, B, and C are collinear. http://www.cpalms.org/public/previewresource/preview/72776 1. Graph the images of points A, B, and

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

b. Create a graph to show how far Maggie and Mike can travel based on the chart above.

b. Create a graph to show how far Maggie and Mike can travel based on the chart above. Final Exam Review 1. Find the midpoint, the distance and the slope between (4,-2) and (-5, 3) 2. Jacinta hangs a picture 15 inches from the left side of a wall. How far from the edge of the wall should

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Chapter 8. Right Triangles

Chapter 8. Right Triangles Chapter 8 Right Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

To apply the Law of Cosines. Key Concept Law of Cosines

To apply the Law of Cosines. Key Concept Law of Cosines 8-6 -6 Law of osines ontent Standards G.SRT.11 Understand and apply the... Law of osines... lso G.SRT.10 Ojective To apply the Law of osines c a MTHEMTIL PRTIES In the Solve It, you used right triangle

More information

ABC is the triangle with vertices at points A, B and C

ABC is the triangle with vertices at points A, B and C Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

More information

Warm Up. New Concepts A flowchart proof is a style of proof that uses boxes and arrows to show the. Flowchart and Paragraph Proofs

Warm Up. New Concepts A flowchart proof is a style of proof that uses boxes and arrows to show the. Flowchart and Paragraph Proofs 31 LESSN Flowchart and Paragraph Proofs Warm Up 1. Vocabulary The process of using logic to draw conclusions is called reasoning.. Multiple hoice Which set of numbers is a Pythagorean triple? (1,, 3) (1,

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent. 2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

More information

10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles 10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

More information

For each Circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1. x = 2. x =

For each Circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1. x = 2. x = Name: ate: Period: Homework - Tangents For each ircle, find the value of. ssume that segments that appear to be tangent are tangent. 1. =. = ( 5) 1 30 0 0 3. =. = (Leave as simplified radical!) 3 8 In

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

Test to see if ΔFEG is a right triangle.

Test to see if ΔFEG is a right triangle. 1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

More information

Geometry, Final Review Packet

Geometry, Final Review Packet Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

More information

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable. Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name: GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

More information

Final Review Problems Geometry AC Name

Final Review Problems Geometry AC Name Final Review Problems Geometry Name SI GEOMETRY N TRINGLES 1. The measure of the angles of a triangle are x, 2x+6 and 3x-6. Find the measure of the angles. State the theorem(s) that support your equation.

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

Geo - CH6 Practice Test

Geo - CH6 Practice Test Geo - H6 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measure of each exterior angle of a regular decagon. a. 45 c. 18 b. 22.5

More information

Geometry Review (1 st semester)

Geometry Review (1 st semester) NAME HOUR Geometry Review (1 st semester) 1) The midpoint of XY is Z. If XY = n and XZ = n + 15, what is YZ? A) 18 B) 6 C) 45 D) 90 ) What is RS? A) 5 B) 56 C) D) 70 ) Which is an obtuse angle? A) PQR

More information

Geometry 8-1 Angles of Polygons

Geometry 8-1 Angles of Polygons . Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

More information

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem. Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a two-column proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all

More information

Identifying Triangles 5.5

Identifying Triangles 5.5 Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name

More information

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line. Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

More information

MATH 139 FINAL EXAM REVIEW PROBLEMS

MATH 139 FINAL EXAM REVIEW PROBLEMS MTH 139 FINL EXM REVIEW PROLEMS ring a protractor, compass and ruler. Note: This is NOT a practice exam. It is a collection of problems to help you review some of the material for the exam and to practice

More information

Unit 7 - Test. Name: Class: Date: 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC?

Unit 7 - Test. Name: Class: Date: 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC? Class: Date: Unit 7 - Test 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC? A. PNM B. NPM C. NMP D. MNP 3. Given QRS TUV, QS = 3v + 2, and TV = 7v 6, find the

More information

SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES SHAPE, SPACE AND MEASURES Pupils should be taught to: Use accurately the vocabulary, notation and labelling conventions for lines, angles and shapes; distinguish between conventions, facts, definitions

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than

More information

Coordinate Coplanar Distance Formula Midpoint Formula

Coordinate Coplanar Distance Formula Midpoint Formula G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

More information

Grade 3 Math Expressions Vocabulary Words

Grade 3 Math Expressions Vocabulary Words Grade 3 Math Expressions Vocabulary Words Unit 1, Book 1 Place Value and Multi-Digit Addition and Subtraction OSPI words not used in this unit: add, addition, number, more than, subtract, subtraction,

More information

12-1 Representations of Three-Dimensional Figures

12-1 Representations of Three-Dimensional Figures Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

More information

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

More information

1.7 Find Perimeter, Circumference,

1.7 Find Perimeter, Circumference, .7 Find Perimeter, Circumference, and rea Goal p Find dimensions of polygons. Your Notes FORMULS FOR PERIMETER P, RE, ND CIRCUMFERENCE C Square Rectangle side length s length l and width w P 5 P 5 s 5

More information

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular) MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

More information

Chapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1.

Chapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Name: lass: ate: I: hapter 1 Exam Multiple hoice Identify the choice that best completes the statement or answers the question. 1. bisects, m = (7x 1), and m = (4x + 8). Find m. a. m = c. m = 40 b. m =

More information

8-2 The Pythagorean Theorem and Its Converse. Find x.

8-2 The Pythagorean Theorem and Its Converse. Find x. Find x. 1. of the hypotenuse. The length of the hypotenuse is 13 and the lengths of the legs are 5 and x. 2. of the hypotenuse. The length of the hypotenuse is x and the lengths of the legs are 8 and 12.

More information

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

More information

Geometry Essential Curriculum

Geometry Essential Curriculum Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

0810ge. Geometry Regents Exam 0810

0810ge. Geometry Regents Exam 0810 0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

More information

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

More information

Coordinate Algebra 1- Common Core Test -1. Diagnostic. Test. Revised 12/5/13 1:19 pm

Coordinate Algebra 1- Common Core Test -1. Diagnostic. Test. Revised 12/5/13 1:19 pm Coordinate Algebra 1- Common Core Test -1 Diagnostic Test Revised 12/5/13 1:19 pm 1. A B C is a dilation of triangle ABC by a scale factor of ½. The dilation is centered at the point ( 5, 5). Which statement

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and Angles Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each

More information

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent

More information

Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find

More information

Geometry EOC Practice Test #2

Geometry EOC Practice Test #2 Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply

More information

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources: Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard- Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students

More information

Integrated Algebra: Geometry

Integrated Algebra: Geometry Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

More information

Applications for Triangles

Applications for Triangles Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given

More information

as a fraction and as a decimal to the nearest hundredth.

as a fraction and as a decimal to the nearest hundredth. Express each ratio as a fraction and as a decimal to the nearest hundredth. 1. sin A The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So, 2. tan C The tangent of an

More information

Ch 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and Angles [and Triangles]

Ch 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and Angles [and Triangles] h 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and ngles [and Triangles] Warm up: Directions: Draw the following as accurately as possible. Pay attention to any problems you may be having.

More information

Sixth Grade Math Pacing Guide Page County Public Schools MATH 6/7 1st Nine Weeks: Days Unit: Decimals B

Sixth Grade Math Pacing Guide Page County Public Schools MATH 6/7 1st Nine Weeks: Days Unit: Decimals B Sixth Grade Math Pacing Guide MATH 6/7 1 st Nine Weeks: Unit: Decimals 6.4 Compare and order whole numbers and decimals using concrete materials, drawings, pictures and mathematical symbols. 6.6B Find

More information

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency. CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

More information

Perimeter and area formulas for common geometric figures:

Perimeter and area formulas for common geometric figures: Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,

More information

Geometry Chapter 1 Review

Geometry Chapter 1 Review Name: lass: ate: I: Geometry hapter 1 Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name two lines in the figure. a. and T c. W and R b. WR and

More information

GCSE Maths Linear Higher Tier Grade Descriptors

GCSE Maths Linear Higher Tier Grade Descriptors GSE Maths Linear Higher Tier escriptors Fractions /* Find one quantity as a fraction of another Solve problems involving fractions dd and subtract fractions dd and subtract mixed numbers Multiply and divide

More information

NCERT. In examples 1 and 2, write the correct answer from the given four options.

NCERT. In examples 1 and 2, write the correct answer from the given four options. MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point

More information

11-2 Areas of Trapezoids, Rhombi, and Kites. Find the area of each trapezoid, rhombus, or kite. 1. SOLUTION: 2. SOLUTION: 3.

11-2 Areas of Trapezoids, Rhombi, and Kites. Find the area of each trapezoid, rhombus, or kite. 1. SOLUTION: 2. SOLUTION: 3. Find the area of each trapezoid, rhombus, or kite. 1. 2. 3. esolutions Manual - Powered by Cognero Page 1 4. OPEN ENDED Suki is doing fashion design at 4-H Club. Her first project is to make a simple A-line

More information

Coordinate Graphing and Geometric Constructions

Coordinate Graphing and Geometric Constructions HPTER 9 oordinate Graphing and Geometric onstructions hapter Vocabular coordinate plane origin graph image line of reflection rotation midpoint -ais ordered pair quadrants translation line smmetr rotational

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

More information

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session. Geometry, 17 March 2012 CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

More information

Duplicating Segments and Angles

Duplicating Segments and Angles ONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson you will Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information