Geometry Unit 6 Areas and Perimeters


 Abner Wilson
 2 years ago
 Views:
Transcription
1 Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose depends on the size of the figure being measured. Basically it is the one that makes the most sense. Large areas of land are usually measured in square miles or square kilometers. Small surfaces, like a tabletop, might be measured in square inches. If we don t want to be pinned down, we just say square unit. Example: A "square foot" is a unit of area measurement equal to a square measuring one foot on each side. 1 Square Foot = square meters. Abbrev.: ft 2, sq.ft, SqFt. 1 square foot 1 square foot 1 square meter 1 square yard 1 square centimeter Area of a Rectangle A = lw or A = bh The simplest areas to find are those of rectangles. The area of a rectangle is its length multiplied by its breadth. Sometimes the dimensions of a rectangle are referred to as the base and the height, instead of the length and the breadth. The area is then expressed as the base multiplied by the height. To find the height or the base of a rectangle given its area, substitute values into the area formula and solve for the height or base. Area of a Square A = s 2 A square is a special kind of rectangle in which the length is equal to the breadth. Hence its area is the length of one side multiplied by itself, or the length of one side squared. To find the side of a square given its area, substitute values into the area formula and solve for side. Page 1
2 Area of a parallelogram: A = bh In the formula for the area of a parallelogram, the height is the perpendicular distance from the base to the opposite side. In order to avoid ambiguity it is sometimes called the perpendicular height rather than just the height. The height is not the length of the sloping side. h b The area of a parallelogram is the product of h a base and its corresponding height. The area formula for a parallelogram comes from that of a rectangle. Cutting off piece from the corner and moving it, creates a rectangle with the same base and height as the original parallelogram. To find the height or the base of a parallelogram given its area, substitute values into the area formula and solve for the height or base. More about the parallelogram area formula At first sight, the formula for a parallelogram is quite surprising: it is the same formula as that for a rectangle. Imagine the bottom side of the parallelogram is fixed, but the top side slides along a line, as in the diagram below. The top and bottom of the parallelogram remain the same length and the same distance apart, while the other two sides lengthen or shrink. The shape always remains a parallelogram. (Notice that in one position, the parallelogram will become a rectangle its sides will be at right angles to the base.) The area of the parallelogram stays the same as the parallelogram shifts: it is equal to the area of the rectangle (which, of course, is given by base height). This is easy to see by looking at the next diagram. In this, the first figure consists of two identical triangles and a parallelogram. Imagine the left hand triangle slides to the right: it will fit above the other triangle and leave a rectangle to the left. The second figure shows the same two triangles and the rectangle. Therefore the area of the parallelogram must be the same as the area of the rectangle Page 2
3 Assignment #1: Textbook p #110 all, 17, 19, 23, 24, 26. Stay neat and organized! Staple any additional work papers to this packet. Page 3
4 Lesson 8.2: Areas of Triangle (and rhombus and kite) and Area of Trapezoid Vertex of a triangle: The sides of a triangle always connect at a point called the vertex. The plural of vertex is vertices Sides of a triangle: The sides of a triangle are the segments with a vertex as each end. Base of a triangle: Any side can be called the base of a triangle. Height of a triangle: the height of a triangle is always perpendicular to the named base (or extended base) Area of a triangle: A = 1 2 bh The area of a triangle is one half the product of a base and its corresponding height. If a triangle does not have a side that is horizontal, it is not always clear which side is the base. The beauty of the formula for the area is that it works no matter which side is called the base. Thus the area of the following triangle can be evaluated in three ways. TIP: To find the area of a parallelogram or triangle, you can use any side as the base. But be sure you measure the height of an altitude that is perpendicular to the base you have chosen. To find the height or the base of a triangle given its area, substitute values into the area formula and solve for the height or base. More about the triangle area formula Any triangle can be seen as half of a parallelogram. So the area of a triangle is half the area of a parallelogram. A triangle is half the area of a parallelogram with the same base and height. Page 4
5 Area of Rhombus AND Area of Kite A = dd 2 which is also A = 1 2 dd or A = d 1d 2 which is also A = d d 1 2 The area of a rhombus and of a kite will be equal to the is area of the triangles created by drawing the diagonals. Find the total area of both triangles by multiplying the sum of their heights (the short diagonal d), the sum of their bases (the long diagonal D) and then dividing by 2. To find the length of either diagonal of a rhombus or kite given its area, substitute values into the area formula and solve for the diagonal that you need. Area of Trapezoids Formula #1: A = 1 2 h b 1 + b 2 ( ) or A = h ( b + b 1 2 ) 2 or A = 1 2 h( a + b) Formula #2: A = Mh To find the height or either base of a trapezoid given its area, substitute values into the area formula and solve for the height or missing base. Where do the trapezoid area formulas come from? Formula #1: Start with a trapezoid and made a copy of it rotated it 180 degrees: Next, translate it up to form a parallelogram (the combination of both trapezoids). Using the parallelogram area formula, we find a formula for the area of the trapezoid:. It is HALF the parallelogram we create. Formula #2: Since length median = 1 ( 2 b + b 1 2 ), substitute into formula #1: A = 1 2 h ( b 1 + b 2 ) = 1 ( 2 b 1 + b 2 ) i h = Mh Page 5
6 Assignment #2: Textbook p. 418 #112 all, 17, 19, 20, 25, 26 Stay neat and organized! Staple any additional work papers to this packet. Page 6
7 Lesson 8.3: Areas Problems of more complex shape: You can often use what you know about the areas of rectangles and triangles to find the areas of more complex shapes. 1) Suppose a friend of yours decides to lay crazy paving in his garden which measures 7 m by 5 m, but he wants to leave two rectangular areas, each 2 m by 1 m, for flowerbeds. What area of crazy paving will be needed? The first thing to do when tackling a problem like this is to draw a diagram, and to include on it all the information that has been given. 2) A rug measures 3 m by 2 m. It is to be laid on a wooden floor that is 5 m long and 4 m wide. The floorboards not covered by the rug are to be varnished. (a) What area of floor will need to be varnished? (b) A tin of varnish covers 2.5 m 2. How many tins will be required? a) b) 3) This diagram represents the end wall of a bungalow; the wall contains two windows. The wall is to be treated with a special protective paint. In order to decide how much paint is required, the owner wants to know the area of the wall. Divide the wall up into simple shapes and then find the total area to be painted. Follow the steps below: a) The area of the triangle, large left rectangle (ignore window), right trapezoid (ignore window) b) The window area. c) The total area to be painted. Page 7
8 Assignment #3: Textbook p #1, 2, 49 all Stay neat and organized! Staple any additional work to this packet Page 8
9 8.4 Areas of Regular Polygon A = 1 2 asn or A = 1 2 ap Regular polygons have congruent side lengths and angles. Radius of a regular polygon: the congruent segments drawn from the center of the polygon to each vertex. Apothem of a regular polygon, a: the perpendicular segment from the center of the polygon to a side of a polygon (to the midpoint of that side). Where does the area formula come from? All regular polygons can be divided up into isosceles triangles by drawing segments from the center of the polygon to each vertex. The area of one of the triangles will be A = 1 2 bh = 1 as Where a is the length of the apothem and s is the 2 length of one side of the regular polygon with n sides. The total area of the polygon will be the sum of the triangle areas. A = 1 asn. Since the perimeter is the 2 sum of the sides p = ns so an alternative formula can be found by substituting p in for ns: A = 1 2 ap Page 9
10 Assignment #4: Textbook p #18 all, 12, 13 Stay neat and organized! Staple any additional work to this packet Page 10
11 Lesson 8.5 Areas of Circles There are two very famous formulas for circles: C = πd and A = πr 2 is the Greek letter for p and it has the name pi. Its value is approximately Most calculators have a key for which you can use when carrying out calculations. Finding the Circumference of a circle (length around the circle) Try measuring the circumference and diameter of some circular objects such as tins, bottles or bowls. For each object, divide the circumference by the diameter. You should find that your answer is always just over 3. In fact the ratio is the constant. Therefore: C = πd Since the diameter is twice the radius, this formula can be also be written as circumference = 2 radius = 2 radius = 2πr Finding the area of a circle A = πr 2 The formula for the area of a circle can be explained, as outlined below. The circle here has been divided into equal slices or sectors. The eight sectors can then be cut out and rearranged into the shape shown: this shape has the same area as the circle. You can see that the total distance from A to B along the bumps is the same as half the circumference of the circle that is: 1 i 2π i r = πr. 2 Also the length OA is the same as the radius of the circle. Imagine dividing the circle into more and more sectors and rearranging them as described above. For example, dividing the circle into 16 equal sectors gives the following shape, whose area is still the same as that of the circle. Again the total distance from A to B along the bumps is πr, and the length of OA is the same as the radius. Notice how the rearranged shape is beginning to look more like a rectangle. The more sectors, the straighter AB will become and the more perpendicular OA will be. Eventually it will not be possible to distinguish the rearranged shape from a rectangle. The area of this rectangle will be the same as that of the circle, and its sides will have the lengths radius (for AB) and radius (for OA). So the following formula can be deduced So Area of Circle formula is A = πr 2 Page 11
12 Assignment #5: Textbook p #110 all, 13, 17, 18, 20 Stay neat and organized! Staple any additional work to this packet Page 12
13 Lesson 8.6 Areas of Sectors, Segments, and Annulus Sector of a circle: the region between two radii of a circle and the included arc Segment of a circle: the region between a chord of a circle and the included arc Annulus: the region between two concentric circles Sector of a circle Segment of a circle Annulus A different technique is used to find the area of each of these Area of a Sector : Use the proportion: A arc measure = 2 πr 360 or use formula: A = arc measure 360 πr 2 Example: Area of a Segment: A segment = A sector A triangle Example 1: Example 2: Find x given that the shaded area is 14π cm 2 Area of a Annulus: A annulus = A big circle A small circle Page 13
14 Assignment #6: Textbook p #114 all, all Stay neat and organized! Staple any additional work to this packet Page 14
15 Lesson 8.7 Surface Area of Polyhedra Lesson 8.7 Part 1: Prisms and Cylinders: Prisms have TWO congruent polygonal bases and the lateral faces that are rectangles (right prisms) or parallelograms (oblique prisms). Cylinders have two congruent circular bases and a lateral face that folds out to 1 rectangle. Faces: the flat surfaces Bases: the 2 congruent faces on the prism. Lateral faces: the remaining faces other than the bases (always are rectangles and parallelograms) Edges: a line segment where two faces intersect Vertex: a point of intersection of 3 or more edges. Height of the prism or cylinder: the perpendicular distance between the bases Base Area: B This is the area of the base polygon and is found by using the formulas in lessons #14 Surface area formula for Prisms and Cylinders: Prisms: S.A. = 2B + L.A. Cylinders: S.A. = 2πr 2 + 2πrh Where do Surface Area formulas come from? We are adding the areas of the bases and the lateral faces of polygons. Surface Area = 2B + LA B= Base area LA= Total Lateral Area Page 15
16 Assignment #7: Textbook p. 450 #1, 2, 3, 6, 7, 9, 10, 12 Stay neat and organized! Staple any additional work to this packet Page 16
17 Lesson 8.6 Part 2: Pyramids and Cones Pyramids have ONE polygonal base and lateral faces that are triangles. Cones have ONE circular base and a lateral face that folds out to 1 rectangle Apex: the vertex not on the base Base edge length: b Base Area: B Height of Pyramid (altitude): h the perpendicular distance from the apex to the base. Height of Base polygon (apothem): The perpendicular distance from center of base to the side of the base. Slant height: l or s: The perpendicular distance on a lateral face from the apex to the base edge. Surface area formula for Pyramids and Cones: S.A. = B + L.A. Pyramids: L.A. = 1 2 bl i number of sides of base = 1 2 pl Cones: B = πr 2 L.A. = πrl = πrs S.A. = B + L.A. = πr 2 + πrl Where does surface area formula for a pyramid come from? The surface area of a pyramid will be the sum of the areas of all the triangles L.A. = 1 2 bl i n added to the base area B. The base area formula will be the formula for the area of a regular polygon. Page 17
18 Deriving the Surface Area of a Cone The base The base is a simple circle, so we know from Area of a Circle that its area is given by base of the cone. Where r is the radius of the The top If we were to cut the cone up one side along the red line and roll it out flat, it would look something like the shaded pieshaped section below. 1. This shaded section is actually part of a larger circle (NOT the base of the cone) that has a radius of s, the slant height of the cone. (To flatten it, the cone was cut along the red lines, the length of this cut is the slant height of the cone.) The area of the larger circle is therefore the area of a circle radius s, or 2. The circumference of the larger circle, radius s is 3. The arc AB originally wrapped around the base of the cone, and so its length is the circumference of the circle that is the base of the cone. Recall that circumference of a circle is given by Where r is the radius of the base of the cone. 4. The ratio of area x of the shaded sector to the area of the whole circle, is the same as the ratio of the arc AB to circumference of the whole circle*. Put as an equation 5. Substituting the values from above: Canceling the 2π on the right and solving for x we get 6. Finally, adding the areas of the base and the top part produces the final formula: * For example, if the arc AB is one third the circumference of the large circle, then the area of the sector AB is one third the area of the large circle Page 18
19 Assignment #8: Textbook p #4, 5, 8, Stay neat and organized! Staple any additional work to this packet Page 19
20 Assignment #9: Review p #110, 1731, 34, 35, 45, 46 Stay neat and organized! Staple any additional work to this packet Page 20
21 Page 21
22 Page 22
23 Page 23
24 Page 24
Areas of Rectangles and Parallelograms
CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover
More information10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warmup
10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres 10.4 Day 1 Warmup 1. Which identifies the figure? A rectangular pyramid B rectangular prism C cube D square pyramid 3. A polyhedron
More informationSA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid
Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.
More informationPostulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 111: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
More informationPERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
More informationSURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
More informationSurface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry
Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel
More informationArea. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
More informationSpecial case: Square. The same formula works, but you can also use A= Side x Side or A= (Side) 2
Geometry Chapter 11/12 Review Shape: Rectangle Formula A= Base x Height Special case: Square. The same formula works, but you can also use A= Side x Side or A= (Side) 2 Height = 6 Base = 8 Area = 8 x 6
More informationRight Prisms Let s find the surface area of the right prism given in Figure 44.1. Figure 44.1
44 Surface Area The surface area of a space figure is the total area of all the faces of the figure. In this section, we discuss the surface areas of some of the space figures introduced in Section 41.
More informationMENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationChapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
More informationPerimeter and area formulas for common geometric figures:
Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,
More information12 Surface Area and Volume
12 Surface Area and Volume 12.1 ThreeDimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids
More informationArea of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationGeometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
More information10.1: Areas of Parallelograms and Triangles
10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a
More informationCONJECTURES  Discovering Geometry. Chapter 2
CONJECTURES  Discovering Geometry Chapter C1 Linear Pair Conjecture  If two angles form a linear pair, then the measures of the angles add up to 180. C Vertical Angles Conjecture  If two angles are
More information43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
More informationGeometry Chapter 12. Volume. Surface Area. Similar shapes ratio area & volume
Geometry Chapter 12 Volume Surface Area Similar shapes ratio area & volume Date Due Section Topics Assignment Written Exercises 12.1 Prisms Altitude Lateral Faces/Edges Right vs. Oblique Cylinders 12.3
More information3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)
EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and
More informationName: Class: Date: Geometry Chapter 3 Review
Name: Class: Date: ID: A Geometry Chapter 3 Review. 1. The area of a rectangular field is 6800 square meters. If the width of the field is 80 meters, what is the perimeter of the field? Draw a diagram
More informationArea of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
More information(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units
1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units
More informationPerfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through
Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet costefficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters
More informationIntegrated Algebra: Geometry
Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More informationGeometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:
Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students
More informationSolids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
More informationStudent Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
More informationReview for Final  Geometry B
Review for Final  Geometry B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A model is made of a car. The car is 4 meters long and the model is 7 centimeters
More informationTeacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 91.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
More informationAngle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
More informationFCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
More informationName: Date: Geometry Honors Solid Geometry. Name: Teacher: Pd:
Name: Date: Geometry Honors 20132014 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 16 HW: Pgs: 710 DAY 2: SWBAT: Calculate the Volume
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More information9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2D Shapes The following table gives the names of some 2D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
More informationCalculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
More informationGeometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
More information56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
More informationCentroid: The point of intersection of the three medians of a triangle. Centroid
Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:
More informationThe Area is the width times the height: Area = w h
Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what
More informationGeometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
More informationArea of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
More informationPRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT
UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,
More informationGeometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
More informationGeometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.
Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know
More information2006 ACTM STATE GEOMETRY EXAM
2006 TM STT GOMTRY XM In each of the following you are to choose the best (most correct) answer and mark the corresponding letter on the answer sheet provided. The figures are not necessarily drawn to
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationSigns, Signs, Every Place There Are Signs! Area of Regular Polygons p. 171 Boundary Lines Area of Parallelograms and Triangles p.
C H A P T E R Perimeter and Area Regatta is another word for boat race. In sailing regattas, sailboats compete on courses defined by marks or buoys. These courses often start and end at the same mark,
More informationName: Date: Geometry Solid Geometry. Name: Teacher: Pd:
Name: Date: Geometry 20122013 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 17 HW: Pgs: 810 DAY 2: SWBAT: Calculate the Volume of
More information124 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h
Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h The volume is 108 cm 3. The volume V of a prism is V = Bh, where B is the area of a base and h the
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More information16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
More information1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?
1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional
More informationPERIMETERS AND AREAS
PERIMETERS AND AREAS 1. PERIMETER OF POLYGONS The Perimeter of a polygon is the distance around the outside of the polygon. It is the sum of the lengths of all the sides. Examples: The perimeter of this
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationA factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2D shape?
BOND HOW TO DO 11+ MATHS MATHS FACTS CARDS 1 2 3 4 A factor is a whole number that Name 6 different quadrilaterals. The radius of a circle is What is an axis or a line of symmetry in a 2D shape? 5 6 7
More informationII. Geometry and Measurement
II. Geometry and Measurement The Praxis II Middle School Content Examination emphasizes your ability to apply mathematical procedures and algorithms to solve a variety of problems that span multiple mathematics
More informationA = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height
Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side
More informationGAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
More informationHonors Geometry Final Exam Study Guide
20112012 Honors Geometry Final Exam Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In each pair of triangles, parts are congruent as marked.
More informationIn Problems #1  #4, find the surface area and volume of each prism.
Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1  #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR
More information2nd Semester Geometry Final Exam Review
Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular
More informationSurface Area and Volume Nets to Prisms
Surface Area and Volume Nets to Prisms Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version
More informationBegin recognition in EYFS Age related expectation at Y1 (secure use of language)
For more information  http://www.mathsisfun.com/geometry Begin recognition in EYFS Age related expectation at Y1 (secure use of language) shape, flat, curved, straight, round, hollow, solid, vertexvertices
More informationPerimeter and Area. An artist uses perimeter and area to determine the amount of materials it takes to produce a piece such as this.
UNIT 10 Perimeter and Area An artist uses perimeter and area to determine the amount of materials it takes to produce a piece such as this. 3 UNIT 10 PERIMETER AND AREA You can find geometric shapes in
More informationApplications for Triangles
Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given
More informationGEOMETRY FINAL EXAM REVIEW
GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationWorking in 2 & 3 dimensions Revision Guide
Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationAREA AND PERIMETER OF COMPLEX PLANE FIGURES
AREA AND PERIMETER OF OMPLEX PLANE FIGURES AREA AND PERIMETER OF POLYGONAL FIGURES DISSETION PRINIPLE: Every polygon can be dissected (or broken up) into triangles (or rectangles), which have no interior
More informationStudy Guide. 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. Note: Figure is not drawn to scale.
Study Guide Name Test date 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. 1. Note: Figure is not drawn to scale. If x = 14 units and h = 6 units, then what is the area of the triangle
More informationArea of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in
More informationGeometry Vocabulary Booklet
Geometry Vocabulary Booklet Geometry Vocabulary Word Everyday Expression Example Acute An angle less than 90 degrees. Adjacent Lying next to each other. Array Numbers, letter or shapes arranged in a rectangular
More informationSurface Area and Volume
UNIT 7 Surface Area and Volume Managers of companies that produce food products must decide how to package their goods, which is not as simple as you might think. Many factors play into the decision of
More information124 Volumes of Prisms and Cylinders. Find the volume of each prism.
Find the volume of each prism. 3. the oblique rectangular prism shown at the right 1. The volume V of a prism is V = Bh, where B is the area of a base and h is the height of the prism. If two solids have
More informationSandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
More informationGrade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference
1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various
More information*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.
Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review
More informationINDEX. Arc Addition Postulate,
# 3060 right triangle, 441442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent
More information10.1 Areas of Quadrilaterals and triangles
10.1 Areas of Quadrilaterals and triangles BASE AND HEIGHT MUST FORM A RIGHT ANGLE!! Draw the diagram, write the formula and SHOW YOUR WORK! FIND THE AREA OF THE FOLLOWING:. A rectangle with one side of
More informationPerimeter and Area. Chapter 11 11.1 INTRODUCTION 11.2 SQUARES AND RECTANGLES TRY THESE
PERIMETER AND AREA 205 Perimeter and Area Chapter 11 11.1 INTRODUCTION In Class VI, you have already learnt perimeters of plane figures and areas of squares and rectangles. Perimeter is the distance around
More informationSu.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)
MA.912.G.2 Geometry: Standard 2: Polygons  Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
More informationGAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement
GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4
More information2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters
GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.
More information114 Areas of Regular Polygons and Composite Figures
1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,
More informationSOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier
Mathematics Revision Guides Solid Shapes Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SOLID SHAPES Version: 2.1 Date: 10112015 Mathematics Revision Guides Solid
More informationFinding Volume of Rectangular Prisms
MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of threedimensional composite shapes.
More informationGeo  CH10 Practice Test
Geo  H10 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. lassify the figure. Name the vertices, edges, and base. a. triangular pyramid vertices:,,,,
More informationSurface Area and Volume Cylinders, Cones, and Spheres
Surface Area and Volume Cylinders, Cones, and Spheres Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable
More informationOverview Mathematical Practices Congruence
Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason
More informationA. Areas of Parallelograms 1. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh.
Geometry  Areas of Parallelograms A. Areas of Parallelograms. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh. A B Ex: See how VDFA V CGB so rectangle
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More information