Geometric Relationships


 Felicia Skinner
 1 years ago
 Views:
Transcription
1 Geometric Relationships 8 Lines and ngles LB Building Blocks of Geometry Measuring and Classifying ngles ngle Relationships Classifying Lines Parallel Line Relationships 8B Polygons LB 85 LB Classify Triangles Triangles ngles in Triangles Quadrilaterals Polygons Geometric Patterns 8C Polygon Relationships 82 re Name of Figu Pentagon Hexagon Heptagon Octagon des Number of Si Nonagon Decagon 10 Undecagon Dodecagon Congruence 810 Transformations LB Transformations in the Coordinate Plane 811 Line Symmetry LB Create Tessellations rtist KEYWORD: MR7 Ch8 412 rtists help us to see our world in new ways. They use their creativity in many different kinds of careers. rtists might design graphics for Web sites, draw cartoons, design textiles and furniture, paint murals, or even illustrate courtroom scenes. rtists work with many materials, such as different kinds of paints, paper, stone, metal, stained glass, and tile. The table shows some geometric figures that an artist might use in a design. Chapter 8 2 2N D P R IN T
2 Vocabulary Choose the best term from the list to complete each sentence. 1. closed figure with three sides is a?, and a closed figure with four sides is a?. 2.? is used to measure and draw angles clockwise counterclockwise horizontal protractor quadrilateral ruler triangle vertical The arrow inside the line that extends left circle is moving?. to right is?. Complete these exercises to review skills you will need for this chapter. Graph Ordered Pairs Use the coordinate plane for problems 5 8. Write the ordered pair for each point B 7. C 8. D Identify Polygons Tell how many sides and angles each figure has O B C D Identify Congruent Figures Which two figures are exactly the same size and shape but in different positions? 12. B C D Geometric Relationships 413
3 Study Guide: Preview Previously, you defined geometric shapes. identified congruent and similar figures. located points on a coordinate plane. You will study measuring angles. using angle measurements to classify angles as acute, obtuse, or right. identifying relationships involving angles in triangles and quadrilaterals. using congruence and similarity to solve problems. transforming figures on the coordinate plane and describing the transformation. You can use the skills learned in this chapter to solve problems and create geometric proofs by using angle and line relationships in geometry. to use transformations to create patterns in art class. Key Vocabulary/Vocabulario angle congruent line symmetry parallel lines perpendicular lines polygon quadrilateral rotation transformation vertex ángulo congruentes simetría axial líneas paralelas Vocabulary Connections líneas perpendiculares polígono cuadrilátero rotación transformación vértice To become familiar with some of the vocabulary terms in the chapter, consider the following. You may refer to the chapter, the glossary, or a dictionary if you like. 1. Congruent comes from the Latin word congruere meaning to agree, correspond. If two figures are congruent, do you think they look the same or different? 2. Parallel comes from the Greek words para meaning alongside and allenon meaning one another. If two lines are parallel where do you think they are located in relation to each other? 3. Polygon comes from the Greek words polus meaning many and gonia meaning angle. ccording to this information, what do you think a shape called a polygon includes? 4. Quadrilateral comes from the Latin words quadri meaning four and latus meaning sides. How many sides do you think a quadrilateral has? 414 Chapter 8
4 Reading Strategy: Read Problems for Understanding It is important to read word problems carefully to make sure you understand the problem and identify all the parts of the problem that need to be answered. Following these steps can help you understand and answer problems: 1. Read through the problem once. 2. Identify what you are supposed to answer and what skills are needed. 3. Read the problem again carefully and identify key information. 4. Make a plan to solve and answer LL parts of the problem. 5. Solve. Lesson 79 Percent Problems Step 1. Read the problem. 10. Mr. Green has a garden. Of the 40 seeds he planted, 35% were vegetable seeds. How many vegetable seeds did he plant? Step 2. What are you supposed to answer, and what skills are needed? Find how many vegetable seeds were planted in the garden. Find the percent of a number. Reading and Writing Math Step 3. Step 4. Step 5. Identify the key information. Make a plan to solve and answer all parts of the problem. Solve. There were a total of 40 seeds planted. The vegetable seeds make up 35% of the total number of seeds. Write 35% as a fraction. Set up a proportion and solve for the unknown value. Check your answer by making sure the cross products are equal. Try This Read the problem for understanding. Use the steps above to answer the following question. 1. garden has the shape of a square. The distance around the garden is 200 meters. What is the length of one side of the garden? Geometric Relationships 415
5 81 Building Blocks of Geometry Learn to describe figures by using the terms of geometry. Vocabulary point line plane line segment ray Georgia Performance Standards M6P3.d Use the language of mathematics to express mathematical ideas precisely. lso, M6P4.a, M6P4.b. The building blocks of geometry are points, lines, and planes. point is an exact location. P point P, P point is named by a capital letter. line is a straight path that line B, B, B extends without end in line B, B opposite directions. line is named by two points on the line. plane is a flat surface that plane LMN, extends without end in all M plane MLN, L directions. plane NLM N plane is named by three points on the plane that are not on the same line. EXMPLE 1 Identifying Points, Lines, and Planes Use the diagram to name each geometric figure. three points, C, and D Five points are labeled: points, B, C, D, and E. C B E two lines B and BE You can also write B and EB. D a point shared by two lines point B Point B is a point on B and BE. a plane plane DC Use any three points in the plane that are not on the same line. Write the three points in any order. 416 Chapter 8 Geometric Relationships
6 Line segments and rays are parts of lines. Use points on a line to name line segments and rays. line segment is line segment Y XY, XY, made of two endpoints X line segment YX, YX and all the points between the endpoints. line segment is named by its endpoints. ray has one ray JK, JK endpoint. From the J K endpoint, the ray extends without end in one direction only. ray is named by its endpoint first followed by another point on the ray. EXMPLE 2 Identifying Line Segments and Rays Use the diagram to give a possible name to each figure. three different line segments TU, UV, and TV You can also write UT, VU, and VT. T U V three ways to name the line UT, VU, and VT You can also write TU, UV, and TV. six rays TU, TV, VT, VU, UV, and UT another name for ray TU TV T is still the endpoint. V is another point on the ray. Think and Discuss 1. Name the geometric figure suggested by each of the following: a page of a book; a dot (also called a pixel) on a computer screen; the path of a jet across the sky. 2. Explain how XY is different from XY. 3. Explain how B is different from B. GPS M6P2.c, M6P3.b, M6P3.d 81 Building Blocks of Geometry 417
7 81 Exercises GUIDED PRCTICE See Example 1 Use the diagram to name each geometric figure. 1. two points 2. a line 3. a point shared by two lines 4. a plane Georgia Performance Standards M6P1.a, M6P3.a, M6P3.c, M6P3.d L KEYWORD: MR7 81 KEYWORD: MR7 Parent N K J M See Example 2 Use the diagram to give a possible name to each figure. 5. two different ways to name the line 6. four rays 7. another name for C B C INDEPENDENT PRCTICE See Example 1 Use the diagram to name each geometric figure. 8. three points F 9. one line E H 10. a point shared by a line and a ray D G 11. a plane See Example 2 Use the diagram to give a possible name to each figure. 12. two different line segments 13. six rays 14. another name for YX W X Y Z Extra Practice See page 728. Extra Practice p. 728 PRCTICE ND PROBLEM SOLVING Use the diagram to find a name for each geometric figure described. 15. a point shared by three lines 16. two points on the same line 17. two rays 18. another name for D 19. two different names for the same line Draw each geometric figure. 20. RS 21. LM 23. XY on YX 22. B 24. JK and JH on the same line B D C F 418 Chapter 8 Geometric Relationships
8 Geography Mapmakers often include a legend on the maps they create. The legend explains what each symbol or location on the map represents. W 25. Name the geometric figure suggested by each part of the map. a. City Hall and Gordon Middle School b. Highway 80 c. the section of the road from the park to the post office d. the road from City Hall past the police station 26. student rides her bike from Gordon Middle School to City Hall. She then rides to the city park, first passing through the intersection near the police station and then passing by the school. List the segments on the map that represent her route. 27. Critical Thinking Name a line segment, a ray, and a line that include the same two locations on the map, but do not include the city park. 28. What s the Error? student described the road from Gordon Middle School to City Hall as VY. What was the student s error? 29. Write bout It Explain why the road from City Hall that goes past the police station suggests a ray named VX rather than a ray named XV. 30. Challenge What are all the possible names for the line suggested by IH45? V W X Y Z V X HWY 80 Z MP LEGEND Y IH45 City Hall Post Office Police Station Gordon Middle School City Park 31. Multiple Choice Which figure is NOT found in the diagram? Line C Line segment B Point D Ray F R M T 32. Gridded Response How many endpoints does a ray have? Find the value of k in each equation. (Lesson 28) 33. k k k k 7 Write each improper fraction as a mixed number. (Lesson 46) Building Blocks of Geometry 419
9 82 Measuring and Classifying ngles Learn to name, measure, draw, and classify angles. Vocabulary angle vertex acute angle right angle obtuse angle straight angle EXMPLE 1 m XYZ is read the measure of angle XYZ. You can adjust the angle that a treadmill makes with the ground in order to have an easier or more intense workout. n angle is formed by two rays with a common endpoint, called the vertex. n angle can be named by its vertex or by its vertex and a point from each ray. The middle point in the name must be the vertex. The angle of the treadmill can be called F, EFG, or GFE. ngles are measured in degrees. Use the symbol to show degrees. Measuring an ngle with a Protractor Use a protractor to measure the angle. Place the center point of the protractor on the vertex of the angle. Place the protractor so that ray YZ passes through the 0 mark. Using the scale that starts with 0 along ray YZ, read the measure where ray YX crosses. Y The measure of XYZ is 75. Write this as m XYZ G E X Z F EXMPLE 2 Georgia Performance Standards M6P3.d Use the language of mathematics to express mathematical ideas precisely. lso, M6P4.a, M6P4.b, M6P4.c. Drawing an ngle with a Protractor Use a protractor to draw an angle that measures 150. Draw a ray on a sheet of paper. Place the center point of the protractor on the endpoint of the ray. Place the protractor so that the ray passes through the 0 mark. Make a mark at 150 above the scale on the protractor. Draw a ray from the endpoint of the first ray through the mark at Chapter 8 Geometric Relationships
10 You can classify an angle by its measure. n acute angle measures less than 90. Right angles are usually marked with a symbol. right angle measures exactly 90. n obtuse angle measures more than 90 and less than 180. straight angle measures exactly 180. EXMPLE 3 Classifying ngles Classify each angle as acute, right, obtuse, or straight. The angle measures more than 90 and less than 180, so it is an obtuse angle. The angle measures less than 90, so it is an acute angle. EXMPLE 4 rchitectural pplication C D n architect designed this floor plan B for a fivesided room of a house. Family Room Classify, B, and D in the floor plan. E right angle The angle is marked as a right angle. B obtuse angle The angle measures more than 90 and less than 180. D acute angle The angle measures less than 90. Think and Discuss GPS M6P1.d, M6P3.b, M6P3.d 1. Explain how you know which point is the vertex of XYZ. 2. Give an example of a right angle in your classroom. 3. Tell what type of angle is suggested by each of the following. a. an open book lying flat b. the corner of a sheet of paper c. the point of a pencil d. the hands of a clock at 12: Measuring and Classifying ngles 421
11 82 See Example 1 Exercises GUIDED PRCTICE Georgia Performance Standards M6P3.a, M6P3.c, M6P5.a Use a protractor to measure each angle KEYWORD: MR7 82 KEYWORD: MR7 Parent See Example 2 See Example 3 Use a protractor to draw an angle with each given measure Classify each angle as acute, right, obtuse, or straight See Example Kendra is planning a flower bed for her garden, which is shown in the figure. Classify each angle of the flower bed. G H J INDEPENDENT PRCTICE L K See Example 1 Use a protractor to measure each angle See Example 2 See Example 3 Use a protractor to draw an angle with each given measure Classify each angle as acute, right, obtuse, or straight See Example The figure shows the shape of a ceramic tile. Classify each of the tile s angles. F B C E D 422 Chapter 8 Geometric Relationships
12 Extra Practice See page 728. Extra Practice p. 728 PRCTICE ND PROBLEM SOLVING Use a protractor to draw each angle. 24. an acute angle whose measure is less than an obtuse angle whose measure is between 100 and a right angle History Classify the smallest angle formed by the hands on each clock The clock tower in Rome, Georgia, was originally built as a water tower in The clock, built in Waltham, Massachusetts, was added to the top a year later. 30. Critical Thinking Can two acute angles that share a vertex form a right angle? Justify your answer with a diagram. 31. What s the Error? student wrote that the measure of this angle is 156. Explain the error the student may have made, and give the correct measure of the angle. How can the student avoid making the same mistake again? 32. Write bout It Describe how an acute angle and an obtuse angle are different. 33. Challenge How many times during the day do the hands of a clock form a straight angle? 34. Multiple Choice The figure shows a plan for a skateboard ramp. What type of angle is B? cute B Right C Obtuse D Straight C B 35. Multiple Choice Which of the following is another name for PQR? F P G RQP H PRQ QPR J Write each decimal as a percent and a fraction. (Lesson 78) Find the percent of each number. (Lesson 79) % of % of % of % of Measuring and Classifying ngles 423
13 83 ngle Relationships Learn to understand relationships of angles. Vocabulary congruent vertical angles adjacent angles complementary angles supplementary angles ngle relationships play an important role in many sports and games. Miniaturegolf players must understand angles to know where to aim the ball. In the miniaturegolf hole shown, m 1 m 2, m 3 m 4, and m 5 m 6. When angles have the same measure, they are said to be congruent. P M N R 160 Q Georgia Performance Standards M63 Evaluate algebraic expressions, including those with exponents, and solve simple onestep equations using each of the four basic operations. lso, M6P1.b, M6P3.d. Vertical angles are formed opposite each other when two lines intersect. Vertical angles have the same measure, so they are always congruent. MRP and NRQ are vertical angles. MRN and PRQ are vertical angles. djacent angles are side by side and have a common vertex and ray. djacent angles may or may not be congruent. MRN and NRQ are adjacent angles. They share vertex R and RN. NRQ and QRP are adjacent angles. They share vertex R and RQ. EXMPLE 1 Identifying Types of ngle Pairs Identify the type of each angle pair shown and 2 are opposite each other and are formed by two intersecting lines. They are vertical angles and 4 are side by side and have a common vertex and ray. They are adjacent angles. 424 Chapter 8 Geometric Relationships
14 Complementary angles are two angles whose measures have a sum of LMN and NMP are complementary. L M N P Supplementary angles are two angles whose measures have a sum of 180. K GHK and KHJ are supplementary. G H J EXMPLE 2 Identifying an Unknown ngle Measure Find each unknown angle measure. The angles are complementary. 55 a 90 The sum of the measures is 90. a 35 a 55 The angles are supplementary. 75 b 180 The sum of the measures is 180. b 105 b 75 The angles are vertical angles. c 51 Vertical angles are congruent. c 51 ngles JGF and KGH are congruent. d e The sum of the measures is 180. d e 44 Each angle d 22 and e 22 measures half of 44. J F d 136 G e H K Think and Discuss GPS M6P1.d, M6P3.b 1. Give the measure of 2 if 1 and 2 are vertical angles and m Give the measure of 3 if 3 and 4 are supplementary and m Tell whether the angles in Example 1B are supplementary or complementary. 83 ngle Relationships 425
15 83 See Example 1 Exercises GUIDED PRCTICE Georgia Performance Standards M6P1.b, M6P3.a, M6P5.b Identify the type of each angle pair shown KEYWORD: MR7 83 KEYWORD: MR7 Parent See Example 2 Find each unknown angle measure. 3. The angles are complementary. 4. The angles are supplementary. a b See Example 1 INDEPENDENT PRCTICE Identify the type of each angle pair shown See Example 2 Find each unknown angle measure. 7. The angles are vertical angles. 8. The angles are supplementary. c 62 d 78 Extra Practice See page 728. Extra Practice p. 728 PRCTICE ND PROBLEM SOLVING Use the figure for Exercises Which angles are not adjacent to 3? 10. Name all the pairs of vertical angles that include If the m 6 is 72, what are the measures of 5, 7, and 8? 12. What is the sum of the measures of 1, 2, 3, and 4? Chapter 8 Geometric Relationships
16 Use the figure for Exercises Find the measure of VYW. 14. Find the measure of XYZ. W X MultiStep Use the measures of VYW and XYZ to find the measure of WYX. V Y Z Find the measure of the angle that is complementary to each given angle. Use a protractor to draw both angles Find the measure of the angle that is supplementary to each given angle. Use a protractor to draw both angles ngles and B are complementary. If the measure of angle equals the measure of angle B, what is the measure of each angle? 25. ngles C and D are each complementary to angle F. How are angle C and angle D related? 26. Write a Problem Draw a pair of adjacent supplementary angles. Write a problem in which the measure of one of the angles must be found. 27. Write bout It Two angles are supplementary to the same angle. Explain the relationship between the measures of these angles. 28. Challenge The measure of angle is 38. ngle B is complementary to angle. ngle C is supplementary to angle B. What is the measure of angle C? 29. Multiple Choice Which type of angles are always congruent? djacent B Complementary C Supplementary D Vertical 30. Multiple Choice ngle J and angle K are supplementary. What is the measure of K if the measure of J is 75? F 15 G 25 H Find the missing value in each proportion. (Lesson 73) 31. n m p s Classify each angle as acute, right, obtuse, or straight. (Lesson 82) J 83 ngle Relationships 427
17 84 Classifying Lines Learn to classify the different types of lines. Vocabulary parallel lines perpendicular lines skew lines Georgia Performance Standards M6P4.c Recognize and apply mathematics in contexts outside of mathematics. lso, M6P1.b, M6P3.d. The photograph of the houses and the table below show some of the ways that lines can relate to each other. The yellow lines are intersecting. The purple lines are parallel. The green lines are perpendicular. The white lines are skew. Intersecting lines are lines that cross at one common point. W Z X Y Line YZ intersects line WX. YZ intersects WX. The red arrows on the lines show that the lines are parallel. Parallel lines are lines in the same plane that never intersect. B L Line B is parallel to line ML. B ML M Perpendicular lines intersect to form 90 angles, or right angles. T R S U Line RS is perpendicular to line TU. RS TU Skew lines are lines that lie in different planes. They are neither parallel nor intersecting. M L B Line B and line ML are skew. B and ML are skew. 428 Chapter 8 Geometric Relationships
18 EXMPLE 1 Classifying Pairs of Lines Classify each pair of lines. The lines are in the same plane. They do not appear to intersect. They are parallel. The lines cross at one common point. They are intersecting. The lines intersect to form right angles. They are perpendicular. The lines are in different planes and are not parallel or intersecting. They are skew. EXMPLE 2 Physical Science pplication The particles in a transverse wave move up and down as the wave travels to the right. What type of line relationship does this represent? Points along the ribbon move up and down. This wave moves to the right. The direction that the particles move forms a right angle with the direction that the wave is traveling. The lines are perpendicular. Think and Discuss GPS M6P2.c, M6P3.b 1. Give an example of intersecting, parallel, perpendicular, and skew lines or line segments in your classroom. 2. Determine whether two lines must be parallel if they do not intersect. Explain. 84 Classifying Lines 429
19 84 Exercises See Example 1 GUIDED PRCTICE Classify each pair of lines. Georgia Performance Standards M6P3.a, M6P3.c, M6P5.b KEYWORD: MR7 84 KEYWORD: MR7 Parent See Example 2 3. Jamal dropped a fishing line from a pier, as shown in the drawing. What type of relationship is formed by the lines? See Example 1 INDEPENDENT PRCTICE Classify each pair of lines See Example 2 7. The drawing shows where an archaeologist found two fossils. What type of relationship is formed by the lines suggested by the fossils? Extra Practice See page 728. Extra Practice p. 728 PRCTICE ND PROBLEM SOLVING Describe each pair of lines as parallel, skew, intersecting, or perpendicular Capitol Street intersects 1st, 2nd, and 3rd venues, which are parallel to each other. West Street and East Street are perpendicular to 2nd venue. a. Draw a map showing the six streets. b. Suppose East and West Streets were perpendicular to Capitol Street rather than 2nd venue. Draw a map showing the streets. 430 Chapter 8 Geometric Relationships
20 The lines in the figure intersect to form a rectangular box. 12. Name all the lines that are parallel to D. B D C 13. Name all the lines that are perpendicular to FG. 14. Name a pair of lines that are skew. 15. Name all the lines that are not parallel to and do not intersect DH. E F H G Tell whether each statement is always, sometimes, or never true. 16. Intersecting lines are parallel. 17. Intersecting lines are perpendicular. 18. Perpendicular lines are intersecting. 19. Parallel lines are skew. 20. Critical Thinking Use parallel, perpendicular, skew, or a combination of these terms to describe the lines on a sheet of graph paper. Explain your answer. 21. What s the Error? student drew two lines and claimed that the lines were both parallel and intersecting. Explain the error. 22. Write bout It Explain the similarities and differences between perpendicular and intersecting lines. 23. Challenge Lines x, y, and z are in a plane. If lines x and y are parallel and line z intersects line x, does line z intersect line y? Explain. 24. Multiple Choice Which types of lines never intersect when they are in the same plane? Intersecting B Parallel C Perpendicular D Skew 25. Multiple Choice Main Street and Elm Street meet at a 90 angle. Which term best describes the streets? F Intersecting G Parallel H Perpendicular J Skew 26. Extended Response student draws two lines on the same plane. He claims the lines are skew lines. Is he correct? Explain. What are the possible line types that the student drew? Graph and label each point on a coordinate grid. (Lesson 66) 27. (3, 4) 28. B(1, 5) 29. C(7, 1) 30. D 8 1 2, E 2, Find the measure of the angle that is complementary to each given angle. (Lesson 83) Classifying Lines 431
21 Parallel Line Relationships 84 Use with Lesson 84 Parallel lines are in the same plane and never intersect. You can use a straightedge and protractor to draw parallel lines. ctivity 1 Draw a line on your paper. Label two points and B. B KEYWORD: MR7 Lab8 Georgia Performance Standards M6P2.a, M6P2.b, M6P5.a Use your protractor to measure and mark a 90 angle at each point. Draw rays with endpoints and B through the marks you made with the protractor. B Place the point of your compass on point, and draw an arc through the ray. Use the same compass opening to draw an arc through the ray at point B. Label the points of intersection X and Y. X B Y Now use your straightedge to draw a line through X and Y. Use the symbol for parallel lines to indicate that B is parallel to XY. B XY X Y B 432 Chapter 8 Geometric Relationships
22 When a pair of parallel lines is intersected by a third line, the angles formed have special relationships. 2 Draw a pair of parallel lines and a third line that intersects them. Label the angles 1 through 8, as shown. ngles inside the parallel lines are called interior angles. The interior angles here are angles 3, 4, 5, and 6. ngles outside the parallel lines are called exterior angles. The exterior angles here are angles 1, 2, 7, and Measure each angle, and write its measurement inside the angle. Shade angles with the same measure with the same color. The interior angles with the same measure are called alternate interior angles. They are angles 3 and 6 and angles 4 and 5. The exterior angles with the same measure are called alternate exterior angles. They are angles 1 and 8 and angles 2 and 7. ngles in the same position when the third line intersects the parallel lines are called corresponding angles. Think and Discuss 1. Name three pairs of corresponding angles. 2. Tell the relationship between the measure of interior angles and the measure of exterior angles. Try This Follow the steps to construct and label the diagram. 1. Draw a pair of parallel lines, and draw a third line intersecting them where one angle measures Label each angle on the diagram using the measure you know. 84 HandsOn Lab 433
23 Quiz for Lessons 81 Through Building Blocks of Geometry Use the diagram to name each geometric figure. 1. three points 2. two lines 3. a point shared by two lines 4. a plane 5. two different line segments 6. two different rays L N O M Ready to Go On? 82 Measuring and Classifying ngles Use a protractor to measure each angle. Then classify each angle as acute, right, obtuse, or straight The quarterback of a football team throws a long pass, and the angle the path of the ball makes with the ground is 30. Draw an angle with this measurement. 83 ngle Relationships 12. If two angles are supplementary and one angle measures 97, what is the measure of the other angle? Find each unknown angle measure b c a d Classifying Lines Classify each pair of lines Chapter 8 Geometric Relationships
24 Solve Eliminate answer choices Sometimes, when a problem has multiple answer choices, you can eliminate some of the choices to help you solve the problem. For example, a problem reads, The missing shape is not a red triangle. If one of the answer choices is a red triangle, you can eliminate that answer choice. Read each problem, and look at the answer choices. Determine whether you can eliminate any of the answer choices before solving the problem. Then solve. Smileys are letters and symbols that look like faces if you turn them around. When you write an to someone, you can use smileys to show how you are feeling. For 1 3, use the table. 1 Dora made a pattern with smileys. Which smiley will she probably use next? :D :) :D :) :D :) :D :) :D B :D C :) :) D :D Smileys Symbol Meaning :( Frown :D Laugh :) Smile :o Shout ;) Wink 2 3 Troy made a pattern with smileys. Identify a pattern. Which smiley is missing? :( ;) :o :( ;) :o :( :o F G :( H ;) :o ;) To end an , Mya typed four smileys in a row. The shout is first. The wink is between the frown and the smile. The smile is not last. In which order did Mya type the smileys? :o :( ;) :) C :) ;) :o :( B :o :) ;) :( D :o ;) :( :) J Mindy2005: My mom says she will take us to the movie Fri. :) CarlyQ: Cool. re Jaime and Rachel going too? :D Mindy2005: No, Rachel and Jaime are going to visit their grandmother. :( CarlyQ: We will have fun anyway. ;) Focus on Problem Solving 435
Mathematical Practices
The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K12 MP 1 CC.K12.MP.1 Make sense of problems and persevere in
More informationPerformance Assessment Task Which Shape? Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
More informationJust want the standards alone? You can find the standards alone at http://corestandards.org/thestandards
4 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 201213 school year. This document is designed to help North
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationCommon Core State Standards for. Mathematics
Common Core State Standards for Mathematics Table of Contents Introduction 3 Standards for Mathematical Practice 6 Standards for Mathematical Content Kindergarten 9 Grade 1 13 Grade 2 17 Grade 3 21 Grade
More informationPrimes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
More informationMathematics. Routine Bank
S D C S SAN DIEGO CITY SCHOOLS MIDDLE LEVEL Instruction & Curriculum Mathematics Mathematics Routine Bank Middle Level Routines in Mathematics: Number Sense and Algebraic Thinking page 2 Middle Level Routines
More informationCore Academic Skills for Educators: Mathematics
The Praxis Study Companion Core Academic Skills for Educators: Mathematics 5732 www.ets.org/praxis Welcome to the Praxis Study Companion Welcome to The Praxis Study Companion Prepare to Show What You Know
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationMATHEMATICAL KNOWLEDGE FOR TEACHING (MKT) MEASURES
LEARNING MATHEMATICS FOR TEACHING MATHEMATICAL KNOWLEDGE FOR TEACHING (MKT) MEASURES MATHEMATICS RELEASED ITEMS 2008 University of Michigan, Ann Arbor 610 E. University #1600 Ann Arbor, MI 481091259 (734)
More informationELEMENTARY & MIDDLE SCHOOL MATHEMATICS
ELEMENTARY & MIDDLE SCHOOL MATHEMATICS Teaching Developmentally, 5/E 2003 John A.Van de Walle 020538689X Bookstore ISBN Visit www.ablongman.com/replocator to contact your local Allyn & Bacon/Longman
More informationDOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2
DOEHDBK1014/292 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release; distribution
More informationFIRST GRADE Number and Number Sense
FIRST GRADE Number and Number Sense Hundred Chart Puzzle Reporting Category Number and Number Sense Topic Count and write numerals to 100 Primary SOL 1.1 The student will a) count from 0 to 100 and write
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationCAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 2006 Director Sarah R. Martinez,
More informationCS488/688. Sample Exam Questions
CS488/688 Sample Exam Questions University of Waterloo School of Computer Science Computer Graphics Lab January 14, 2015 This is a set of questions covering the course material. They have been asked on
More informationProgressions for the Common Core State Standards in Mathematics (draft)
Progressions for the Common Core State Standards in Mathematics (draft) cthe Common Core Standards Writing Team July Suggested citation: Common Core Standards Writing Team. (, July ). Progressions for
More informationMathematical challenges for able pupils. in Key Stages 1 and 2
Mathematical challenges for able pupils in Key Stages 1 and 2 Department for Education and Employment Sanctuary Buildings Great Smith Street Westminster London SW1P 3BT Extracts from this document may
More informationPerfect For RTI. Getting the Most out of. STAR Math. Using data to inform instruction and intervention
Perfect For RTI Getting the Most out of STAR Math Using data to inform instruction and intervention The Accelerated products design, STAR Math, STAR Reading, STAR Early Literacy, Accelerated Math, Accelerated
More informationPlay It Fair! Play it Fair! Acknowledgement. Index of Reference Sheets. Play it Fair! Human Rights Education Toolkit for Children
Play It Fair! Human Rights Education Toolkit for Children Acknowledgement This program is made possible thanks to the support of: The City of Montreal through its Direction de la diversité sociale; Ministère
More informationIn the last fifty years, the use of the notion of 'category' has led to a remarkable unification and simplification of mathematics.
In the last fifty years, the use of the notion of 'category' has led to a remarkable unification and simplification of mathematics. Written by two of the bestknown participants in this development, Conceptual
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationAlgorithms for Designing PopUp Cards
Algorithms for Designing PopUp Cards Zachary Abel Erik D. Demaine Martin L. Demaine Sarah Eisenstat Anna Lubiw André Schulz Diane L. Souvaine Giovanni Viglietta Andrew Winslow Abstract We prove that every
More informationTEACHING ADULTS TO MAKE SENSE OF NUMBER TO SOLVE PROBLEMS USING THE LEARNING PROGRESSIONS
TEACHING ADULTS TO MAKE SENSE OF NUMBER TO SOLVE PROBLEMS USING THE LEARNING PROGRESSIONS Mā te mōhio ka ora: mā te ora ka mōhio Through learning there is life: through life there is learning! The Tertiary
More informationTeacher Guide. Major funding provided by: Additional support from: A creation of:
Major funding provided by: Additional support from: A creation of: Major funding provided by: Additional support from: A creation of: Open Your Eyes to the Sky! Invite the Sun, stars, and Moon into your
More informationP21 Common Core Toolkit A Guide to Aligning the Common Core State Standards with the Framework for 21st Century Skills
P21 Common Core Toolkit A Guide to Aligning the Common Core State Standards with the Framework for 21st Century Skills contents Introduction..............................................................
More informationThe Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationGuide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator
Guide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator This Guide is designed to offer stepbystep instruction for using your TI83, TI83 Plus, or TI84 Plus graphing calculator
More informationExample Descriptions for Study Lesson Plans 1
Example Descriptions for Study Lesson Plans 1 I. Background information A. Goal of the Lesson Study Group Example 1 (Tsuta Elementary School, Hiroshima, Japan) The students at this school are cheerful,
More information