# 6.3 Polar Coordinates

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard form Then ou label how long r is: EXAMPLE: Plot 4, 4 in the polar coordinate sstem 180 We can convert into degrees b multipling b 4 You will get 15 degrees This is in the second quadrant First draw the angle and then mark off 4 units to represent the radius EXAMPLE: Plot 5, 5 in the polar coordinate sstem We can convert into degrees b multipling b You will get 00 degrees This is in the fourth quadrant First draw the angle and then mark off 5 units to represent the radius EXAMPLE: Plot, 10 in the polar coordinate sstem We alread have it in degrees This is in the second quadrant First draw the angle in standard position Since we have a negative radius, we must plot this differentl Instead of marking along our original angle, we will draw another angle eactl 180 degrees awa from our original angle Then we mark off units

2 EXAMPLE: Plot, in the polar coordinate sstem Section 6 Notes Page 180 We need to convert this into degrees b multipling b You will get -90 degrees First draw the angle in standard position Remember that negative angles are drawn clockwise in standard position Since we have a negative radius instead of marking along our original angle, we will draw another angle eactl 180 degrees awa from our original angle Then we mark off units EXAMPLE: Plot, 4 in the polar coordinate sstem 180 We need to convert this into degrees b multipling b You will get -15 degrees First draw the angle in standard position Remember that negative angles are drawn clockwise in standard position Since we have a negative radius instead of marking along our original angle, we will draw another angle eactl 180 degrees awa from our original angle Then we mark off units Equivalent Angles There are more than one wa to arrive at the same angle For eample in the previous problem, -15 degrees is the same as If we have 10 degrees then this is the same as So for negative angles, just add 60 degrees For positive angles add negative 60 degrees to find the equivalent angle So basicall we can either move clockwise or counterclockwise to arrive at the same angle r, or r, 60 r, or r, 180 EXAMPLE: Given the polar coordinate 5, 00, find an equivalent polar coordinate that has the following characteristics: a) 60 0, r > 0 b) 0 60, r < 0, c) 60 70, r > 0 a) In this problem we are told to work in degrees We want an angle that is negative that will lead us to the same point We are allowed to add or subtract a 60 and that won t change our problem So we can do This is an equivalent angle So our equivalent point is 5, 60 Our r is positive, so we are done tells us that we can add a 180 degrees to our angle and this will change the r to a r Now if we add 180 degrees then we will get an angle more than 60 degrees, so we must subtract 180 degrees: Our equivalent point is: 5, 10 b) Now we want r to be negative The formula above 180

4 Conversion formulas from polar to rectangular coordinates Section 6 Notes Page 4 r cos r sin r EXAMPLE: Convert 5, into a rectangular point We can use the above formulas and plug in a 5 for r and a for We will have: 5cos This equals: 1 5 Now we will find : 5 5, EXAMPLE: Convert, sin This equals: into a rectangular point So our rectangular point is We can use the above formulas and plug in a - for r and a for We will have: cos This 4 4 equals: Now we will find : sin This equals: 4 So our rectangular point is, EXAMPLE: Convert, into a rectangular point We can use the above formulas and plug in a - for r and a for We will have: cos This 1 equals: 1 Now we will find : sin This equals: So our rectangular point is 1, r 1 sin into a rectangular equation First let s multipl the both sides of the equation b r This will allow us to put in substitutions for the sine: r r r sin Now we will replace the r with and we can replace the r sin with Then we have: There is nothing more we can do with this

5 r 4 into a rectangular equation Section 6 Notes Page 5 We can square both sides b r to get: r 16 So 16, which is a circle r into a rectangular equation cos First we can cross multipl to get: r r cos Now replace the r with with an : Not much more to do here and replace the r cos r sin 4cos into a polar equation First let s multipl the both sides of the equation b r This will allow us to put in substitutions for the sine and cosine: r r sin 4r cos Now we will replace the r with and we can replace the r sin with and the r cos with Then we have: 4 On the quiz and test this tpe of question will be given as multiple choice You would notice that our answer above would not appear as one of the choices There is more we can do with this one First set it equal to zero and group all the and terms together: 4 0 Now we can complete the square on both sides: Now we factor and our answer is: ( ) 1 5 This is a circle Conversion formulas from rectangular to polar coordinates r If (, ) is in the first or fourth quadrant, then tan 1 1 If (, ) is in the second or third quadrant, then tan EXAMPLE: Convert, into a polar coordinate Epress our angle in radians We can use the above formulas and plug in a - for and a for This will give us r: ( ) () r will give us r If we plot, we will end up in the second quadrant So we will use 1 tan, so tan 1 This equals: So our polar coordinates are, 4 This

6 Section 6 Notes Page 6 EXAMPLE: Convert, into a polar coordinate Epress our angle in radians We can use the above formulas and plug in a - for and a for This will give us r: This will give us 4 1, we will end up in the 1 4 third quadrant So we will use tan, so tan 1 This equals: So 4 our polar coordinates are 4, ( ) r r, so r = 4 If we plot EXAMPLE: Convert 1, into a polar coordinate Epress our angle in radians 1 We can use the above formulas and plug in a for and a for This will give us r: 1 r This will give us 1 r 1, so r = 1 If we plot, we will end up in the 1 fourth quadrant So we will use tan, so tan 1 This equals: tan 1 Therefore, 1 So our polar coordinates are 1, into a polar equation In this equation we will replace with r and we will replace with r cos We get: r r cos We need to set this equal to zero and solve for r We will get: r r cos 0 Now factor out an r: r ( r cos ) 0 Solving for r we get: r 0 and r cos 4 1 into a polar equation In this equation we will replace with r cos and we will replace with r sin We get: 4r cos r sin 1 This equals 4r cos sin 1 Can t do much more with this into a polar equation In this equation we will replace with r sin and we will replace with r cos You will get: r sin r cos On the quiz and test this tpe of question will be given as multiple choice You would notice that our answer above would not appear as one of our choices That means we need to simplif this

7 Section 6 Notes Page 7 further First set this equal to zero: sin cos r r 0 Now factor our an r: r ( r sin cos ) 0 Now set both factors equal to zero Y ou will get r = 0 and r sin cos 0 We need to solve the second cos cos 1 equation for r You will get: r This can be written as: r Then our final answer sin sin sin is r cot csc

### Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

### Chapter 5: Trigonometric Functions of Real Numbers

Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the

### Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### Section 9.4 Trigonometric Functions of any Angle

Section 9. Trigonometric Functions of any Angle So far we have only really looked at trigonometric functions of acute (less than 90º) angles. We would like to be able to find the trigonometric functions

### Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

### POLAR COORDINATES DEFINITION OF POLAR COORDINATES

POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand

### Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

### M3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.

M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides

5.2 Trigonometric Functions Of Real Numbers Copyright Cengage Learning. All rights reserved. Objectives The Trigonometric Functions Values of the Trigonometric Functions Fundamental Identities 2 Trigonometric

### (Refer Slide Time: 0:45)

Strength of Materials Prof S. K. Bhattachara Department of Civil Engineering Indian Institute of Technolog, Kharagpur Lecture - 5 Analsis of Stress - IV (Refer Slide Time: 0:45) Welcome to the 5th lesson

### SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

### MA Lesson 19 Summer 2016 Angles and Trigonometric Functions

DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

### 1. The Six Trigonometric Functions 1.1 Angles, Degrees, and Special Triangles 1.2 The Rectangular Coordinate System 1.3 Definition I: Trigonometric

1. The Si Trigonometric Functions 1.1 Angles, Degrees, and Special Triangles 1. The Rectangular Coordinate Sstem 1.3 Definition I: Trigonometric Functions 1.4 Introduction to Identities 1.5 More on Identities

### Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

### 3. EVALUATION OF TRIGONOMETRIC FUNCTIONS

. EVALUATIN F TIGNMETIC FUNCTINS In this section, we obtain values of the trigonometric functions for quadrantal angles, we introduce the idea of reference angles, and we discuss the use of a calculator

### SUM AND DIFFERENCE FORMULAS

SUM AND DIFFERENCE FORMULAS Introduction We have several identities that we are concentrating on in this section: o Difference Identities for Cosine o Sum Identities for Cosine o Cofunction Identities

5.1 The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2 The Unit Circle In this section we explore some

### Chapter 6 Trigonometric Functions of Angles

6.1 Angle Measure Chapter 6 Trigonometric Functions of Angles In Chapter 5, we looked at trig functions in terms of real numbers t, as determined by the coordinates of the terminal point on the unit circle.

### D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

### Higher. Functions and Graphs. Functions and Graphs 18

hsn.uk.net Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 8 Sets 8 Functions 9 Composite Functions 4 Inverse Functions 5 Eponential Functions 4 6 Introduction to Logarithms

### ASA Angle Side Angle SAA Side Angle Angle SSA Side Side Angle. B a C

8.2 The Law of Sines Section 8.2 Notes Page 1 The law of sines is used to solve for missing sides or angles of triangles when we have the following three cases: S ngle Side ngle S Side ngle ngle SS Side

### The Rectangular Coordinate System

The Mathematics Competenc Test The Rectangular Coordinate Sstem When we write down a formula for some quantit,, in terms of another quantit,, we are epressing a relationship between the two quantities.

### Section 7.5 Unit Circle Approach; Properties of the Trigonometric Functions. cosθ a. = cosθ a.

Section 7.5 Unit Circle Approach; Properties of the Trigonometric Functions A unit circle is a circle with radius = 1 whose center is at the origin. Since we know that the formula for the circumference

### Write seven terms of the Fourier series given the following coefficients. 1. a 0 4, a 1 3, a 2 2, a 3 1; b 1 4, b 2 3, b 3 2

36 Chapter 37 Infinite Series Eercise 5 Fourier Series Write seven terms of the Fourier series given the following coefficients.. a 4, a 3, a, a 3 ; b 4, b 3, b 3. a.6, a 5., a 3., a 3.4; b 7.5, b 5.3,

### 4.1: Angles and Radian Measure

4.1: Angles and Radian Measure An angle is formed by two rays that have a common endpoint. One ray is called the initial side and the other is called the terminal side. The endpoint that they share is

### Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0 P(X, Y) X

Rotation of Aes For a discussion of conic sections, see Appendi. In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the general second-degree

### We d like to explore the question of inverses of the sine, tangent, and secant functions. We ll start with f ( x)

Inverse Trigonometric Functions: We d like to eplore the question of inverses of the sine, tangent, and secant functions. We ll start with f ( ) sin. Recall the graph: MATH 30 Lecture 0 of 0 Well, we can

### Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

### Section 6-3 Double-Angle and Half-Angle Identities

6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

### Trigonometry Review Workshop 1

Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

### 3.4 The Point-Slope Form of a Line

Section 3.4 The Point-Slope Form of a Line 293 3.4 The Point-Slope Form of a Line In the last section, we developed the slope-intercept form of a line ( = m + b). The slope-intercept form of a line is

### Lesson Two. Pre Calculus Math 40S: Explained! 152

Lesson Two Pre Calculus Math 40S: Eplained! www.math40s.com 5 PART I MULTIPLICATION & DIVISION IDENTITLES Algebraic proofs of trigonometric identities In this lesson, we will look at various strategies

### Section 5-9 Inverse Trigonometric Functions

46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

### Who uses this? Engineers can use angles measured in radians when designing machinery used to train astronauts. (See Example 4.)

1- The Unit Circle Objectives Convert angle measures between degrees and radians. Find the values of trigonometric functions on the unit circle. Vocabulary radian unit circle California Standards Preview

### SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

### 1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

### Trigonometry Hard Problems

Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

### Finding trig functions given another or a point (i.e. sin θ = 3 5. Finding trig functions given quadrant and line equation (Problems in 6.

1 Math 3 Final Review Guide This is a summary list of many concepts covered in the different sections and some examples of types of problems that may appear on the Final Exam. The list is not exhaustive,

### Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

### Math Placement Test Practice Problems

Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

### 7 3: Trigonometric Identities Fundamental Identities! Sum and Difference Identities

7 3: Trigonometric Identities Fundamental Identities! Sum and Difference Identities sin 2 θ + cos 2 θ! sin( θ) sinθ! cos(a + B) cos A cosb sin A sinb tan 2 θ + sec 2 θ! cos( θ) cosθ! cos(a B) cos A cosb

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### 29 Wyner PreCalculus Fall 2016

9 Wyner PreCalculus Fall 016 CHAPTER THREE: TRIGONOMETRIC EQUATIONS Review November 8 Test November 17 Trigonometric equations can be solved graphically or algebraically. Solving algebraically involves

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)

5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If

### 7.4 Trigonometric Identities

7.4 Trigonometric Identities Section 7.4 Notes Page This section will help you practice your trigonometric identities. We are going to establish an identity. What this means is to work out the problem

### Core Maths C3. Revision Notes

Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

### 4.1 Radian and Degree Measure

Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

### Graphing Nonlinear Systems

10.4 Graphing Nonlinear Sstems 10.4 OBJECTIVES 1. Graph a sstem of nonlinear equations 2. Find ordered pairs associated with the solution set of a nonlinear sstem 3. Graph a sstem of nonlinear inequalities

### Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

### CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS

CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems

### Vector Fields and Line Integrals

Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.

### Trigonometry Chapter 3 Lecture Notes

Ch Notes Morrison Trigonometry Chapter Lecture Notes Section. Radian Measure I. Radian Measure A. Terminology When a central angle (θ) intercepts the circumference of a circle, the length of the piece

### Week 13 Trigonometric Form of Complex Numbers

Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

### Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers

Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Identify the number as real, complex, or pure imaginary. 2i The complex numbers are an extension

### Trigonometry Lesson Objectives

Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the

### Inverse Circular Function and Trigonometric Equation

Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse

### Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

### Definition III: Circular Functions

SECTION 3.3 Definition III: Circular Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Evaluate a trigonometric function using the unit circle. Find the value of a

### Laboratory 2 Application of Trigonometry in Engineering

Name: Grade: /26 Section Number: Laboratory 2 Application of Trigonometry in Engineering 2.1 Laboratory Objective The objective of this laboratory is to learn basic trigonometric functions, conversion

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

### How to Graph Trigonometric Functions

How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

### Evaluating trigonometric functions

MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

### Plotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time.

Plotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time. r = 1 cos(θ) r = 1 + cos(θ) r = 1 + sin(θ) r = 1 sin(θ) Now let us look at a similar

### Lesson 6.1 Exercises, pages

Lesson 6. Eercises, pages 7 80 A. Use technolog to determine the value of each trigonometric ratio to the nearest thousandth. a) sin b) cos ( 6 ) c) cot 7 d) csc 8 0.89 0. tan 7 sin 8 0..0. Sketch each

### Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

### n th roots of complex numbers

n th roots of complex numbers Nathan Pflueger 1 October 014 This note describes how to solve equations of the form z n = c, where c is a complex number. These problems serve to illustrate the use of polar

### Example #1: f(x) = x 2. Sketch the graph of f(x) and determine if it passes VLT and HLT. Is the inverse of f(x) a function?

Unit 3 Eploring Inverse trig. functions Standards: F.BF. Find inverse functions. F.BF.d (+) Produce an invertible function from a non invertible function by restricting the domain. F.TF.6 (+) Understand

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assume that the cities lie on the same north-south line and that the radius of the earth

### MATHEMATICS PAPER 2. Samir Daniels Mathematics Paper 2 Page 1

MATHEMATICS PAPER 2 Geometry... 2 Transformations... 3 Rotation Anticlockwise around the origin... 3 Trigonometry... 4 Graph shifts... 4 Reduction Formula... 4 Proving Identities... 6 Express in terms

### TRIGONOMETRIC FUNCTIONS

Chapter TRIGONOMETRIC FUNCTIONS.1 Introduction A mathematician knows how to solve a problem, he can not solve it. MILNE The word trigonometr is derived from the Greek words trigon and metron and it means

### 6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

### LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

### Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates

Section.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in

### Trigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out:

First, a couple of things to help out: Page 1 of 24 Use periodic properties of the trigonometric functions to find the exact value of the expression. 1. cos 2. sin cos sin 2cos 4sin 3. cot cot 2 cot Sin

### Algebra 2/ Trigonometry Extended Scope and Sequence (revised )

Algebra 2/ Trigonometry Extended Scope and Sequence (revised 2012 2013) Unit 1: Operations with Radicals and Complex Numbers 9 days 1. Operations with radicals (p.88, 94, 98, 101) a. Simplifying radicals

### Sample Problems. Practice Problems

Lecture Notes Circles - Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points

### 4 Non-Linear relationships

NUMBER AND ALGEBRA Non-Linear relationships A Solving quadratic equations B Plotting quadratic relationships C Parabolas and transformations D Sketching parabolas using transformations E Sketching parabolas

### Math 1400/1650 (Cherry): Quadratic Functions

Math 100/1650 (Cherr): Quadratic Functions A quadratic function is a function Q() of the form Q() = a + b + c with a 0. For eample, Q() = 3 7 + 5 is a quadratic function, and here a = 3, b = 7 and c =

### SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,

### Alex and Morgan were asked to graph the equation y = 2x + 1

Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

### LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

### PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

### Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

### Calculator Notes for the TI-83 and TI-83/84 Plus

CHAPTER 10 Calculator Notes for the Note 10A Unit Circle Follow these steps to graph a unit circle: a. Press MODE and set the third line to Degree and the fourth line to Par. b. On the Y screen, enter

### y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions

MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y

### Trigonometric Identities and Conditional Equations C

Trigonometric Identities and Conditional Equations C TRIGONOMETRIC functions are widely used in solving real-world problems and in the development of mathematics. Whatever their use, it is often of value

### Section 10.7 Parametric Equations

299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

### ALGEBRA 2/ TRIGONOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Friday, June 14, 2013 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 28.......................

### This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,