4.4 Equations of the Form ax + b = cx + d

Size: px
Start display at page:

Download "4.4 Equations of the Form ax + b = cx + d"

Transcription

1 4.4 Equations of the Form ax + b = cx + d We continue our study of equations in which the variable appears on both sides of the equation. Suppose we are given the equation: 3x + 4 = 5x! 6 Our first step is to convert the equation to one of the form ax + b = c, from the last section. Note that the Addition property of equations allows us to add the same quantity to each side of the equation. This quantity can also be an expression (rather than a number). To eliminate the 5x term on the right-hand side of the equation, we will add its opposite 5x to each side of the equation: 3x + (!5x) + 4 = 5x + (!5x)! 6!x + 4 =!6 We can now solve the equation as we did in the previous section:!x + 4 =!6!x (!4) =!6 + (!4)!x =!0! (!x) =! (!0) x = 5 To check our solution, we substitute x = 5 into both sides of the equation: = 5 5! = 5! 6 9 = 9 3

2 Note that we could have also solved the equation by adding 3x (the opposite of 3x) to each side of the equation: 3x + (!3x) + 4 = 5x + (!3x)! 6 4 = x! = x! = x 0 = x 5 = x Note that the solution is the same (although the variable appears on the right-hand side). Generally we will add the variable to the left-hand side, primarily for consistency with the last section. Example Solve the following equations. Include a check of your solution. a. 5x + 3 = x! 9 b. 4y! 5 =!y! 7 c.!3x + = x! 6 d. a! 3 = 5a! 7 Solution a. First add x to each side of the equation, then solve the resulting equation: 5x + 3 = x! 9 ( ) + 3 = x + (!x)! 9 5x +!x 3x + 3 =!9 3x (!3) =!9 + (!3) 3x =! 3 3x = 3 (!) x =!4 5!4 ( ) + 3 =!4 ( )! 9!0 + 3 =!8! 9!7 =!7 33

3 b. First add y to each side of the equation, then solve the resulting equation: 4y! 5 =!y! 7 4y + y! 5 =!y + y! 7 6y! 5 =!7 6y! =! y =! 6 6y = 6 (!) y =! 4! ( )! 5 =!! ( )! 7!8! 5 = 4! 7!3 =!3 c. First add x to each side of the equation, then solve the resulting equation:!3x + = x! 6!3x +!x ( ) + = x + (!x)! 6!5x + =!6!5x + +! ( ) =!6 + (!)!5x =!8! 5 (!5x) =! 5 (!8) x = 8 5! = 8 5! 6! = 6 5! 6! = 6 5! 30 5! 4 5 =!

4 d. First add 5a to each side of the equation, then solve the resulting equation: a! 3 = 5a! 7 ( )! 3 = 5a + (!5a)! 7 a +!5a!3a! 3 =!7!3a! =!7 + 3!3a =!4! 3 (!3a) =! 3 (!4) a = ! 3 = 5 4 3! 7 8 3! 3 = 0 3! 7 8 3! 9 3 = 0 3! 3! 3 =! 3 As in the previous section, equations which contain fractions are best solved by multiplying by the LCM of all fractions within the equation. The next example illustrates this technique further. Example Solve each equation by first eliminating fractions. Include a check of your solution. a. x = x! 3 b. 3 y! = y! 3 c. 6 s! 3 4 = 4 s! 3 d..4t!.3 = 4.4t!

5 Solution a. The LCM of, 4, and 3 is. Multiplying each side of the equation by and solving the resulting equation: x = x! 3 x + 3 % 4 x! % 3 x = x! 3 6x + 9 = x! 8 ( ) + 9 = x + (!x)! 8 6x +!x!6x + 9 =!8!6x + 9! 9 =!8! 9!6x =!7! 6 (!6x) =! 6 (!7) x = = 7 6! = 7 6! = 7 6! = =

6 b. The LCM of 3 and is 6. Multiplying each side of the equation by 6 and solving the resulting equation: 3 y! = y! y! % = 6 y! % y! 6 = 6y! 6 3 y! 3 = 6y! ( )! 3 = 6y + (!6y)! y +!6y!4y! 3 =!!4y! =! + 3!4y =! 4 (!4y) =! 4 y =! 4 3! % 4! =! 4! 3!! =! 4! 3!! 6 =! 3! 4! 7 =! 7 37

7 c. The LCM of 6, 4, and 3 is. Multiplying each side of the equation by and solving the resulting equation: 6 s! 3 4 = 4 s! 3 6 s! 3 % 4 = 4 s! % 3 6 s! 3 4 = 4 s! 3 s +!3s s! 9 = 3s! 8 ( )! 9 = 3s + (!3s)! 8!s! 9 =!8!s! =!8 + 9!!s!s = ( ) =! s =! 6! ( )! 3 4 = 4! ( )! 3! 6! 3 4 =! 4! 3!! 9 =! 3! 8! =! 38

8 d. This equation may not appear to contain fractions, but remember that the decimals in this equation each represent tenths. Multiplying each side of the equation by 0 and solving the resulting equation:.4t!.3 = 4.4t! 5.6 ( ) = 0( 4.4t! 5.6) 0.4t!.3 0.4t! 0.3 = 0 4.4t! t +!44t 4t! 3 = 44t! 56 ( )! 3 = 44t + (!44t)! 56!0t! 3 =!56!0t! =!56 + 3!0t =!43! 0 (!0t) =! 0 (!43) t = 43 0 t =.5 Note that we converted the fractional answer to a decimal, since the original equation involved decimals..4.5!.3 = 4.4.5! !.3 = 9.46! = 3.86 We now are armed with the techniques for solving all equations of the form ax + b = cx + d. Recall in Section 4. we simplified expressions by combining like terms. We now include some of those expressions into the form of equations. Suppose we are given the equation: 3( x! 4) =!( x + 4) Begin by simplifying each side of the equation (using the distributive property): ( ) =!( x + 4) 3 x! 4 3 x! 3 4 =!x + (!) 4 6x! =!x! 8 39

9 Now solve the equation as in the previous example: 6x! =!x! 8 6x + x! =!x + x! 8 8x! =!8 8x! + =!8 + 8x = 4 8 8x = 8 4 x = 3! 4 % =! + 4 % ( ) =! + 8 3! 4 3!3 ( ) =! 9!9 =!9 The next example will provide additional practice in solving these equations. % % Example 3 Solve the following equations. Include a check of your solution. ( ) = 3( x + ) ( ) = 3( 3y + ) ( ) = 3( b + ) ( 5w! 4) = ( 3 w + ) a. 5 x! b. 4 y! c.! 3b! d. 30

10 Solution a. Apply the distributive property then solve the resulting equation: 5 x! 5x +!6x ( ) = 3( x + ) 5x! 0 = 6x + 3 ( )! 0 = 6x + (!6x) + 3!x! 0 = 3!x! = 3 + 0!!x 5!3!!x = 3 ( ) =! 3 x =!3 ( ) = 3( (!3) + ) 5 (!5) = 3 (!6 + )!75 = 3 (!5)!75 =!75 b. Apply the distributive property then solve the resulting equation: 4 y! ( ) = 3( 3y + ) 8y! 4 = 9y + 6 ( )! 4 = 9y + (!9y) + 6 8y +!9y!y! 4 = 6!y! = 6 + 4!!y!y = 0 ( ) =! 0 y =!0 4 (!0)! ( ) = 3( 3 (!0) + ) 4 (!0! ) = 3 (!30 + ) 4 (!) = 3 (!8)!84 =!84 3

11 c. Apply the distributive property then solve the resulting equation:! 3b!!6b +!6b ( ) = 3( b + )!6b + 4 = 6b + 3 ( ) + 4 = 6b + (!6b) + 3!b + 4 = 3!b (!4) = 3 + (!4)!b =!! (!b) =! (!) b =! 3! % = 3 + %! 4! % = %! 4! 8 % 4 = % 6!! 7 % 4 = 3 7 % 6 7 = 7 3

12 d. Apply the distributive property, clear the equation of fractions by multiplying by the LCM, then solve the resulting equation: 5w! 4 ( ) = 3 w + ( ) 5 w! = 3 w w! % = 6 3 w + % w! 6 = 6 3 w w! = 4w + 5w +!4w ( )! = 4w + (!4w) + w! = w! + = + w = 4 w = 4 w = 4 5 4! 4 % = % 70! 4 % = % 70! 44 % = % 6% = 39% 3 3 = 3 33

13 Not all equations we encounter have unique solutions. Consider the equation: 5x! 3 = 5x + To isolate the variable, we add!5x to each side of the equation: 5x +!5x 5x! 3 = 5x + ( )! 3 = 5x + (!5x) +!3 = But note this equation is false. Recall that solutions are values of the variables which result in a true statement, and thus there is no solution to this equation. Suppose the equation to solve is: 4x + 6 = ( x + 3) Using the distributive property and solving the equation: 4x + 6 = ( x + 3) 4x + 6 = 4x + 6 ( ) + 6 = 4x + (!4x) + 6 4x +!4x 6 = 6 Again note that the variable dropped out of the equation, but this time the equation is true. Thus any value for the variable results in a true statement, so we say any number is a solution to this equation. Example 4 Solve each equation. State that there is no solution or any number solution. a. x! 3 = x! 3 b. 3 4r! 5 ( ) = ( 6r! 7) c. y! % 3 = 6 y! % 3 d. 5 3 v! 3 % 5 = 0 v! % 34

14 Solution a. Solving the equation: x! 3 = x! 3 ( )! 3 = x + (!x)! 3 x +!x!3 =!3 Since this statement is true for any value of x, any number is a solution. b. Using the distributive property and solving the equation: 3 4r! 5 r +!r ( ) = ( 6r! 7) r! 5 = r! 4 ( )! 5 = r + (!r)! 4!5 =!4 Since this statement is false, there is no solution to this equation. c. Using the distributive property and solving the equation: y! % 3 = 6 y! % 3 y! 3 = 6y! 6 3 6y! 4 = 6y! 4 ( )! 4 = 6y + (!6y)! 4 6y +!6y!4 =!4 Since this statement is true for any value of y, any number is a solution. d. Using the distributive property and solving the equation: 5 3 v! 3 % 5 = 0 v! % 5 3 v! = 0 v! 0 5v! 9 = 5v! 0 ( )! 9 = 5v + (!5v)! 0 5v +!5v!9 =!0 Since this statement is false, there is no solution to this equation. 35

15 Example 5 Solve the following equations. State if there is no solution or any number solution. Include a check of your solution. ( )! 4( x! ) =!3 ( )! ( 3y + ) = ( y! ) ( )! 4( s! 3) = 5( s + )! 4( 3s + ) ( 3 t + )! ( t! ) =! a. 5 x + b. 4y! 3 c.!3 s + 4 d. Solution a. Applying the distributive property, then simplifying and solving the equation: 5!6 + 5( x + )! 4( x! ) =!3 5x + 5! 4x + 8 =!3 x + 3 =!3 x (!3) =!3 + (!3) x =!6 ( )! 4 (!6! ) =!3 5 (!5)! 4 (!8) =!3! =!3!3 =!3 b. Applying the distributive property, then simplifying and solving the equation: 4y! 3 ( )! ( 3y + ) = ( y! ) 8y! 6! 6y! = y! 4 y +!y y! 8 = y! 4 ( )! 8 = y + (!y)! 4!8 =!4 Since this statement is false, there is no solution to the equation. 36

16 c. Applying the distributive property, then simplifying and solving the equation:!3 s + 4 ( )! 4 s! 3 ( ) = 5 s + ( )! 4 3s + ( )!3s!! 4s + = 0s + 5! s! 4!7s =!s +!7s + s =!s + s +!5s =! 5 (!5s) =! 5 s =! 5!3! %! 4! 5! 3 % = 5! % % 5 +! 4 3! % % 5 +!3! %! 4! 5! 3 % = 5! 5 + %! 4! %!3! % 5! 4! 5! 5 % 5 = 5! % 5! 4! % 5!3 9 % 5! 4! 6 % 5 = 5 3 % 5! 4 % 5! = 5 5! =

17 d. Applying the distributive property, then simplifying and solving the equation: 3 t + ( )! t! ( ) =! 3 t + 3! t + =! 3 t + 3! t + % =! % 3 t + 3! t + =!6 8t + 8! 6t + =!6 t + 0 =!6 t =!6 t = (!6) t =!3 ( 3!3 + )! (!3! ) =! ( 3!)! (!5) =!!8 + 5 =!! =!! =! In the next section we will consider applications of the algebraic equations we studied in these two sections. Be sure that you understand how to solve these equations through the exercises in this section. 38

18 Exercise Set 4.4 Solve the following equations. State if there is no solution or any number solution. Include a check of your solution.. 4x + 5 = 3x x + 6 = 7x x + 7 = 6x x + 5 = 8x y + 8 = y! y + 9 = 3y! y! 6 = 3y! y! 7 = 7y! 9. 4a! = 7a a! 9 = 8a + 6.!a + 3 = a!.!5a + =!3a! 5 3.!6b + =!3b! 7 4.!7b + =!3b! b! 3 =!3 + 8b 6. b! 5 = 4 + b 7.!3s! 6 = 6! 3s 8.!4s! 9 =!9! 4s 9.!6s + 5 = 8! 3s 0.!7s + = 5! 5s. 4t + 5 = 6t! 7. 7t! 8 = t + 3.!3t + 7 = 5t! 3 4.!t + 6 = 4t! Solve each equation by first eliminating fractions and/or decimals. Include a check of your solution x + 4 = x! 6. 3 x! = x! y + 3 = y! y + = y! s + = 3 5 s! s = 5 s! 3. t + 3 = 6 t! t = t! a! 3 = 3 4 a a = a! b!.5 = 3.3b! b!.9 =.5b! 37.!.r! 3.4 =!.9r!.5 38.!.7r! 4.7 =!.r! t = t =

19 Solve the following equations. State if there is no solution or any number solution. Include a check of your solution x + 3 ( ) = 3( x! 3) 4. 7( x! ) = 3( x! 5) ( ) = ( 4y! 3) 44. ( y! ) = 4( 3y! 5) ( ) = ( 3 a! 5) ( ) = ( 3 a! 3) y! 45. a! a! 5 ( 8 3b! ) = 3 ( 4 b! 3) ( 6 b! 3) = ( 3 b! 5) 49.! 5 ( 6 s! ) =! ( 3 4s! ) 50.! ( 3s! ) =! 3 ( 4 6s! 5) 5. 6 t! 5 53.!4 3u! v! w! x r! y! 65.!3 a! 67.!4 5b! ( ) = 3( 4t! 0) 5. 5( 4t! 3) = ( 0t! 7) ( ) =!3( 4u! 6) 54.!3( u! 4) =!( 3u! 6) ( ) = 0.4( v! 3) 56.!0.4( v + 7) = 0.( v! 5) ( ) = 3( 3.w!.) 58. 5(.5w!.) = 4(.9w!.5) ( )! 6( x + 3) =!9 60. ( x! 3)! ( x! 4) =!8 ( )! ( r + ) =! 6. 5( r! 4)! 8( r! 3) =!8 ( )! 4( 3y! ) =! ( 4y! 3)! ( 0y! 6) =!3 ( ) + ( 4a! 3) =!( 3a! ) 66.!4( a! 3) + 3( 3a! ) =!( a! 3) ( ) + 3( b! ) =!5( 3b! 4) 68.!3( b! 5) + ( 4b! 3) =!( b! 5) 3 v + ) 6 v! ) 70.! 3 4 v! ) 3 v + 3) 3 7.! 5 ( 6 s! )! ( s + ) =! !( g + 3)! 5( g! ) = 4 3g! 74.!3( p + 4)! 4( p! ) = 3 4 p! 5 75.!5( x + 3)! 4( 3x! ) = 5 x! 76.!3( 4y! )! 3( y! 3) =!4 y! 3 ( )! 3( g! ) ( )! 5( 3p! 4) ( )! 4( 3x! ) ( )! 3( y! ) 7.! ( 6 s! )! ( 3 s + ) =! 330

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Fractions to decimals

Fractions to decimals Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information

3.3 Addition and Subtraction of Rational Numbers

3.3 Addition and Subtraction of Rational Numbers 3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations 2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

1.5 Greatest Common Factor and Least Common Multiple

1.5 Greatest Common Factor and Least Common Multiple 1.5 Greatest Common Factor and Least Common Multiple This chapter will conclude with two topics which will be used when working with fractions. Recall that factors of a number are numbers that divide into

More information

5.2 Percent: Converting Between Fractions, Decimals, and Percents

5.2 Percent: Converting Between Fractions, Decimals, and Percents 5.2 Percent: Converting Between Fractions, Decimals, and Percents The concept of percent permeates most common uses of mathematics in everyday life. We pay taes based on percents, many people earn income

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Chapter 5. Rational Expressions

Chapter 5. Rational Expressions 5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

More information

Conversions between percents, decimals, and fractions

Conversions between percents, decimals, and fractions Click on the links below to jump directly to the relevant section Conversions between percents, decimals and fractions Operations with percents Percentage of a number Percent change Conversions between

More information

How To Factor By Gcf In Algebra 1.5

How To Factor By Gcf In Algebra 1.5 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

Maths Refresher. Expanding and Factorising

Maths Refresher. Expanding and Factorising Maths Refresher Expanding and Factorising Expanding and Factorising Learning intentions. Recap Expanding equations Factorising equations Identity: perfect pairs Difference of two squares Introduction Algebra

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

Chapter 1: Order of Operations, Fractions & Percents

Chapter 1: Order of Operations, Fractions & Percents HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Systems of Equations - Addition/Elimination

Systems of Equations - Addition/Elimination 4.3 Systems of Equations - Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS. William Stallings NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

More information

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... Fibonacci Numbers and Greatest Common Divisors The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... After starting with two 1s, we get each Fibonacci number

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

1.4 Compound Inequalities

1.4 Compound Inequalities Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into. Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

More information

Solving Systems of Two Equations Algebraically

Solving Systems of Two Equations Algebraically 8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Multiplying Fractions

Multiplying Fractions . Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

Solving Equations by the Multiplication Property

Solving Equations by the Multiplication Property 2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean

More information

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1 10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

More information

Preliminary Mathematics

Preliminary Mathematics Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Systems of Linear Equations and Inequalities

Systems of Linear Equations and Inequalities Systems of Linear Equations and Inequalities Recall that every linear equation in two variables can be identified with a line. When we group two such equations together, we know from geometry what can

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

To add fractions we rewrite the fractions with a common denominator then add the numerators. = + Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Negative Integer Exponents

Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

3 1B: Solving a System of Equations by Substitution

3 1B: Solving a System of Equations by Substitution 3 1B: Solving a System of Equations by Substitution 1. Look for an equation that has been solved for a single variable. Lets say 2. Substitute the value of that variable from into in place of that variable.

More information

Logarithmic and Exponential Equations

Logarithmic and Exponential Equations 11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance

More information

Solving systems by elimination

Solving systems by elimination December 1, 2008 Solving systems by elimination page 1 Solving systems by elimination Here is another method for solving a system of two equations. Sometimes this method is easier than either the graphing

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

More information

Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER

Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

Dr Brian Beaudrie pg. 1

Dr Brian Beaudrie pg. 1 Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x

More information

Financial Mathematics

Financial Mathematics Financial Mathematics For the next few weeks we will study the mathematics of finance. Apart from basic arithmetic, financial mathematics is probably the most practical math you will learn. practical in

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Solving Linear Equations - General Equations

Solving Linear Equations - General Equations 1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them

More information

Solutions to Linear First Order ODE s

Solutions to Linear First Order ODE s First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we

More information

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule. Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

More information

SIMPLIFYING ALGEBRAIC FRACTIONS

SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

More information

Useful Number Systems

Useful Number Systems Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20. Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving

More information

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2. Fractions and Algebra Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

More information

Completing the square

Completing the square Completing the square mc-ty-completingsquare-009-1 In this unit we consider how quadratic expressions can be written in an equivalent form using the technique known as completing the square. This technique

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

north seattle community college

north seattle community college INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information