# Completing the square

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Completing the square mc-ty-completingsquare In this unit we consider how quadratic expressions can be written in an equivalent form using the technique known as completing the square. This technique has applications in a number of areas,butwewillseeanexampleofitsuseinsolvingaquadraticequation. In order to master the techniques explained here it is vital that you undertake plenty of practice exercisessothatallthisbecomessecondnature. Tohelpyoutoachievethis,theunitincludes a substantial number of such exercises. Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: writeaquadraticexpressionasacompletesquare,plusorminusaconstant solve a quadratic equation by completing the square Contents 1. Introduction. Some simple equations. The basic technique 4. Casesinwhichthecoefficientof x isnot Summary of the process 7 6. Solving a quadratic equation by completing the square c mathcentre 009

2 1. Introduction Inthisunitwelookataprocesscalledcompletingthesquare. Itcanbeusedtowritea quadraticexpressioninanalternativeform. Laterintheunitwewillseehowitcanbeusedto solve a quadratic equation.. Some simple equations Considerthequadraticequation x = 9. Wecansolvethisbytakingthesquarerootofboth sides: x = or remembering that when we take the square root there will be two possible answers, one positive andonenegative.thisisoftenwritteninthebrieferform x = ±. Thisprocessforsolving x = 9isverystraightforward,particularlybecause: 9isa squarenumber,or completesquare. Thismeansthatitistheresultofsquaring anothernumber,orterm,inthiscasetheresultofsquaringor. x isacompletesquare-itistheresultofsquaring x. So simply square-rooting both sides solves the problem. Considertheequation x = 5. Again,wecansolvethisbytakingthesquarerootofbothsides: x = 5 or 5 Inthisexample,theright-handsideof x = 5,isnotasquarenumber. Butwecanstillsolve theequationinthesameway.itisusuallybettertoleaveyouranswerinthisexactform,rather than use a calculator to give a decimal approximation. Suppose we wish to solve the equation x 7) = Again,wecansolvethisbytakingthesquarerootofbothsides.Theleft-handsideisacomplete squarebecauseitresultsfromsquaring x 7. x 7 = or Byadding7toeachsidewecanobtainthevaluesfor x: x = 7 + or 7 Wecouldwritethisinthebrieferform x = 7 ±. c mathcentre 009

3 Supposewewishtosolve x + ) = 5 Againtheleft-handsideisacompletesquare.Takingthesquarerootofbothsides: x + = 5 or 5 Bysubtractingfromeachsidewecanobtainthevaluesfor x: x = + 5 or 5 Exercises 1. Solve the following quadratic equations a) x = 5 b) x = 10 c) x = d) x + 1) = 9 e) x + ) = 16 f) x ) = 100 g) x 1) = 5 h) x + 4) =. The basic technique Nowsupposewewantedtotrytoapplythemethodusedinthethreepreviousexamplesto x + 6x = 4 Ineachofthepreviousexamples,theleft-handsidewasacompletesquare.Thismeansthatin eachcaseittooktheform x + a) or x a).thisisnotthecasenowandsowecannotjust takethesquare-root. Whatwetrytodoinsteadisrewritetheexpressionsothatitbecomesa complete square- hence the name completing the square. Observethatcompletesquaressuchas x + a) or x a) canbeexpandedasfollows: Key Point complete squares: x + a) = x + a)x + a) = x + ax + a x a) = x a)x a) = x ax + a c mathcentre 009

4 Wewillusetheseexpansionstohelpustocompletethesquareinthefollowingexamples. Consider the quadratic expression We compare this with the complete square x + 6x 4 x + ax + a Clearlythecoefficientsof x inbothexpressionsarethesame. Wewouldliketomatchuptheterm axwiththeterm 6x.Todothisnotethat amustbe 6, sothat a =. Recall that x + a) = x + ax + a Thenwith a = x + ) = x + 6x + 9 Thismeansthatwhentryingtocompletethesquarefor x +6x 4wecanreplacethefirsttwo terms, x + 6x,by x + ) 9.So x + 6x 4 = x + ) 9 4 = x + ) 1 Wehavenowwrittentheexpression x + 6x 4asacompletesquareplusorminusaconstant. Wehavecompletedthesquare.Itisimportanttonotethattheconstantterm,,inbrackets is half the coefficient of x in the original expression. Supposewewishtocompletethesquareforthequadraticexpression x 8x + 7. Wewanttotrytorewritethissothatittakestheformofacompletesquareplusorminusa constant. We compare x 8x + 7 withthestandardform x ax + a Thecoefficientsof x arethesame.tomakethecoefficientsof xthesamewemustchoose a tobe4.recallthat x a) = x ax + a Thenwith a = 4 x 4) = x 8x + 16 Thismeansthatwhentryingtocompletethesquarefor x 8x+7wecanreplacethefirsttwo terms, x 8x,by x 4) 16. So x 8x + 7 = x 4) = x 4) 9 Wehavenowwrittentheexpression x 8x + 7asacompletesquareplusorminusaconstant. Wehavecompletedthesquare. Againnotethattheconstantterm, 4,inbracketsishalfthe coefficient of x in the original expression. 4 c mathcentre 009

5 Supposewewishtocompletethesquareforthequadraticexpression x + 5x +. Thismeanswewanttotrytorewriteitsothatithastheformofacompletesquareplusor minusaconstant. Intheexampleswehavejustworkedthroughwehaveseenhowthiscanbe donebycomparingwiththestandardforms x + a) and x a). Wewouldliketobeable to complete the square without writing down all the working we did in the previous examples. Thekeypointtorememberisthatthenumberinthebracketofthecompletesquareishalfthe coefficient of x in the quadratic expression. Sowith x + 5x + weknowthatthecompletesquarewillbe x + 5. Thishasthesame ) x and xtermsasthegivenquadraticexpressionbuttheconstanttermisdifferent. Wemust balance the constant term by a) subtracting the extra constant that our complete square has ) 5 introduced, that is,andb)puttingintheconstanttermfromourquadratic,thatis. Putting this together we have x + 5x + = x + 5 ) Tofinishoffwejustcombinethetwoconstants ) 5 + = = 1 4 andso x + 5x + = x + 5 ) 1 4 ) 5 + 1) Wehavenowwrittentheexpression x + 5x + asacompletesquareplusorminusaconstant. Wehavecompletedthesquare. Againnotethattheconstantterm, 5,inbracketsishalfthe coefficient of x in the original expression. The explanation given above is really just an outline of our thought process; when we complete thesquareinpracticewewouldnotwriteitalldown.wewouldprobablygostraighttoequation 1).Theabilitytodothiswillcomewithpractice. Exercises Completing the square for the following quadratic expressions a) x + x + b) x + x + 5 c) x + x 1 d) x + 6x + 8 e) x 6x + 8 f) x + x + 1 g) x x 1 h) x + 10x 1 i) x + 5x + 4 j) x + 6x + 9 k) x x + 6 l) x x Cases in which the coefficient of x is not 1. We now know how to complete the square for quadratic expressions for which the coefficient of x is1.whenfacedwithaquadraticexpressionwherethecoefficientof x isnot1wecanstill usethistechniquebutweputinanextrastepfirst-wefactoroutthiscoefficient. 5 c mathcentre 009

6 Supposewewishtocompletethesquarefortheexpression x 9x Webeginbyfactoringoutthecoefficientof x,inthiscase.itdoesnotmatterthatisnot afactorof50;wecanstilldothisbywritingtheexpressionas x x + 50 ) Nowtheexpressioninbracketsisaquadraticwithcoefficientof x equalto1andsowecan proceedasbefore.thenumberinthecompletesquarewillbehalfthecoefficientof x,sowewill use x.thenwemustbalanceuptheconstanttermjustaswedidbeforebysubtracting ) ) the extra constant we have introduced, that is,andputtingintheconstantfromthe quadraticexpression,thatis 50. { x x + 50 } = { x ) Thearithmetictotidyuptheconstantsisabitmessy: ) } + 50 So putting all this together ) + 50 = = = 17 1 x x + 50 = x ) and finally and we have completed the square. x x + 50 ) = x ) ) This is the completing the square form for a quadratic expression for which the coefficient of x isnot1. Exercises Completing the square for the following quadratic expressions a) x + 4x 8 b) 5x + 10x + 15 c) x 7x + 9 d) x + 6x + 1 e) x 1x + f) 15 10x x g) 4 + 1x x h) 9 + 6x x 6 c mathcentre 009

7 5. Summary of the process Itwillbeusefulifyoucangetusedtodoingthisprocessautomatically. Themethodcanbe summarised as follows: Key Point 1.factoroutthecoefficientof x -thenworkwiththequadraticexpressionwhichhasa coefficientof x equalto1.checkthecoefficientof xinthenewquadraticexpressionandtakehalfofit-thisisthe number that goes into the complete square bracket.balancetheconstanttermbysubtractingthesquareofthenumberfromstep,and putting in the constant from the quadratic expression 4. the rest is arithmetic that may often involve fractions 6. Solving a quadratic equation by completing the square Letusreturnnowtoaproblemposedearlier.Wewanttosolvetheequation x + 6x = 4. Wewritethisas x + 6x 4 = 0.Notethatthecoefficientof x is1sothereisnoneedtotake out any common factor. Completing the square for quadratic expression on the left-hand side: x + 6x 4 = 0 x + ) 9 4 = 0 1) x + ) 1 = 0 ) x + ) = 1 x + = ± 1 x = ± 1 We have solved the quadratic equation by completing the square. Toproduceequation1)wehavenotedthatthecoefficientof xinthequadraticexpressionis6 sothenumberinthe completesquare bracketmustbe;thenwehavebalancedtheconstant bysubtractingthesquareofthisnumber,,andputtingintheconstantfromthequadratic, 4. To get equation) we just do the arithmetic which in this example is quite straightforward. 7 c mathcentre 009

8 Exercises 4 Use completing the square to solve the following quadratic equations Answers a) x + 4x 1 = 0 b) x + 5x 6 = 0 c) 10x + 7x 1 = 0 d) x + 4x 8 = 0 e) x x = 0 f) x + 8x 5 = 0 Giveyouranswerseitherasfractionsorintheform p ± q 1. a) ±5 b) ± 10 c) ± d),-4 e) 1,-7 f) 1,-8 g) 1 ± 5 h) 4 ±. a) x + 1) + 1 b) x + 1) + 4 c) x + 1) d) x + ) 1 e) x ) 1 f) x + 1 ) + g) x 1 ) 5 h) x + 5) i) x + 5 ) 9 4 j) x + ) k) x 1) + 5 l) a) [ x + 1) 5 ] b) 5 [ x + 1) + ] c) [ d) x + ) ] 7 [ e) x ) 10 ] 4 g) [ x ) 1 ] h) [ x 1) 4 ] [ x 9 x ) ] 69 4 f) [ x + 5) 40 ] ) a), 6 b) 1, 6 c), 4 5 d) ± 1 e) ± 19 f) ± 8 c mathcentre 009

Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

Cubic equations Acubicequationhastheform mc-ty-cubicequations-2009- ax 3 + bx 2 + cx + d = 0 where a 0 Allcubicequationshaveeitheronerealroot,orthreerealroots.Inthisunitweexplorewhythis isso. Thenwelookathowcubicequationscanbesolvedbyspottingfactorsandusingamethodcalled

### 3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

### Integrating algebraic fractions

Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

### Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties.

Polynomial functions mc-ty-polynomial-2009-1 Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. In order to master the techniques

### In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

Percentages mc-ty-percent-009-1 In this unit we shall look at the meaning of percentages and carry out calculations involving percentages. We will also look at the use of the percentage button on calculators.

### a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

### 5.4 Solving Percent Problems Using the Percent Equation

5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

The scalar product mc-ty-scalarprod-2009- Oneofthewaysinwhichtwovectorscanbecombinedisknownasthescalarproduct.When wecalculatethescalarproductoftwovectorstheresult,asthenamesuggestsisascalar,rather than

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Integration by substitution

Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Activity 1: Using base ten blocks to model operations on decimals

Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

### SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.

### FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

### Year 9 set 1 Mathematics notes, to accompany the 9H book.

Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

FACTORING QUADRATIC EQUATIONS Summary 1. Difference of squares... 1 2. Mise en évidence simple... 2 3. compounded factorization... 3 4. Exercises... 7 The goal of this section is to summarize the methods

9.5 Quadratics - Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions

### Implicit Differentiation

Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

### Simplifying Square-Root Radicals Containing Perfect Square Factors

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### 4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Using a table of derivatives

Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### is identically equal to x 2 +3x +2

Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

### Polynomial and Rational Functions

Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

### Homework #1 Solutions

Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### Integrating algebraic fractions 1

Integrating algebraic fractions mc-ty-algfrac-2009- Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fractionasthesumofitspartialfractions. Inthisunitwewillillustratethisidea.

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### x 3 1 In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

Partial fractions An algebraic fraction such as partial fractions. Specifically mc-ty-partialfractions-009-3x + 5 x 5x 3 canoftenbebrokendownintosimplerpartscalled 3x + 5 x 5x 3 x 3 Inthisunitweexplainhowthisprocessiscarriedout.

### Solving Quadratic Equations by Factoring

4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

### Partial Fractions Examples

Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

### COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

### Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

### Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.

### Dr Brian Beaudrie pg. 1

Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

### In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

The vector product mc-ty-vectorprod-2009-1 Oneofthewaysinwhichtwovectorscanecominedisknownasthevectorproduct.When wecalculatethevectorproductoftwovectorstheresult,asthenamesuggests,isavector. Inthisunityouwilllearnhowtocalculatethevectorproductandmeetsomegeometricalapplications.

### Balancing Chemical Equations

Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of \$2,000. She also earns \$500 for

### Interpretation of Test Scores for the ACCUPLACER Tests

Interpretation of Test Scores for the ACCUPLACER Tests ACCUPLACER is a trademark owned by the College Entrance Examination Board. Visit The College Board on the Web at: www.collegeboard.com/accuplacer

### Sample Problems. Practice Problems

Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### 2.3 Solving Equations Containing Fractions and Decimals

2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### 5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

### Systems of Equations Involving Circles and Lines

Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

### Algebra 2: Q1 & Q2 Review

Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short

### Assessment Schedule 2013

NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

### Factoring Polynomials

Factoring Polynomials Any Any Any natural number that that that greater greater than than than 1 1can can 1 be can be be factored into into into a a a product of of of prime prime numbers. For For For

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS

PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write