To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "To add fractions we rewrite the fractions with a common denominator then add the numerators. = +"

Transcription

1 Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x x 5 Rewrite each fraction with a denominator of x 5 b g 3 3 x 5 x 5 and b g 4 x 5 x 5 Add the numerators, then expand all brackets and simplify b g 3 x 5 b g 5g b g b g 5g 3 x 5 b g 5g 9x 7 11x 0 Therefore 3 x 5 9x 7 11x 0 The reverse of this process is to split a fraction into partial fractions. In the above example 9x 7 11x x 5 Algebraic fraction Partial fractions If the degree of the numerator of the algebraic fraction is greater than that of the denominator, divide the denominator into the numerator then express the remaining fractional part as partial fractions. H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 1 of 8

2 The form of the numerator in the partial fractions depends only on the type of the factors in the denominator of the original fraction, as indicated below. Each distinct linear factor eg. (x a) has a corresponding partial fraction of the form ( x a ) A where A is a constant. Each repeated linear factor eg. (x a) has a A B x a x a corresponding partial fractions of the form ( ) ( ). Each quadratic factor eg. ax c has a Ax B corresponding partial fraction of the form. ax c A and B constants. A and B constants. Examples The following fractions have been written in partial fraction form (without evaluating the constants in the numerators). (1) 1 A B x 1 x x 1 x linear factors only in the denominator () 1 A B C x 1 x 3 x 1 x 3 x 3 b g (3) 1 A Bx C x x x 3 x x x 3 d i d i repeated linear factor in the denominator gives rise to a partial fraction for both 3g and 3g quadratic factor in the denominator In general the numerator of a partial fraction is a polynomial of degree one less than the factor in the denominator. Note the special case of repeated factors, example () above. Exercise 1 Write the following in partial fraction form, but do not calculate the numerical values for the constants in the numerator. If possible, factorise the quadratic factor first. x 6 5 (a) (b) x 3 x x x x b gd i (c) x dx 3ib x 1g x x 3 (d) dx 7i g H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page of 8

3 Linear factors The next task is to find values for the constants in the numerator. The first example will contain linear factors in the denominator only. Example Write x 5 as the sum of partial fractions. x x 3 factorise the denominator x x 5 x x 5 3 x 1 x 3 write the general expression for the partial fractions x 5 A B x 1 x 3 x 1 x 3 add the fractions on the right side A B x 1 x 3 A x 3 B x 1 1gb x 3g the equation holds for all values of x (except x 1 and x 3) so we can equate the numerators expand brackets and collect like terms x 5 A 3g B 1g 1gb x 3g 1gb x 3g x 5 A 3g B 1g x 5 A B x 3A B equate coefficients of powers of x on both sides A B 1 3A B 5 (coefficients of x) (constant terms) solve these simultaneous equations to give A 1 and B substitute for A and B the partial fractions are 1 and x 1 x 3 therefore x 5 x x 3 1 x 3 x 1 H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 3 of 8

4 Solving the simultaneous equations that result from equating coefficients can sometimes be quite lengthy. An alternative method is to equate the numerators and, before expanding the brackets, substitute a value of x into both sides of the equation so that only one variable remains. Repeat this to find other variables. This method will not necessarily find all variables, but will often make calculations easier. Example Using the previous example, after equating numerators we had x 5 A x 3 B x 1 substituting x 1 will eliminate B and substituting x 3 will eliminate A. if x 1 then if x 3 then 1 5 A(1 3) B(1 1) 3 5 A( 3 3) B( 3 1) solving gives solving gives A 1 B Repeated linear factors In this example the denominator contains a repeated linear factor. Example Express 5 x 3 x 1 3 x factorise the denominator in terms of partial fractions. 1 3 x 1 1gb x g write the general expression for the partial fractions add the fractions on the right side equate numerators 1 A B C x x x 1 x 1 b g 3 A B C x x 1 x 1 b g b g b g A x 1 B x 1 x C x g 1g b g b g 1 A x 1 B x 1 x C x 3 x x x 1 b g b g 1 A x 1 B x 1 x C x H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 4 of 8

5 to find A substitute x in the equation (the terms involving B and C will equal zero and we can solve for A) to find C substitute x 1 ( the terms involving A and B will equal zero) b g b g 1 A x 1 B x 1 x C x b g b g bg bgbg bg A 1 B 1 C A 3 B 3 0 C A A 3 b g b g 1 A x 1 B x 1 x C x bg bg A 0 B 0 3 C 3 3 3C C 1 to find B substitute the values already found (A1 and C 1) and a value for x (substituting x0 keeps the arithmetic simple) b g b g 1 A x 1 B x 1 x C x bg bg B B 5 B therefore A 3, B, and C 1 substitute for A, B, and C the partial fractions are 3 1, and ( x ) ( x 1) ( x 1) the solution is x x x 1 x 1 b g 3 H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 5 of 8

6 Quadratic or higher factor The numerator for a quadratic factor has the form AxB. In general if the denominator is of degree n then the numerator of the partial fraction is a polynomial of degree n 1. Example Express 5 3 x x in terms of partial fractions. factorise the denominator 5 6x 5 3 x x x 1 x x b gd i write the general expression for the partial fractions 5 A Bx C x x x x x x b g d i add the fractions on the right side equate numerators A Bx C x 1 x x b g d i d i A x x Bx C x 1 1gd x x i d i 5 A x x Bx C x 1 3 x x x 1 x x b gd i d i 5 A x x Bx C x 1 expand the brackets on the right-hand side of the equation x x Ax Ax A Bx Bx Cx C ( A B) x ( C A B) x ( A C ) equate coefficients of powers of x A B 5 C A B 6 A C 5 solve the simultaneous equations to give A, B 3, and C 1 substitute for A, B and C the solution is 5 3 x x x 3 1 x 1 x x ( ) H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 6 of 8

7 Exercise Express the following as partial fractions. (a) x x 3 x (b) x x 6 (c) x x 1gd x 3i (d) b1 xg (e) x x 3 x x x H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 7 of 8

8 Answers Exercise 1 A B (a) x 3 x (b) A B C D x x x 1 x A Bx C (c) x 1 x 3 (d) A B Cx D x x 7 ( ) ( x ) Exercise 6 4 (a) 5 x 3 5 x ( ) ( ) x x (d) ( ) ( 1 ) 5 4 (b) x 3 x x (e) x x x 1 3 x 5 x 1 x 3 (c) ( ) H:\Projects docs\maths downloads\partial Fractions.doc, Created by Sue Thomas/LSU/APS/FELCS;Created on /07/00 10:10 Page 8 of 8

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x). .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla

Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A self-contained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Decomposing Rational Functions into Partial Fractions:

Decomposing Rational Functions into Partial Fractions: Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x

More information

Solving Quadratic Equations by Factoring

Solving Quadratic Equations by Factoring 4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

More information

Factorising quadratics

Factorising quadratics Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland)

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T Scotland Polynomials Teachers Teaching with Technology (Scotland) POLYNOMIALS Aim To demonstrate how the TI-8 can be used

More information

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Factoring A Quadratic Polynomial

Factoring A Quadratic Polynomial Factoring A Quadratic Polynomial If we multiply two binomials together, the result is a quadratic polynomial: This multiplication is pretty straightforward, using the distributive property of multiplication

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1. GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

A synonym is a word that has the same or almost the same definition of

A synonym is a word that has the same or almost the same definition of Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

0.4 FACTORING POLYNOMIALS

0.4 FACTORING POLYNOMIALS 36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

More information

SIMPLIFYING ALGEBRAIC FRACTIONS

SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

1.2 Linear Equations and Rational Equations

1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Solving Cubic Polynomials

Solving Cubic Polynomials Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial

More information

Common Core Standards Practice Week 8

Common Core Standards Practice Week 8 Common Core Standards Practice Week 8 Selected Response 1. Describe the end behavior of the polynomial f(x) 5 x 8 8x 1 6x. A down and down B down and up C up and down D up and up Constructed Response.

More information

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

Partial Fractions: Undetermined Coefficients

Partial Fractions: Undetermined Coefficients 1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the

More information

AIP Factoring Practice/Help

AIP Factoring Practice/Help The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

More information

Finding Solutions of Polynomial Equations

Finding Solutions of Polynomial Equations DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please find suggested lesson plans for term 1 of MATHEMATICS Grade 11 Please note that these lesson plans are to be used only as a guide and teachers

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

FACTORING QUADRATIC EQUATIONS

FACTORING QUADRATIC EQUATIONS FACTORING QUADRATIC EQUATIONS Summary 1. Difference of squares... 1 2. Mise en évidence simple... 2 3. compounded factorization... 3 4. Exercises... 7 The goal of this section is to summarize the methods

More information

Academic Success Centre

Academic Success Centre 250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

More information

POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false. Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information