CHAPTER 2. Set, Whole Numbers, and Numeration

Size: px
Start display at page:

Download "CHAPTER 2. Set, Whole Numbers, and Numeration"

Transcription

1 CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A verbal description. The set of all sophomore female students in this class This is a clear criterion for judging set membership. (2) Listing (within braces): {orange, pink, green} (3) Set-builder notation: Note. (1) If S = {2, 4, 6, 8, 10}, {x x is an even whole number} = {2, 4, 6, 8,... } 4 2 S (4 is an element of S) and 7 /2 S (7 is not an element of S). (2) ; (preferably) or { } denotes the empty set (or null set), the set with no members. 11

2 12 2. SET, WHOLE NUMBERS, AND NUMERATION Two sets A and B are equal (A = B) if they have precisely the same elements. Note. (1) We write A 6= B if A and B are not equal. (2) Elements are usually listed only once in a set, so {a, a, b, c} = {a, b, c}. (3) The order of listing is immaterial, so (4) {;} 6= ; (or {{ }} 6= { }). Why? {a, b, c} = {c, a, b}. Definition. A 1 1 correspondence between two sets A and B is a pairing of the elements of A with the elements of B so that each element of A corresponds with exactly one element of B, and vice-versa. We write A B and say A and B are equivalent or matching sets. Example. Definition. (1) Set A is a subset of set B, written A B, if and only if every element of A is also an element of B. Example. {1, 2, 4} {1, 2, 3, 4, 5}, but {1, 2, 3} 6 {1, 2, 4} Note. For every set A, A A and ; A (Why?) (2) Set A is a proper subset of set B, written A B, if A B and A 6= B (i.e., B has an element not in A). Example. {1, 2, 4} {1, 2, 3, 4, 5}, but {1, 2, 3} 6 {1, 2, 3}

3 2.1. SETS AS A BASIS FOR WHOLE NUMBERS 13 Note. A = B if and only if A B and B A. Definition. A set is finite if it is empty or can be put in 1 1 correspondence with a set of the form {1, 2, 3,..., n} where n is a counting number. A set is infinite if it is not finite. Note. A set is infinite if and only if it is equivalent to a proper subset of itself. Example. {1, 2, 3, 4,... } l l l l {2, 4, 6, 8,... } What are some implications here? Is every infinite set equivalent to the set of counting numbers? Venn diagrams are used to show relationships between sets. We use a rectangle called the universal set U to represent all elements considered in a discussion or context and circles for other sets. A B This is a proper subset since x /2 A.

4 14 2. SET, WHOLE NUMBERS, AND NUMERATION Two sets are disjoint if they have no elements in common. Operations on sets: (1) The union of two sets A and B, denoted A [ B, is the set containing all elements belonging to A or to B (or to both). A [ B (2) The intersection of two sets A and B, denoted A \ B, is the set of all elements common to both A and B. A \ B

5 2.1. SETS AS A BASIS FOR WHOLE NUMBERS 15 (3) The complement of a set A, denoted A, is the set of all elements in the universe U not in A. A (4) The set di erence (or relative complement) of set B from set A, denoted A B, is the set of all elements of A that are not in B. A B (5) The Cartesian product of set A with set B, denoted A B and read A cross B, is the set of all ordered pairs (a, b) where a 2 A and b 2 B. Note. A [ B = {x x 2 A or x 2 B} A \ B = {x x 2 A and x 2 B} A = {x x 2 U and x /2 A} A B = {x x 2 A and x /2 B} A B = {(a, b) x 2 A and x 2 B}

6 16 2. SET, WHOLE NUMBERS, AND NUMERATION Problem (Page 56 # 25). Let A = {50, 55, 60, 65, 70, 75, 80}, B = {50, 60, 70, 80}, C = {60, 70, 80}, D = {55, 65}. (a) A [ (B \ C) = A [ {60, 70, 80} = A (b) (A [ B) \ C = A \ C = C (c)(a \ C) [ (C \ D) = C [ ; = C (d)(a \ C) \ (C [ D) = C [ {55, 60, 65, 70, 80} = C (e)(b C) \ A = {50} {50} \ A = {50} (f)(a D) \ (B C) = {50, 60, 70, 75, 80} \ {50} = {50}

7 2.1. SETS AS A BASIS FOR WHOLE NUMBERS 17 Problem (Page 56 # 39). A university professor asked his class of 42 students when they had studied for his class the previous weekend. Their responses were as follows: 9 had studied on Friday 18 had studied on Saturday 30 had studied on Sunday 3 had studied on both Friday and Saturday 10 had studied on both Saturday and Sunday 6 had studied on both Friday and Sunday 2 had studied on Friday, Satuday, and Sunday Assuming that all 42 students responded and answered honestly, answer the following questions. (a) How many students studied on Sunday but not on either Friday or Saturday? (b) How many students did all of their studying one one day? (c) How many of the students did not study at all for this class last weekend? Strategy 7 Draw a diagram. Here we use a Venn diagram (A = Friday, B = Saturday, C = Sunday). 2 had studied on Friday, Satuday, and Sunday 2

8 18 2. SET, WHOLE NUMBERS, AND NUMERATION 3 had studied on both Friday and Saturday 10 had studied on both Saturday and Sunday 6 had studied on both Friday and Sunday had studied on Friday 18 had studied on Saturday 30 had studied on Sunday (a) How many students studied on Sunday but not on either Friday or Saturday? 16 (b) How many students did all of their studying one one day? 25 (c) How many of the students did not study at all for this class last weekend? 2

9 2.2. WHOLE NUMBERS AND NUMERATION Whole numbers and numeration A number is an idea or abstraction that represents a quantity. A numeral is the symbol used to represent a number. There are three common uses of numbers: (1) A cardinal number describes how many elements are in a finite set. is the set of whole numbers. W = {0, 1, 2, 3,... } (2) The ordinal numbers deal with ordering: first, second, third, etc. There are three ways of ordering whole numbers: (a) the usual counting chant: 3 < 6 since 3 comes before 6 in the chant. (b) using 1-1 correspondence: We let n(a) represent the number of elements in a set A and n(b) represent the number of elements in a set B. Let a = n(a) and b = n(b). Then a < b or b > a if A is equivalent to a proper subset of B. Example.

10 20 2. SET, WHOLE NUMBERS, AND NUMERATION (c) using the whole number line. 4 < 8 since 4 is to the left of 8 on the whole number line. (3) Identification numbers are used to name things, such as telephone numbers, social security numbers, and CBU 899 numbers. Numeration systems use various numerals to represent numbers. (1) The tally numeration system uses single strokes for numbers and can be improved by grouping. For 37: or We see that grouping helps considerably. What are some advantages and disadvantages of this system? (2) The Egyption numeration system uses the following numerals: This is an additive system since the values of the individual numerals are added together to form numbers. Note. The order in which the numerals are written for a number is immaterial.

11 2.2. WHOLE NUMBERS AND NUMERATION 21 (3) The Roman numeration system uses the following basic numerals: It is a positional system in that the position of a numeral a ects the value being represented. For example, IX is di erent from XI. It is also a subtractive system in that a lower numeral to the left of a numeral means subtraction rather than addition: IV means 5-1 or 4. Here are some common pairings: Finally, this is also a multiplicative system in that XV means or 15,000. Example. VMCMXLXIV means V M CM XL IV = = 6944.

12 22 2. SET, WHOLE NUMBERS, AND NUMERATION (4) The Babylonian numeration system uses the following two symbols: This system uses place value, where symbols represent di erent values depending on the place in which they were written. Place value is based on 60. But consider the following: Does this represent = 74 or (60) + 14 = 3614? To help in cases like this, the placeholder was introduced to indicate a vacant place. (What number seems to be missing in this and all previous systems?) With this new symbol, means = 74, while means (60) + 14 = 3614.

13 2.2. WHOLE NUMBERS AND NUMERATION 23 (5) The Mayan numeration system was a vertical place value system and had a symbol for zero. The three symbols used are Here are some sample simple numbers: This last number is di erent in that it occupies two levels, the zero for ones and the dot for one twenty. Remember, this is a vertical system. This system also had a varying base: (1 7200) + (6 360) + (0 20) + (3 1) = = 9363 Express the following in our numeration system:

14 24 2. SET, WHOLE NUMBERS, AND NUMERATION The answers in our numeration system: The following table summarizes the attributes of the numeration systems we have studied: 2.3. The Hindu-Arabic System This is our system. Features: (1) 10 symbols can be used to represent all whole numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (1A) Suppose we only used 5 symbols 0, 1, 2, 3, 4. (2) Grouping by 10 s ours is a base 10 system. (a) Bundles of sticks model each group of 10 sticks is bundled with a rubber band.

15 2.3. THE HINDU-ARABIC SYSTEM 25 Ten bundles of ten are bundled to make 100, etc. (b) Base ten pieces: blocks, 4 flats, 2 longs, 7 units = 3(1000) + 4(100) + 2(10) + 7(1). (2A) Grouping by fives base 5. Write this as 32five or 325 and read as three two base 5. Some block representations of base five numbers follow.

16 26 2. SET, WHOLE NUMBERS, AND NUMERATION The first 10 base five numerals follow: Adding 15 to a numeral follows in the block model. (3) We have place value, which implies the system is positional. (3A) The same for base five. (4) The system is additive and multiplicative. A numerals s expanded form or expanded notation expresses a numeral as the sum of its digits times their respective place values. 75, 234 = 7(10, 000) + 5(1000) + 2(100) + 3(10) + 4(1) (4A) The same for base 5. 23, 2345 = 2(10, 0005) + 3(10005) + 2(1005) + 3(105) + 4(15) = 2(625) + 3(125) + 2(25) + 3(5) + 4(1) = This serves as an example of converting base five to base ten.

17 2.3. THE HINDU-ARABIC SYSTEM 27 Example (Converting from base ten to base five). Convert 7326 to base five. 5 0 = 1, 5 1 = 5, 5 2 = 25, 5 3 = 125, 5 4 = 625, 5 5 = 3125, 5 6 = 15625,... Example. Convert 7326 to base = = 1, 7 1 = 7, 7 2 = 49, 7 3 = 343, 7 4 = 2401, 7 5 = 16807, = Each Hindu-Arabic numeral has an associated name. Note. The word and does not appear in any name.

THE LANGUAGE OF SETS AND SET NOTATION

THE LANGUAGE OF SETS AND SET NOTATION THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language

More information

7 Relations and Functions

7 Relations and Functions 7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

Greatest Common Factors and Least Common Multiples with Venn Diagrams

Greatest Common Factors and Least Common Multiples with Venn Diagrams Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

Set Theory: Shading Venn Diagrams

Set Theory: Shading Venn Diagrams Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams).

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility.

Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility. Lecture 6: Income and Substitution E ects c 2009 Je rey A. Miron Outline 1. Introduction 2. The Substitution E ect 3. The Income E ect 4. The Sign of the Substitution E ect 5. The Total Change in Demand

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Basic Concepts of Set Theory, Functions and Relations

Basic Concepts of Set Theory, Functions and Relations March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3

More information

Set Theory Basic Concepts and Definitions

Set Theory Basic Concepts and Definitions Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric

More information

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016 Course Syllabus MATH 1350-Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.

More information

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Week in Review #4 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008 Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...

Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,... .2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Elements of probability theory

Elements of probability theory 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

More information

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20 SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

More information

Toothpick Squares: An Introduction to Formulas

Toothpick Squares: An Introduction to Formulas Unit IX Activity 1 Toothpick Squares: An Introduction to Formulas O V E R V I E W Rows of squares are formed with toothpicks. The relationship between the number of squares in a row and the number of toothpicks

More information

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint. Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

More information

Grade 6 Math Circles. Binary and Beyond

Grade 6 Math Circles. Binary and Beyond Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number

More information

Access The Mathematics of Internet Search Engines

Access The Mathematics of Internet Search Engines Lesson1 Access The Mathematics of Internet Search Engines You are living in the midst of an ongoing revolution in information processing and telecommunications. Telephones, televisions, and computers are

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Applied Liberal Arts Mathematics MAT-105-TE

Applied Liberal Arts Mathematics MAT-105-TE Applied Liberal Arts Mathematics MAT-105-TE This TECEP tests a broad-based overview of mathematics intended for non-math majors and emphasizes problem-solving modeled on real-life applications. Topics

More information

4.3 TABLE 3 TABLE 4. 1342 five 1 125 3 25 4 5 2 1 125 75 20 2 222.

4.3 TABLE 3 TABLE 4. 1342 five 1 125 3 25 4 5 2 1 125 75 20 2 222. .3 Conversion Between Number Bases 169.3 Conversion Between Number Bases Although the numeration systems discussed in the opening section were all base ten, other bases have occurred historically. For

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Section 1.4 Place Value Systems of Numeration in Other Bases

Section 1.4 Place Value Systems of Numeration in Other Bases Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Fractions. Chapter 3. 3.1 Understanding fractions

Fractions. Chapter 3. 3.1 Understanding fractions Chapter Fractions This chapter will show you how to find equivalent fractions and write a fraction in its simplest form put fractions in order of size find a fraction of a quantity use improper fractions

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

SOLUTIONS TO ASSIGNMENT 1 MATH 576

SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts

More information

Section 1.1 Real Numbers

Section 1.1 Real Numbers . Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

4 UNIT FOUR: Transportation and Assignment problems

4 UNIT FOUR: Transportation and Assignment problems 4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

Rational Number Project

Rational Number Project Rational Number Project Fraction Operations and Initial Decimal Ideas Lesson : Overview Students estimate sums and differences using mental images of the 0 x 0 grid. Students develop strategies for adding

More information

Unit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives

Unit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives Unit 13 Handling data Five daily lessons Year 4 Autumn term (Key objectives in bold) Unit Objectives Year 4 Solve a problem by collecting quickly, organising, Pages 114-117 representing and interpreting

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

More information

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

1.4 Compound Inequalities

1.4 Compound Inequalities Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

More information

Unit 5 Length. Year 4. Five daily lessons. Autumn term Unit Objectives. Link Objectives

Unit 5 Length. Year 4. Five daily lessons. Autumn term Unit Objectives. Link Objectives Unit 5 Length Five daily lessons Year 4 Autumn term Unit Objectives Year 4 Suggest suitable units and measuring equipment to Page 92 estimate or measure length. Use read and write standard metric units

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Sums & Series. a i. i=1

Sums & Series. a i. i=1 Sums & Series Suppose a,a,... is a sequence. Sometimes we ll want to sum the first k numbers (also known as terms) that appear in a sequence. A shorter way to write a + a + a 3 + + a k is as There are

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

Fraction Basics. 1. Identify the numerator and denominator of a

Fraction Basics. 1. Identify the numerator and denominator of a . Fraction Basics. OBJECTIVES 1. Identify the numerator and denominator of a fraction. Use fractions to name parts of a whole. Identify proper fractions. Write improper fractions as mixed numbers. Write

More information

Mathematics Navigator. Misconceptions and Errors

Mathematics Navigator. Misconceptions and Errors Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...

More information

All of mathematics can be described with sets. This becomes more and

All of mathematics can be described with sets. This becomes more and CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets NY-4 nion and Intersection of Sets Learning Standards for Mathematics..31 Find the intersection of sets (no more than three sets) and/or union of sets (no more than three sets). Check Skills You ll Need

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Open-Ended Problem-Solving Projections

Open-Ended Problem-Solving Projections MATHEMATICS Open-Ended Problem-Solving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEM-SOLVING OVERVIEW The Projection Masters for Problem-Solving

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Chapter 4 Online Appendix: The Mathematics of Utility Functions

Chapter 4 Online Appendix: The Mathematics of Utility Functions Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can

More information

Useful Mathematical Symbols

Useful Mathematical Symbols 32 Useful Mathematical Symbols Symbol What it is How it is read How it is used Sample expression + * ddition sign OR Multiplication sign ND plus or times and x Multiplication sign times Sum of a few disjunction

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

Unit 6 Number and Operations in Base Ten: Decimals

Unit 6 Number and Operations in Base Ten: Decimals Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

Georg Cantor and Set Theory

Georg Cantor and Set Theory Georg Cantor and Set Theory. Life Father, Georg Waldemar Cantor, born in Denmark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna Böhm, was Russian. In 856, because of father

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Set Theory. 2.1 Presenting Sets CHAPTER2

Set Theory. 2.1 Presenting Sets CHAPTER2 CHAPTER2 Set Theory 2.1 Presenting Sets Certain notions which we all take for granted are harder to define precisely than one might expect. In Taming the Infinite: The Story of Mathematics, Ian Stewart

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3

Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3 Mathematics Planning Guide Grade 6 Factors and Multiples Number Specific Outcome 3 This Planning Guide can be accessed online at: http://www.learnalberta.ca/content/mepg6/html/pg6_factorsmultiples/index.html

More information

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10 Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people

More information