Intro to Metabolism Campbell Chapter 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Intro to Metabolism Campbell Chapter 8"

Transcription

1 Intro to Metabolism Campbell Chapter 8

2 Section 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

3 Metabolism is the sum of an organism s chemical reactions Metabolism is an emergent property of life that arises from interactions between molecules within the cell

4 A metabolic pathway begins with a specific molecule and ends with a product Each step is catalyzed by a specific enzyme BIOCHEMICAL PATHWAY VIDEO

5 Enzymes Macromolecules that serve as catalysts, a chemical agent that changes the rate of a reaction without being consumed by the reaction Mechanisms that regulate them balance metabolic supply and demand Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

6 Metabolism Manages the material and energy sources of the cell. Two types of metabolic pathways: 1. Catabolic 2. Anabolic Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

7 CATABOLIC PATHWAY (CATABOLISM) Break down pathway Release of energy by the breakdown of complex molecules to simpler compounds EX: digestive enzymes break down food Cellular respiration ions/ eng-nz/chemical_reactions_involve_making_new_combinations_full_size_landscape.jpg

8 ANABOLIC PATHWAY (ANABOLISM) Biosynthetic pathways consumes energy to build complicated molecules from simpler ones EX: synthesis of amino acids to form proteins Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

9 Energy from catabolic pathways can be stored and used later to drive anabolic pathways i.e. Krebs Cycle connects the catabolic and anabolic pathways

10 Forms of Energy ENERGY = capacity to cause change Energy exists in various forms (some of which can perform work) The work of life depends on the ability of the cell to transform energy from one form into another

11 KINETIC ENERGY energy associated with motion HEAT (thermal energy) is kinetic energy associated with random movement of atoms or molecules Light is kinetic energy harnessed from light to perform work i.e. Photosynthesis

12 POTENTIAL ENERGY - energy that matter possesses because of its location or structure CHEMICAL energy is potential energy available for release in a chemical reaction i.e. glucose is high in chemical energy Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

13 On the platform, the diver has more potential energy. Diving converts potential energy to kinetic energy. Climbing up converts kinetic energy of muscle movement to potential energy. In the water, the diver has less potential energy.

14 THERMODYNAMICS = the study of energy transformations CLOSED system (EX: liquid in a thermos) = isolated from its surroundings OPEN system =energy + matter can be transferred between the system and its surroundings Organisms are open systems

15 The First Law of Thermodynamics energy of the universe is constant Energy can be transferred and transformed Energy cannot be created or destroyed The first law is also called the principle of conservation of energy

16 The Second Law of Thermodynamics During every energy transfer or transformation entropy (disorder) of the universe INCREASES some energy is unusable, often lost as heat

17 First law of thermodynamics Chemical energy Second law of thermodynamics Heat CO 2 H 2 O ORGANISMS are energy TRANSFORMERS! Spontaneous processes occur without energy input; they can happen quickly or slowly For a process to occur without energy input, it must increase the entropy of the universe

18 Section 8.2 The free energy change of a reaction tells us whether or not the reaction occurs spontaneously PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

19 Free-Energy Change ( G) can help tell which reactions will happen spontaneously Portion of a system s energy that can perform work when temperature and pressure are uniform G = H - T S G = change in free energy H = change in total energy (enthalpy) S = change in entropy (randomness) T = temperature (K) Only processes with a negative G are spontaneous Spontaneous processes can be harnessed to perform work

20 Free Energy and Metabolism Classification of Chemical Reactions based on Free-Energy Changes: 1. Exergonic 2. Endergonic Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

21 Exergonic Reactions in Metabolism Release energy (- G) are spontaneous The magnitude of G represents the maximum amount of work the reaction can perform The greater the decrease in free energy, the greater amount of work that can be done Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

22 Endergonic Reactions in Metabolism Absorb free energy from their surroundings Stores free energy in molecules + G Are non-spontaneous

23 Equilibrium and Metabolism Reactions in an isolated system eventually reach equilibrium Metabolic reactions are reversible and they would reach equilibrium if they occurred in isolation Systems at equilibrium are at minimum G and can NOT do work a cell that reaches metabolic equilibrium is dead! The constant flow of materials keeps metabolic pathways from reaching equilibrium and the cell continues to do work throughout its life. Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

24 Section 8.3 ATP powers cellular work by coupling exergonic reactions to endergonic reactions PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

25 A cell does three main kinds of work: Mechanical Transport Chemical In the cell, energy coupling, the use of exergonic processes to drive an endergonic one occurs.

26 ATP (adenosine triphosphate) is the cell s renewable and reusable energy shuttle ATP provides energy for cellular functions Energy to charge ATP comes from catabolic reactions Adenine Phosphate groups Ribose

27 LE 8-9 Bonds between PO 3 are broken by hydrolysis It becomes ADP and releases energy P P P Adenosine triphosphate (ATP) H 2 O The reaction is exergonic P i + P P + Energy Inorganic phosphate Adenosine diphosphate (ADP)

28 Because hydrolysis releases energy, the PO 3 bonds of ATP are referred to as high-energy PO 3 bonds. The release of energy comes from the chemical change to a lower state of free energy ATP is useful because the energy it releases is greater that the energy most other molecules could deliver Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

29 Endergonic reaction: G is positive, reaction is not spontaneous NH 2 Glu + NH 3 Glu G = +3.4 kcal/mol Glutamic acid Ammonia Glutamine Exergonic reaction: G is negative, reaction is spontaneous ATP + H 2 O ADP + P i G = 7.3 kcal/mol Coupled reactions: Overall G is negative; Together, reactions are spontaneous G = 3.9 kcal/mol

30 LE 8-11 ATP drives transport and mechanic al work it causes changes in shape and binding affinities of proteins ATP P Motor protein Mechanical work: ATP phosphorylates motor proteins Membrane protein Solute P P i Protein moved P i Solute transported ADP + P i a.) directly by phosphoryl ation Transport work: ATP phosphorylates transport proteins P Glu NH 2 + NH 3 + Glu P i b.) indirectly by binding of ATP Reactants: Glutamic acid and ammonia Product (glutamine) made Chemical work: ATP phosphorylates key reactants

31 ATP Energy for cellular work provided by the loss of phosphate from ATP Energy from catabolism (used to charge up ADP into ATP ADP + P i

32 Section 8.4 Enzymes speed up metabolic reactions by lowering energy barriers PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

33 Every chemical reaction between molecules involves bond breaking and bond forming ACTIVATION ENERGY = amount of energy required to get chemical reaction started Activation energy is often supplied in the form of heat from the surroundings Free energy animation IT S LIKE PUSHING A SNOWBALL UP A HILL... Once you get it up there, it can roll down by itself

34 LE 8-14 Free energy The Activation Energy Barrier A B C D Transition state A B E A C D Reactants A C B D G < O Products Progress of the reaction

35 CATALYST = a chemical agent that speeds up a reaction without being consumed by the reaction ENZYMES = biological catalysts, most enzymes are PROTEINS Exception = ribozymes (RNA) Ch 17 & 26

36 Free energy Course of reaction without enzyme Reactants E A without enzyme E A with enzyme is lower Course of reaction with enzyme G is unaffected by enzyme Products Progress of the reaction ENZYMES work by LOWERING ACTIVATION ENERGY;

37 ENZYMES LOWER ACTIVATION ENERGY BY Orienting substrates correctly Straining substrate bonds Providing a favorable microenvironment Enzymes change ACTIVATION ENERGY but NOT energy of REACTANTS or PRODUCTS

38 ENZYMES Most are proteins Lower activation energy Specific Shape determines function Reusable Unchanged by reaction Image from:

39 The REACTANT that an enzyme acts on = SUBSTRATE Enzyme + substrate = ENZYME-SUBSTRATE COMPLEX Region on the enzyme where the substrate binds = ACTIVE SITE Substrate held in active site by WEAK interactions (i.e. hydrogen and ionic bonds)

40 TWO MODELS PROPOSED: LOCK & KEY Active site on enzyme fits substrate exactly INDUCED FIT Binding of substrate causes change in active site so it fits substrate more closely

41 Enzyme Activity can be affected by: General environmental factors: 1. Temperature 2. ph 3. salt concentration 4. Chemicals that specifically influence the enzyme Choose narrated See a movie

42 TEMPERATURE & ENZYME ACTIVITY Each enzyme has an optimal temperature at which it can function (Usually near body temp)

43 Increasing temperature increases the rate of an enzyme-catalyzed reaction up to a point. Above a certain temperature, activity begins to decline because the enzyme begins to denature.

44 ph and ENZYME ACTIVITY Each enzyme has an optimal ph at which it can function

45 COFACTORS = non-protein enzyme helpers EX: Zinc, iron, copper COENZYMES = organic enzyme helpers Ex: vitamins

46 SUBSTRATE CONCENTRATION & ENZYME ACTIVITY V MAX Adding substrate increases activity up to a point

47 Section 8.5 Regulation of enzyme activity helps control metabolism PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

48 REGULATION OF ENZYME PATHWAYS GENE REGULATION cell switches on or off the genes that code for specific enzymes

49 REGULATION OF ENZYME PATHWAYS FEEDBACK INHIBITION end product of a pathway interacts with and turns off an enzyme earlier in pathway FEEDBACK INHIBITION prevents a cell from wasting chemical resources by synthesizing more product than is needed

50 NEGATIVE FEEDBACK An accumulation of an end product slows the process that produces that product A Enzyme 1 Negative feedback A Enzyme 1 B B Enzyme 2 C C Enzyme 3 D D D D D D D D D D D Example: sugar breakdown generates ATP; excess ATP inhibits an enzyme near the beginning of the pathway

51 POSITIVE FEEDBACK (less common) The end product speeds up production W W Enzyme 4 Enzyme 4 X Positive feedback X Enzyme 5 Enzyme 5 Y Y Z Enzyme 6 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Enzyme 6 Z Z Z Z EXAMPLE: Chemicals released by platelets that accumulate at injury site, attract MORE platelets to the site.

52 REGULATION OF ENZYME ACTIVITY ALLOSTERIC REGULATION = protein s function at one site is affected by binding of a regulatory molecule at another site can inhibit or stimulate an enzyme s activity Allosteric enzyme inhibition

53 SOME ALLOSTERIC ENZYMES HAVE MULTIPLE SUBUNITS Each enzyme has active and inactive forms The binding of an ACTIVATOR stabilizes the active form The binding of an INHIBITOR stabilizes the inactive form

54 COOPERATIVITY = form of allosteric regulation that can amplify enzyme activity Binding of one substrate to active site of one subunit locks all subunits in active conformation

55 Enzyme Inhibitors COMPETITIVE inhibitor = REVERSIBLE; Mimics substrate and competes with substrate for active site on enzyme ENZYME ANIMATION

56 Enzyme Inhibitors NONCOMPETITIVE inhibitors = bind to another part of an enzyme, causing the enzyme to change shape and making the active site less effective ENZYME ANIMATION

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy and applies energy to perform

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Chapter 8 An Introduction to Metabolism

Chapter 8 An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Sep 7 9:07 PM 1 Metabolism=all of the chemical reactions within an organism metabolic pathways are chemical reactions that change molecules in a series of steps

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism AP Biology Chapter 8 Metabolism Metabolism are all the chemical reactions in an organism Forming bonds between molecules dehydration synthesis synthesis of new muscle tissue by linking

More information

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia S. Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives Define energy, emphasizing how it is related to work and to heat State and apply two energy laws to energy transformations.

More information

Energy Concepts. Study Objectives:

Energy Concepts. Study Objectives: Energy Concepts Study Objectives: 1. Define energy 2.Describe the 1 st law of thermodynamics Compare kinetic and potential energy, be able to give or recognize examples of each 3. Describe the major forms

More information

Cellular physiology ATP and Biological Energy (Lecture 15)

Cellular physiology ATP and Biological Energy (Lecture 15) Cellular physiology ATP and Biological Energy (Lecture 15) The complexity of metabolism This schematic diagram traces only a few hundred of the thousands of metabolic reactions that occur in a cell. The

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work ENERGY, ENZYMES AND METABOLISM CHAPTER 8 Lecture Objectives What Physical Principles Underlie Biological Energy Transformations? What Is the Role of ATP in Biochemical Energetics? What Are Enzymes? How

More information

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy:

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy: Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Define the term energy and distinguish between potential and kinetic energy.

Define the term energy and distinguish between potential and kinetic energy. Energy and Chemical Reactions Objective # 1 All living organisms require energy for survival. In this topic we will examine some general principles about energy usage and chemical reactions within cells.

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

Chapter Energy & Enzymes

Chapter Energy & Enzymes ANSWERS Chapter 5.2-5.6 Energy & Enzymes 1. Define energy and identify the various forms. Energy is the capacity to do work. Forms light, heat, electricity, motion. 2. Summarize the First and Second Laws

More information

An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics [2].

An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics [2]. GUIDED READING - Ch. 8 - AN INTRODUCTION TO METABOLISM NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not

More information

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy?

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy? Lecture 4 Outline (Ch. 8) I. Overview II. Thermodynamics III. Metabolism and IV. Cellular (ATP) and coupled reactions V. Enzymes and Regulation VI. Summary What is? Where does our (humans) energy come

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

AP Biology Chapter 8: Additional Notes:

AP Biology Chapter 8: Additional Notes: AP Biology Chapter 8: Additional Notes: I. Entropy(S) a. The entropy of an isolated system increases in the course of spontaneous change i. Examples of spontaneous change are cooling to the temperature

More information

Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10)

Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10) Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10) OBJECTIVES: 1. Understand the concepts of kinetic vs. potential energy. 2. Understand the concepts

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

Free Energy and Enzymes (Chapter 6) Outline. 1. The "extra" electrons have been stripped from other atoms in the cell.

Free Energy and Enzymes (Chapter 6) Outline. 1. The extra electrons have been stripped from other atoms in the cell. Free Energy and Enzymes (Chapter 6) Outline Growing Old With Molecular Mayhem A. Free radicals are molecules with extra electrons. 1. The "extra" electrons have been stripped from other atoms in the cell.

More information

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life From food webs to the life of a cell energy Metabolism & Enzymes energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another organic molecules

More information

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website)

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Homework Due in Lab Week 2 Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Biological Molecules Enzymes Enzymes One of the most important groups of proteins

More information

How Enzymes Lower the E A. Barrier. Substrate Specificity of Enzymes. Enzymes catalyze reac.ons by lowering the E A barrier

How Enzymes Lower the E A. Barrier. Substrate Specificity of Enzymes. Enzymes catalyze reac.ons by lowering the E A barrier How Enzymes Lower the E A Barrier Enzymes catalyze reac.ons by lowering the E A barrier do not affect the change in free energy ( G) Instead hasten reac.ons that would occur eventually Fig. 8 15 Free energy

More information

Lecture 8 Enzyme Energetics

Lecture 8 Enzyme Energetics Lecture 8 Enzyme Energetics 1 Last Lecture We talked about protein conformational change, signal cascades, phosphorylation, and ATP. We shall review these things even more in depth today 2 In this lecture

More information

Metabolism & Enzymes AP Biology

Metabolism & Enzymes AP Biology Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Spontaneous Reactions

Spontaneous Reactions Enzymes Spontaneous Reactions May occur quickly or slowly Enzymes speed up chemical reactions!! (But how, Ms. Robinson????) An enzyme is a macromolecule that acts as a catalyst a chemical agent that speeds

More information

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C.

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C. Chemical system a group of molecules that can react with one another. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C Reactant(s) Product(s)

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION Chapter 5 The Working Cell: Membranes, Energy, and s Chapter 5: Big Ideas Cellular respiration Membrane Structure and Function Energy and the Cell How s Function MEMBRANE STRUCTURE AND FUNCTION Membranes

More information

Metabolism Practice Test KEY

Metabolism Practice Test KEY Biology 12 Metabolism Practice Test KEY Name: Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only

More information

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Energy and Life Energy= the ability to do work Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Heterotrophs= can t make their own food, they have to eat autotrophs

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

CHAPTER 8: ENERGY AND METABOLISM

CHAPTER 8: ENERGY AND METABOLISM CHAPTER 8: ENERGY AND METABOLISM CHAPTER SYNOPSIS Living organisms transform potential energy into kinetic energy to survive, grow, and reproduce. The energy that the earth receives from the sun is transformed

More information

Energy and Metabolism

Energy and Metabolism Energy and Metabolism Bởi: OpenStaxCollege Scientists use the term bioenergetics to describe the concept of energy flow ([link]) through living systems, such as cells. Cellular processes such as the building

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name Advanced Biology Enzyme and Cellular Respiration Test Part I Multiple Choice (75 points) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The

More information

Cell Membranes & Cellular Energy Continued. MOVEMENT ACROSS MEMBRANES Active transport: moving a solute AGAINST the concentration gradient

Cell Membranes & Cellular Energy Continued. MOVEMENT ACROSS MEMBRANES Active transport: moving a solute AGAINST the concentration gradient Cell Membranes & Cellular Continued MOVEMENT ACROSS MEMBRANES Active transport: moving a solute AGAINST the concentration gradient Transport protein Active transport requires energy Bonds between atoms

More information

Chapter 19 Enzymes and Vitamins

Chapter 19 Enzymes and Vitamins 1.! What are enzymes? Be able to describe the chemical nature of enzymes and their function in biochemical reactions.! 2.! How do enzymes work, and why are they so specific? Be able to provide an overview

More information

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best Biology 12 Name: Metabolism Practice Test Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only 1

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy Cool Fires Attract Mates and Meals Fireflies use light instead of chemical signals to send a message to potential mates Females can also use light to attract males of other firefly species, as meals not

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Energy and Metabolism

Energy and Metabolism Chapter 6 6 Energy and Metabolism Chapter Outline 6.1 The Flow of Energy in Living Systems 6.2 The Laws of Thermodynamics and Free Energy 6.3 ATP: The Energy Currency of Cells 6.4 Enzymes: Biological Catalysts

More information

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions BIOCHEMISTRY (I) LIFS2210 Enzymes and Enzyme Reactions 1 1. Enzymes: Biocatalysts Catalyst: to increase the rate or velocity of a chemical reaction without itself being changed in the overall process Catalyst

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Slide 1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Ch 4: Energy and Cellular Metabolism

Ch 4: Energy and Cellular Metabolism Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis

More information

Regulation of Metabolism. Enzymes and Cellular Energy

Regulation of Metabolism. Enzymes and Cellular Energy Regulation of Metabolism Local (intrinsic) Control Mechanisms Enzymes and Cellular Energy Cellular metabolism consists of: Catabolism: the breakdown of organic molecules Anabolism: the synthesis of organic

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for work 3. Redox reactions release energy

More information

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO?

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO? ENZYMES WHAT ARE ENZYMES? WHAT DO ENZYMES DO? catalase 2H 2 O 2 O 2 + 2H 2 O catalase There are literally thousands of different enzymes which catalyze every major chemical reaction in the cells and bodies

More information

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme 1-The catalytic activity of an enzyme is restricted to its small portion called (B) Passive site (C) Allosteric site (D) All Choices are correct 2-An activated enzyme made of polypeptide chain and a co-factor

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Chapter 2 - Chemical Foundations

Chapter 2 - Chemical Foundations Chapter 2 - Chemical Foundations I. Introduction By weight, cells are about 70% water, about 1% ions, about 6% small organic molecules (including amino acids, sugars, nucleotides), and about 23% macromolecules.

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Enzymes and Metabolic Pathways Un-lecture!

Enzymes and Metabolic Pathways Un-lecture! Enzymes and Metabolic Pathways Un-lecture! Numbers correspond to the slides, which are in your lecture notes and also posted on-line on the announcements page. 1. Characteristics of enzymes.we went over

More information

Chapter 3: Bioenergetics

Chapter 3: Bioenergetics Chapter 3: Bioenergetics Introduction Metabolism: total of all chemical reactions that occur in the body Anabolic reactions Synthesis of molecules Catabolic reactions Breakdown of molecules Bioenergetics

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Chapter 5 Fundamentals of Human Energy Transfer

Chapter 5 Fundamentals of Human Energy Transfer Chapter 5 Fundamentals of Human Energy Transfer Slide Show developed by: Richard C. Krejci, Ph.D. Professor of Public Health Columbia College 6.18.11 Objectives 1. Describe the first law of thermodynamics

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Summary of Metabolic Pathways (Ch 21,23 and 25)

Summary of Metabolic Pathways (Ch 21,23 and 25) Summary of Metabolic Pathways (Ch 21,23 and 25) 21.1 Energy and Life Energy can be converted from one form to another, but can t be created or destroyed. -A consequence of this is that we need a constant

More information

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules Metabolism Metabolism Total of all chemical reactions that occur in the body 1. Anabolic reactions Synthesis of molecules 2. Catabolic reactions Breakdown of molecules Bioenergetics Converting foodstuffs

More information

4Unit One. Metabolic Processes How chemistry becomes Biology! URLs.

4Unit One. Metabolic Processes How chemistry becomes Biology! URLs. 4Unit One URLs http://biology.clc.uc.edu/courses/bio104/cellresp.htm http://users.rcn.com/jkimball.ma.ultranet/biologypages/c/ CellularRespiration.html Chapter 4 http://tidepool.st.usm.edu/crswr/110respiration.html

More information

Enzymes. OpenStax College

Enzymes. OpenStax College OpenStax-CNX module: m44429 1 Enzymes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information

BIOENERGETICS. Bioenergetics The study of energy transfer within the living things.

BIOENERGETICS. Bioenergetics The study of energy transfer within the living things. BIOENERGETICS Bioenergetics The study of energy transfer within the living things. Why Study Bioenergetics? The understanding of metabolism provides the directions to better understand how skeletal muscles

More information

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic)

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic) CHAPTER ENERGY AND LIVING CELLS Life Requires Free Energy ( Bozeman biology) G= Free energy is the available(useable) energy to do work in the system Q. So during an exothermic reaction does the G go up

More information

ATP The Free Energy Carrier

ATP The Free Energy Carrier Why? ATP The Free Carrier How does the ATP molecule capture, store, and release energy? A sporting goods store might accept a $100 bill for the purchase of a bicycle, but the corner store will not take

More information

Chapter 5: The Working Cell

Chapter 5: The Working Cell Chapter 5: The Working Cell SOME BASIC ENERGY CONCEPTS Energy makes the world go around, but what is energy? Energy is defined as the capacity to perform work. Kinetic energy is the energy of motion. Potential

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Chemical Reactions: Energy, Rates and Equilibrium

Chemical Reactions: Energy, Rates and Equilibrium Chemical Reactions: Energy, Rates and Equilibrium Chapter 7 Heat Changes During Chemical Reactions Bond Dissociation Energy- The amount of energy that must be supplied to break a bond and separate the

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

Chapter 8 Photosynthesis Name

Chapter 8 Photosynthesis Name Chapter 8 Photosynthesis Name Lab ATP - The Cell s Energy Molecule Introduction Is energy free to slosh around inside living cells? The answer is no. Energy exists in the form of chemical energy. This

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

Biochemistry. B.9.C identify and investigate the role of enzymes

Biochemistry. B.9.C identify and investigate the role of enzymes Biochemistry B.9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids B.9.D analyze and evaluate the evidence regarding

More information

Briefly explain biosynthesis of cell constituents (requires energy)

Briefly explain biosynthesis of cell constituents (requires energy) 3 Cell Metabolism Chapter 3 Cell Metabolism - review Student Learning Outcomes: Describe central role of enzymes as catalysts Vast array of chemical reactions Many enzymes are proteins Role of NAD + /NADH

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Molecular Modeling Activity for Cell Energy Time required: one 50-minute period

Molecular Modeling Activity for Cell Energy Time required: one 50-minute period Mega Molecules, LLC!!!!! Name: Hands-On Science with Molecular Models!! Date:!!!!!!!! Hour: Introduction Molecular Modeling Activity for Cell Energy Time required: one 50-minute period Energy within a

More information

ENZYMES. reflect. collagen: a group of proteins found in connective tissues of the body

ENZYMES. reflect. collagen: a group of proteins found in connective tissues of the body reflect Have you ever been told to take your vitamins? Many caregivers tell this to their children daily. However, most people do not understand what vitamins and minerals do and why they are so important.

More information

The purpose of this lab is to investigate the impact of temperature, substrate concentration,

The purpose of this lab is to investigate the impact of temperature, substrate concentration, Lee 1 Jessica Lee AP Biology Mrs. Kingston 23 October 2013 Abstract: The purpose of this lab is to investigate the impact of temperature, substrate concentration, enzyme concentration, and the presence

More information

Transfers of electrons during chemical reactions (oxidation-reduction reactions)

Transfers of electrons during chemical reactions (oxidation-reduction reactions) Transfers of electrons during chemical reactions (oxidation-reduction reactions) Relocation of electrons in food molecules releases energy which can be used to synthesize ATP ATP is used to do ALL types

More information