Some practice problems for midterm 2

Size: px
Start display at page:

Download "Some practice problems for midterm 2"

Transcription

1 Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of when divided by 11? Solution: This is a long-winded way of asking for the value of mod 11. Since 11 is prime and 6 is not a multiple of 11, it follows from Fermat s Theorem that mod 11. Therefore = (6 1 0) mod 11. Problem: Show that if p and q are distinct primes then p q 1 +q p 1 1 mod pq. Solution: Since p and q are distinct primes, q is not a multiple of p, and so, by Fermat s theorem, q p 1 1 mod p. Also, since p is clearly a divisor of p q 1, we have: p q 1 0 mod p. Adding the displayed congruences above gives Interchanging the roles of p an q gives: p q 1 + q p 1 1 mod p. p q 1 + q p 1 1 mod q. Thus we obtain that the number p q 1 + q p 1 1 is divisible by both p and q. Since p and a are distinct, they are relatively prime and hence p q 1 + q p 1 1 is divisible by pq. Problem: Find the last digit of the decimal expansion of Solution: You are asked to find mod 10. We have φ(10) = φ(2 5) = φ(2)φ(5) = 1 4 = 4, so, by Euler s theorem, Divide the exponent by 4, obtaining mod =

2 Therefore: = = (7 4 ) mod 10. Problem: Find: (a) φ(2 8 ), (b) φ(10!). Solution: (a) φ(2 8 ) = (2 1)2 7 = 128. (b) φ(10!) = φ( ) = φ(2 8 )φ(3 4 )φ(5 2 )φ(7) = (2 1)2 7 (3 1)3 3 (5 1)5 (7 1) = Problem: Find all positive integers n such that φ(n) = 12. Solution: It will be useful to first find all solutions to φ(n) = 6. Solutions cannot be divisible by any prime greater than 7, and cannot be divisible by 7 2, 5 2, 3 3, or 2 4. The solutions divisible by 7 are n = 7 and n = 14. If there were a solution n divisible by 5, the φ(n) would be divisible by 4. Since 6 is not divisible by 4, there are no solutions divisible by 5. If n is a solutions divisible by 3 2, then n = 3 2 k with (k, 3) = 1, so 6 = φ(n) = φ(3 2 )φ(k) = 6φ(k), and so φ(k) = 1, and k must be either 1 or 2. Therefore the only solutions divisible by 3 2 are n = 9 and n = 18. If n is a solution divisible by 3 but not by 3 2, then n = 3k with (k, 3) = 1, so φ(n) = φ(3)φ(k) = 2φ(k), and so φ(k) = 3. Since this is impossible, there are no solutions divisible by 3 but not divisible by 9. Finally, there are no solutions which are powers of 2. Thus the solutions to φ(n) = 6 are n = 7, n = 9, n = 14, and n = 18. Now lets turn to finding the solutions to φ(n) = 12. A solution cannot be divisible by any prime greater than 13. If n is divisible by 13, then n = 13k with (k, 13) = 1, so 12 = φ(13)φ(k) = 12φ(k), and therefore k must be 1 or 2. Thus the only solutions divisible by 13 are n = 13 and n = 26. Since 11 1 is not a divisor of 12, there are no solutions divisible by 11. Since 7 is not a divisor of n, there are no solutions divisible by 72. Thus if n is a solution divisible by 7, then n = 7k with (k, 7) = 1, so 12 = φ(7)φ(k) = 6φ(k), and therefore φ(k) = 2, so k can only be 3, 4, or 6, each of which is relatively prime to 7. Therefore the solutions that are divisible by 7 are n = 21, n = 28, and n = 42. Next, lets find the solutions that are divisible by 3. First, n cannot be divisible by 3 3. Consider first the case when 3 2 is a divisor of n. In this case, n = 3 2 k with (k, 3) = 1, so 12 = φ(32)φ(k) = 6φ(k), and so φ(k) = 2. The possibilities for k are 3, 4, and 6, but only 4 is relatively prime to 3. Thus the only solution divisible by 32 is n = 36. For solutions divisible by 3 but not by 32, we have n = 3k with (k, 3) = 1, so 12 = φ(3)φ(k) = 2φ(k), and therefore φ(k) = 6. By the result of the previous paragraph, the only possibilities that are relatively prime to 3 are 7 and 14, which give the previously found solutions n = 21 and n = 42. Finally, there are no solutions which are powers of 2. Thus the solutions to φ(n) = 12 are n = 13, n = 21, n = 26, n = 28, n = 36, and n = 42. Problem: For which positive integers n is φ(n) divisible by 4? Solution: The possibilities are: 1) n has two distinct odd prime factors. 2) n is divisible by 4 and has an odd prime factor. 3) n has a prime factor p such 2

3 that p 1 is divisible by 4. 4) n is divisible by 8. Problem: If two most common letters in a long ciphertext, encrypted by an affine transformation C ap + b mod 26, are X and Q, respectively, then what are the most likely values for a and b? Solution: Since the most frequently occurring letters in English text are e and t respectively, they probably correspond to the ciphertext X and Q. The numerical equivalents of e, t, X, and Q are 4, 19, 16, and 23 respectively. Thus we expect that 4 encrypts to 16 and 19 encrypts to 23. This gives the system of congruences 4a + b 16 mod 26 19a + b 23 mod 26 Subtracting the first from the second gives: 15a 7 mod 26. Solving for a gives a = 23 (up to congruence), and substituting this value into the first of the above congruences gives: b 16 mod 26, so b = 4 (up to congruence). Thus the encryption rule is C = 23P + 4. Problem: Find the number of positive divisors of: (a) 36, (b) Solution: (a) τ(36) = τ( ) = 3 3 = 9. (b) τ( ) = 2 8. Problem: For which integers n the sum of divisors σ(n) is odd? Solution: Let n = p α1 1 pαr r with p 1,..., p r distinct primes and α 1 for k = 1,..., r. Then σ(n) = σ(p α1 1 ) σ(pαr r ), so in order for σ(n) to be odd, each of the factors on the right must be odd. We must therefore decide when σ(p α ) is odd. Consider first the case p = 2. In this case σ(2 α ) = 2 α+1 1 is odd for every α 1. On the other hand, for p > 2, σ(p α ) = 1 + p + + p α is a sum of α + 1 odd numbers, so σ(p α ) has the same parity as α + 1. In other words, σ(p α ) is odd if and only if α is even. It follows that in order for σ(n) to be odd it is necessary and sufficient that n have the form n = 2 α0 p α1 1 pαr r, with p 1,..., p r distinct odd primes and α 1,..., α r even. Equivalently, n is either a perfect square, or 2 times a perfect square. 3

4 Problem: Prove that Dirichlet product is associative, that is, if f, g, h are arithmetic functions then f (g h) = (f g) h. Solution: Recall that for any integer n > 0: (f g)(n) = d n f(d)g(n/d). Thus ((f g) h)(n) = d n ( e d f(e)g(d/e))h(n/d) = d n f(e)g(d/e)h(n/d). Note that e d/e n/d = n, in fact when d runs through the (positive) divisors of n, and e runs through the (positive) divisors of d, the integers (e, e/d, n/d) run through all the triples of positive integers (a, b, c) with abc = n, that is: ((f g) h)(n) = f(a)g(b)h(c), (a,b,c) where the sum is over triples of positive integers (a, b, c) with abc = n. Similarly one shows that (f (g h))(n) is equal to the same sum. This proves the claim. Problem: Find the value of (a) µ(10!), (b) µ( ), where µ is the Möbius µ-function. Solution: 10! is divisible by 2 2 = 4, thus by definition µ(10!) is equal to 0. (b) is a product 3 distinct prime numbers, so by definition its µ is equal to ( 1) 3 = 1. Problem: As usual let τ(n) denote the number of (positive) divisors of n. Show that for any positive integer n we have: n = d n τ(d)µ(n/d). e d Solution: By definition: τ(n) = d n 1. That is, τ is the summatory function of 1, the constant function 1. Applying the Möbius inveresion formula we get the desired equality. Problem: Show that if k > 1 is an integer, then the equation τ(n) = k has infinitely many solutions. Solution: For any prime number p, n = p k 1 is a solution to τ(n) = k. Since there are infinitely many primes, there are infinitely many solutions. 4

5 Problem: Which positive integers have exactly four positive divisors? We want to find all solutions to τ(n) = 4. First, if n has three distinct prime factors, then τ(n) 8, so any solution to τ(n) = 4 can have at most two distinct prime factors. Consider first the case when n has only one prime divisor p, so that n = p α for some positive integer α. Then τ(n) = α + 1, so τ(n) = 4 if and only if α = 3. Thus the solutions of τ(n) = 4 with only one prime divisor are the numbers n = p 3 where p is prime. Next, consider the case when n has distinct prime divisors p and q. then n = p α q β where α and β are positive integers, and so τ(n) = τ(p α q β ) = (α + 1)(β + 1). This product equals 4 if and only if each factor equals 2, which happens if and only if α = β = 1. Thus the solutions to τ(n) = 4 with two distinct prime factors are of the form n = pq where p and q are distinct primes. In summary, the solutions to τ(n) = 4 are either cubes of primes, or products of two distinct primes. Problem: Show that a positive integer n is composite if and only if σ(n) > n + n. Solution: Suppose that n is composite. I claim that n has a divisor d with n d < n. To see this, note that, since n is composite, it has a divisor d1 with 1 < d 1 < n. If d 1 n, let d = d 1. Otherwise, let d = n/d 1. Now note that 1, d, and n are distinct divisors of n, so σ(n) 1 + d + n 1 + n + n > n + n. Now suppose n is not composite. We must show that σ(n) n + n. This is trivial if n = 1, so it remains to consider the case n prime. In this case, the only positive divisors of n are n and 1. Thus σ(n) = n + 1 < n + n. Problem: If the cipher text message produced by RSA encryption with the key (e, n) = (5, 2881) is: what is the plaintext message? The modulus n = 2881 must be a product of two distinct primes, and one of the factors must be less than I can therefore find a prime factor by trying each prime less than or equal to 53. One quickly arrives at the divisor 43, and the factorization 2881 = Therefore φ(2881) = 4266 = 2772, so the decryption exponent is d = 5 1 mod 2772 = 1109, and so the decryption rule is x = c 1109 mod Applying this to each of the given ciphertext blocks yields the plaintext blocks The text equivalent is: ea tc ho co la te cake (In the exam we will have much smaller numbers). Problem: Determine (a) ord 17 (2), (b) ord 13 (11). 5

6 Solution: (a) The order must divide φ(17) = 16, so it must be 1, 2, 4, 8, or 16. Just calculate: 2 1 mod 17 = 2 so ord 17 (2) = mod 17 = mod 17 = 4 2 mod 17 = mod 17 = 16 2 mod 17 = 1 (b) The order must divide φ(21) = 12, so it must be 1, 2, 3, 4, 6, or 12. We have: 10 1 mod 21 = 10 so ord 21 (10) = mod 21 = mod 21 = mod 21 = mod 21 = 16 2 mod 21 = mod 21 = 16 4 mod 21 = 1 Problem: Show that the integer 20 has no primitive roots. Solution: φ(20) = φ(8 5) = 4 4 = 16. We have to show that no element in Z 20 has order 16. We have Z 20 = {1, 3, 7, 9, 11, 13, 17, 19}. One computes that 3 4 = mod 20 and thus ord 20 (3) = 4. We also have 3 1 = 7 mod 20 so ord 20 (7) = 4 as well. Also 9 2 = 81 1 mod 20 so ord 20 9 = 2. Finally 11 9 mod 20, 13 7 mod 20, 17 3 mod 20 and 19 1 mod 20. Thus none of them has order 16 as required. Problem: Find a complete set of incongruent primitive roots of 19. Solution: Since 19 1 = 2 3 2, a number a Z 19 is a generator if and only if a 6 1 mod 19 and a 9 1 mod 19. Since 26 mod 19 = 7 and 29 mod 19 = 18, it follows that 2 is a generator, and the other generators are given by 2 j where j is relatively prime to 18. Thus the generators are 2 1 mod 19 = mod 19 = mod 19 = mod 19 = mod 19 = mod 19 = 10 6

7 Problem: Show that if p is a prime and p 1 mod 4 then there is an integer x such that x 2 1 mod p. Solution: Since 4 p 1,there is an x Z p of order 4. Therefore x 2 1 in Z p, but x 4 = 1 in Z p. Therefore x 2 and 1 are distinct solutions to y 2 1 = 0. But we also know that 1 is a solution, which is distinct from 1 since p 2. It follows that x 2 = 1 in Z p. 7

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

The application of prime numbers to RSA encryption

The application of prime numbers to RSA encryption The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

An Introduction to the RSA Encryption Method

An Introduction to the RSA Encryption Method April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

More information

Math 453: Elementary Number Theory Definitions and Theorems

Math 453: Elementary Number Theory Definitions and Theorems Math 453: Elementary Number Theory Definitions and Theorems (Class Notes, Spring 2011 A.J. Hildebrand) Version 5-4-2011 Contents About these notes 3 1 Divisibility and Factorization 4 1.1 Divisibility.......................................

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 RSA Encryption Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.

More information

A Study on the Necessary Conditions for Odd Perfect Numbers

A Study on the Necessary Conditions for Odd Perfect Numbers A Study on the Necessary Conditions for Odd Perfect Numbers Ben Stevens U63750064 Abstract A collection of all of the known necessary conditions for an odd perfect number to exist, along with brief descriptions

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Elementary Number Theory

Elementary Number Theory Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

More information

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

2 When is a 2-Digit Number the Sum of the Squares of its Digits? When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

More information

SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

More information

Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach. Student Resources. Printed Version Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

Advanced Cryptography

Advanced Cryptography Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Examples of Functions

Examples of Functions Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

Public Key Cryptography and RSA. Review: Number Theory Basics

Public Key Cryptography and RSA. Review: Number Theory Basics Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and

More information

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract If n is a positive integer, write F n for the nth Fibonacci number, and ω(n) for the number

More information

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

More information

ODD PERFECT NUMBERS HAVE AT LEAST NINE DISTINCT PRIME FACTORS

ODD PERFECT NUMBERS HAVE AT LEAST NINE DISTINCT PRIME FACTORS ODD PERFECT NUMBERS HAVE AT LEAST NINE DISTINCT PRIME FACTORS PACE P. NIELSEN Abstract. An odd perfect number, N, is shown to have at least nine distinct prime factors. If 3 N then N must have at least

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... Fibonacci Numbers and Greatest Common Divisors The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... After starting with two 1s, we get each Fibonacci number

More information

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d. [Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

On some Formulae for Ramanujan s tau Function

On some Formulae for Ramanujan s tau Function Revista Colombiana de Matemáticas Volumen 44(2010)2, páginas 103-112 On some Formulae for Ramanujan s tau Function Sobre algunas fórmulas para la función tau de Ramanujan Luis H. Gallardo University of

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20. Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Elements of Applied Cryptography Public key encryption

Elements of Applied Cryptography Public key encryption Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let

More information

5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1 MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

More information

RSA and Primality Testing

RSA and Primality Testing and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Advanced GMAT Math Questions

Advanced GMAT Math Questions Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Lecture 3: One-Way Encryption, RSA Example

Lecture 3: One-Way Encryption, RSA Example ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require

More information

Category 3 Number Theory Meet #1, October, 2000

Category 3 Number Theory Meet #1, October, 2000 Category 3 Meet #1, October, 2000 1. For how many positive integral values of n will 168 n be a whole number? 2. What is the greatest integer that will always divide the product of four consecutive integers?

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory. Lars-Åke Lindahl Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

More information

Cubes and Cube Roots

Cubes and Cube Roots CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy

More information

ECE 842 Report Implementation of Elliptic Curve Cryptography

ECE 842 Report Implementation of Elliptic Curve Cryptography ECE 842 Report Implementation of Elliptic Curve Cryptography Wei-Yang Lin December 15, 2004 Abstract The aim of this report is to illustrate the issues in implementing a practical elliptic curve cryptographic

More information

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

More information

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

More information

2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations 2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany.

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany. STUDENT S SOLUTIONS MANUAL to accompany ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Kenneth H. Rosen AT&T Labs Reproduced by Pearson Addison-Wesley from electronic files supplied

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES DARRYL MCCULLOUGH AND ELIZABETH WADE In [9], P. W. Wade and W. R. Wade (no relation to the second author gave a recursion formula that produces Pythagorean

More information

Congruent Number Problem

Congruent Number Problem University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works.

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. MATH 13150: Freshman Seminar Unit 18 1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. 1.1. Bob and Alice. Suppose that Alice wants to send a message to Bob over the internet

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Session 6 Number Theory

Session 6 Number Theory Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24. (9x + 2)(mod 26) y 1 1 (x 2)(mod 26) 3(x 2)(mod 26) U : y 1 = 3(20 2)(mod 26) 54(mod 26) 2(mod 26) c

Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24. (9x + 2)(mod 26) y 1 1 (x 2)(mod 26) 3(x 2)(mod 26) U : y 1 = 3(20 2)(mod 26) 54(mod 26) 2(mod 26) c Chapter 2 Homework 2-5, 7, 9-11, 13-18, 24 2. The ciphertext UCR was encrypted using the affine function (9x + 2)(mod 26) Find the plaintext. First, we find the numerical values corresponding to UCR. U

More information