Save this PDF as:

Size: px
Start display at page:

Download ". 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9"

## Transcription

1 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a divisor of N and write d N if N/d is a positive integer Thus, for example, 2 6 Denote by D N the set of all positive integer divisors of N For example D 6 = {, 2, 3, 6} There are four parts to this note In the first part, we count the divisors of a given positive integer N based on its prime factorization In the second part, we construct all the divisors, and in the third part we discuss the geometry of the D N In part four, we discuss applications to contest problems Study the figure above There are two things to work out One is how does the set of dots and segments represent a number, and the other is how do the digit strings just above the digits through 9 represent those digits Take some time now before reading more to figure this out 2 Counting the divisors of N First consider the example N = 72 To find the number of divisors of 72, note that the prime factorization of 72 is given by 72 = Each divisor d of 72 must be of the form d = 2 i 3 j where 0 i 3 and 0 j 2 Otherwise, /d could not be an integer, by the Fundamental Theorem of Arithmetic (the theorem that guarantees the unique factorization into primes of each positive integer) So there are 4 choices for the exponent i and 3 choices for j Hence there are 4 3 = 2

2 divisors of 72 Reasoning similarly, we can see that for any integer the number of divisors is N = p e p e 2 2 p e k k, Π k i=(e i + ) = (e + )(e 2 + ) (e k + ) 3 Constructing the divisors of N In part we found the number of members of D N for any positive integer N In this part, we seek the list of divisors themselves Again we start with the prime factorization of N Suppose N = p e p e 2 2 p e k k If k = 2 the listing is straightforward In this case, we build a table by first listing the powers of p across the top of the table and the powers of p 2 down the side, thus obtaining an (e + ) (e 2 + ) matrix of divisors Again we use N = 72 as an example Notice that each entry in the table is the product of its row label and its column label What do we when the number of prime factors of N is more than 2? If k = 3 we can construct e 3 + matrices of divisors, one for each power of p 3 For example, if N = 360 = , we construct one 3 4 matrix for 5 0 and one for 5 The result is a matrix of divisors The two 3 4 matrices are shown below and For larger values of k we can create multiple copies of the matrix associated with the number N = p e p e 2 2 p e k k 4 The geometry of D N To investigate the geometry of D N, we first explore the relation divides Recall that a b means that a and b are positive integers for which b/a is an integer The relation has several important properties, three of which are crucial to our discussion 2

3 Reflexive For any positive integer a, a a 2 Antisymmetry For any pair of positive integers a, b, if a b and b a, then a = b 3 Transitivity For any three positive integers, a, b, c, if a b and b c, then a c These properties are easy to prove The first says that each integer is a divisor of itself; that is, a/a is an integer The second says that no two different integers can be divisors of one another This is true since a larger integer can never be a divisor of a smaller one The third property follows from the arithmetic b/a c/b = c/a together with the property that the product of two positive integers is a positive integer Any set S with a relation defined on it that satisfies all three of the properties above is called a partially ordered set, or a poset A branch of discrete mathematics studies the properties of posets, (S, ) Each finite poset has a unique directed graph representation This pictorial representation is what we mean by the geometry of D N To construct the directed graph of a poset (S, ), draw a vertex (dot) for each member of S Then connect two vertices a and b with a directed edge (an arrow) if a b Of course, in our case D N this means we connect a to b if a b The case D 6 is easy to draw: Fig The digraph of D 6 The circles at each of the four vertices are called loops They are included as directed edges because each number is a divisor of itself The reader should imagine that all the non-loop edges are upwardly directed The directed edge from to 6 indicates that 6 But since we know that the vertices of D 6 satisfy all three properties required of a poset, we can leave off both (a) the loops, which are implied 3

4 by the reflexive property, and (b) the edges that are implied by the transitivity condition The slimmed down representation, called the Hasse diagram, is much easier to understand It captures all the essential information without cluttering up the scene The Hasse diagram of D 6 is shown below Fig 2, the Hasse diagram of D 6 In general, the Hasse diagram for D N has only those non-loop edges which are not implied by transitivity, that is, those edges from a to b for which b is a prime number multiple of a The Hasse diagrams of D 72, D 30, and D 60 are shown below Fig 3 The Hasse diagram of D 72 4

5 Notice that each prime divisor of 30 can be considered a direction, multiplication by 2 moves us to the left ( ), by 3 moves us upward ( ) and, by 5 moves us to the right ( ) Also note that if a and b are divisors of 30 then a b if and only if there is a sequence of upwardly directed edges starting at a and ending at b For example, 30 and (, 3), (3, 5), (5, 30) are all directed edges in the digraph of D 30 On the other hand, we say 2 and 5 are incomparable because neither divides the other, and indeed there is no upwardly directed sequence of edges from either one to the other Fig 4 The Hasse diagram of D 30 What would the divisors of 60 look like if we build such a diagram for them? Try to construct it before you look at D Fig 5 The Hasse diagram of D 60 5

6 Consider the same (lattice/hasse) diagram for the divisors of 20 We can draw this in several ways The first one (Fig 6a) places each divisor of 20 at a level determined by its number of prime divisors The second one (Fig 6b) emphasizes the degrees of freedom These two diagrams are representations of a four dimensional cube, not surprising since the Hasse diagram for D 30 is a three-dimensional cube A mathematical way to say the two digraphs are the same is to say they are isomorphic This means that they have the same number of vertices and the same number of edges and that a correspondence between the vertices also serves as a correspondence between the edges Note that the digraphs in 6a and 6b have the required number of vertices (6) and the required number of edges (32) Can you find an N such that the Hasse diagram of D N is a representation of a five-dimensional cube Such a digraph must have 2 5 = 32 vertices, and = 80 edges Fig 6a The Hasse diagram of D 20 6

7 Fig 6b The Hasse diagram of D 20 How can the geometry help us do number theory? One way to use the geometry is in the calculation of the GCF and LCM of two members of D N Note that each element d of D N generates a downward cone of divisors and an upward cone of multiples We can denote these cones by F (d) and M(d) respectively Then the GCF (d, e) = max{f (d) F (e)} and LCM(d, e) = min{m(d) M(e)} 7

8 5 Problems from Competitions The following problems come from MathCounts and the American Mathematics Competitions Find the number of three digit divisors of How many positive integers less than 50 have an odd number of positive integer divisors? 3 (The Locker Problem) A high school with 000 lockers and 000 students tries the following experiment All lockers are initially closed Then student number opens all the lockers Then student number 2 closes the even numbered lockers Then student number 3 changes the status of all the lockers numbered with multiples of 3 This continues with each student changing the status of all the lockers which are numbered by multiples of his or her number Which lockers are closed after all the 000 students have done their jobs? 4 If N is the cube of a positive integer, which of the following could be the number of positive integer divisors of N? (A) 200 (B) 20 (C) 202 (D) 203 (E) Let N = How many positive integers are factors of N? (A) 3 (B) 5 (C) 69 (D) 25 (E) 26 6 A teacher rolls four dice and announces both the sum S and the product P Students then try to determine the four dice values a, b, c, and d Find an ordered pair (S, P ) for which there is more than one set of possible values 7 How many of the positive integer divisors of N = have exactly 2 positive integer divisors? 8 How many ordered pairs (x, y) of positive integers satisfy xy + x + y = 99? 9 How many positive integers less than 400 have exactly 6 positive integer divisors? 8

9 0 The product of four distinct positive integers, a, b, c, and d is 8! The numbers also satisfy What is d? How many multiples of 30 have exactly 30 divisors? 2 Find the number of odd divisors of 3! ab + a + b = 39 () bc + b + c = 99 (2) 3 Find the smallest positive integer with exactly 60 divisors 4 (2008 Purple Comet) Find the smallest positive integer the product of whose digits is 9! 5 (996 AHSME) If n is a positive integer such that 2n has 28 positive divisors and 3n has 30 positive divisors, then how many positive divisors does 6n have? 6 Find the sum of all the divisors of N = (200 Mathcounts Competition, Target 7) Find the product P of all the divisors of 6 3, and express your answer in the form 6 t, for some integer t 8 Find the largest 0-digit number with distinct digits that is divisible by 9 (This was problem 25 on the Sprint Round of the National MATHCOUNTS competition in 20) Each number in the set {5, 9, 0, 3, 4, 8, 20, 2, 25, 29} was obtained by adding two number from the set {a, b, c, d, e} where a < b < c < d < e What is the value of c? 20 (This was problem 8 on the Target Round of the National MATHCOUNTS competition in 20) How many positive integers less than 20 cannot be expressed as the difference of the squares of two positive integers? 2 Consider the number N = = (a) How many divisors does N have? (b) How many single digit divisors does N have? (c) How many two-digit divisors does N have? (d) How many three-digit divisors does N have? (e) How many four-digit divisors does N have? 9

10 (f) How many five-digit divisors does N have? 22 The integer N has both 2 and 5 as divisors Also, N has exactly 6 divisors What is N? 0

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### Lesson 1. The Basic Building Blocks of Geometry

Lesson 1 The Basic Building Blocks of Geometry 1 2 Overview Geometry is the study of shapes, patterns, relationships, and measurements. There are many different kinds of shapes in geometry including trapezoids,

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Fun Number Theory Meeting (Computation, Factors, Exponent Patterns, Factorials, Perfect Squares and Cubes)

Fun Number Theory Meeting (Computation, Factors, Exponent Patterns, Factorials, Perfect Squares and Cubes) Topic This meeting s topics fall in the category of number theory. Students will apply their knowledge

### Equivalence Relations

Equivalence Relations Definition An equivalence relation on a set S, is a relation on S which is reflexive, symmetric and transitive. Examples: Let S = Z and define R = {(x,y) x and y have the same parity}

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Relations Graphical View

Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). A binary

### 4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

### Prime Factorization 0.1. Overcoming Math Anxiety

0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Category 3 Number Theory Meet #1, October, 2000

Category 3 Meet #1, October, 2000 1. For how many positive integral values of n will 168 n be a whole number? 2. What is the greatest integer that will always divide the product of four consecutive integers?

### Primes. Name Period Number Theory

Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

### The Locker Problem. Purpose: Participants will determine attributes of numbers and their factors.

The Locker Problem Purpose: Participants will determine attributes of numbers and their factors. Overview: Participants will determine which locker numbers have exactly two factors, an odd number of factors,

### PROBLEM SET 7: PIGEON HOLE PRINCIPLE

PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### Squares and Square Roots

SQUARES AND SQUARE ROOTS 89 Squares and Square Roots CHAPTER 6 6.1 Introduction You know that the area of a square = side side (where side means the length of a side ). Study the following table. Side

### 5-4 Prime and Composite Numbers

5-4 Prime and Composite Numbers Prime and Composite Numbers Prime Factorization Number of Divisorss Determining if a Number is Prime More About Primes Prime and Composite Numbers Students should recognizee

### Coach Monks s MathCounts Playbook! Secret facts that every Mathlete should know in order to win!

Coach Monks s MathCounts Playbook! Secret facts that every Mathlete should know in order to win! Learn the items marked with a first. Then once you have mastered them try to learn the other topics.. Squares

### 10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### There are 8000 registered voters in Brownsville, and 3 8. of these voters live in

Politics and the political process affect everyone in some way. In local, state or national elections, registered voters make decisions about who will represent them and make choices about various ballot

### A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

### An Introduction to Number Theory Prime Numbers and Their Applications.

East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 8-2006 An Introduction to Number Theory Prime Numbers and Their Applications. Crystal

### CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Playing with Numbers

PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

### MATHCOUNTS TOOLBOX Facts, Formulas and Tricks

MATHCOUNTS TOOLBOX Facts, Formulas and Tricks MATHCOUNTS Coaching Kit 40 I. PRIME NUMBERS from 1 through 100 (1 is not prime!) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 II.

### Integers and division

CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.

### Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences Felix Lazebnik This collection of problems is for those who wish to learn about arithmetic and geometric sequences, or to those who wish to improve their understanding

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Why Vedic Mathematics?

Why Vedic Mathematics? Many Indian Secondary School students consider Mathematics a very difficult subject. Some students encounter difficulty with basic arithmetical operations. Some students feel it

### Elementary Algebra. Section 0.4 Factors

Section 0.4 Contents: Definitions: Multiplication Primes and Composites Rules of Composite Prime Factorization Answers Focus Exercises THE MULTIPLICATION TABLE x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5

### (Refer Slide Time 1.50)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Module -2 Lecture #11 Induction Today we shall consider proof

### 4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.

Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### 1 Number System. Introduction. Face Value and Place Value of a Digit. Categories of Numbers

RMAT Success Master 3 1 Number System Introduction In the decimal number system, numbers are expressed by means of symbols 0, 1,, 3, 4, 5, 6, 7, 8, 9, called digits. Here, 0 is called an insignificant

### SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Matrix Inverse and Determinants

DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and

### Problem Set 1 Solutions Math 109

Problem Set 1 Solutions Math 109 Exercise 1.6 Show that a regular tetrahedron has a total of twenty-four symmetries if reflections and products of reflections are allowed. Identify a symmetry which is

### V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

### Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

### Axiom A.1. Lines, planes and space are sets of points. Space contains all points.

73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT

UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

### Greatest Common Factor and Least Common Multiple

Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples

### 1. Determine all real numbers a, b, c, d that satisfy the following system of equations.

altic Way 1999 Reykjavík, November 6, 1999 Problems 1. etermine all real numbers a, b, c, d that satisfy the following system of equations. abc + ab + bc + ca + a + b + c = 1 bcd + bc + cd + db + b + c

### Geometry Unit 1. Basics of Geometry

Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

### c sigma & CEMTL

c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

### Determining If Two Graphs Are Isomorphic 1

Determining If Two Graphs Are Isomorphic 1 Given two graphs, it is often really hard to tell if they ARE isomorphic, but usually easier to see if they ARE NOT isomorphic. Here is our first idea to help

### Lecture 17 : Equivalence and Order Relations DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

### 2.5 Elementary Row Operations and the Determinant

2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)

### Prime Time: Homework Examples from ACE

Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### 13 Solutions for Section 6

13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### Homework 15 Solutions

PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition

### Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

### The last three chapters introduced three major proof techniques: direct,

CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

### Lecture 1: Elementary Number Theory

Lecture 1: Elementary Number Theory The integers are the simplest and most fundamental objects in discrete mathematics. All calculations by computers are based on the arithmetical operations with integers

### It is time to prove some theorems. There are various strategies for doing

CHAPTER 4 Direct Proof It is time to prove some theorems. There are various strategies for doing this; we now examine the most straightforward approach, a technique called direct proof. As we begin, it

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Grade 5 Mathematics Performance Level Descriptors

Limited Grade 5 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 5 Mathematics. A student at this

Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### Chapter 6. Number Theory. 6.1 The Division Algorithm

Chapter 6 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Lab 7. Addition and Subtraction of Fractional Numbers

Lab 7 Addition and Subtraction of Fractional Numbers Objectives: 1. The teacher will understand how to create single unit models (models for 1) that can be used to model more than one fraction at a time.

### Factorizations: Searching for Factor Strings

" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Mathematical induction & Recursion

CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,

### 1 Introduction. 2 Basic Principles. 2.1 Multiplication Rule. [Ch 9] Counting Methods. 400 lecture note #9

400 lecture note #9 [Ch 9] Counting Methods 1 Introduction In many discrete problems, we are confronted with the problem of counting. Here we develop tools which help us counting. Examples: o [9.1.2 (p.

### CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph

Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS

San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS DEFINITION. An arithmetic progression is a (finite or infinite) sequence of numbers with the property that the difference between

### 1.16 Factors, Multiples, Prime Numbers and Divisibility

1.16 Factors, Multiples, Prime Numbers and Divisibility Factor an integer that goes into another integer exactly without any remainder. Need to be able to find them all for a particular integer it s usually

### A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient