# Category 3 Number Theory Meet #1, October, 2000

Size: px
Start display at page:

Transcription

1

2

3

4

5 Category 3 Meet #1, October, For how many positive integral values of n will 168 n be a whole number? 2. What is the greatest integer that will always divide the product of four consecutive integers? 3. Find the sum of all the positive integers less than 1000 that are both perfect squares and perfect cubes

6 Solutions to Category 3 Meet #1, October, The positive integral values of n that will make 168 n a whole number are the factors of 168. (By positive integral values we mean positive integers or whole numbers.) We can simply list all the factors of 168 in pairs: 1 168, 2 84, 3 56, 4 42, 6 28, 7 24, 8 21, and Those are the 16 values of n that will make 168 a whole number. Alternatively, there is a trick for figuring out the number of factors of a number without actually listing them. We express 168 in prime factors with exponents as follows: 168 = We then raise each exponent by one and multiply them like this: ( 3 + 1) ( 1 + 1) ( 1 + 1) = = 16. n 2. The product of four consecutive integers is guaranteed to contain a multiple of 3, and two multiples of 2, one of which is also a multiple of 4. Being careful not to count the same factor of 2 as both a multiple of 2 and a multiple of 4, we can be certain of only three factors of 2 along with the one factor of 3. From these factors we obtain the product = 24, so 24 will always divide the product of four consecutive integers. Some people will find this answer simply by multiplying the first four counting numbers: = Numbers that are both perfect squares and perfect cubes are sixth powers, because a ( a ) ( a ) = = Since the cube root of 1000 is 10, we need only values under 10 for a 2. Now if a 2 is under 10, then a must be 3 or less. The three sixth powers under 1000 are: =, = =, and 3 6 = 729. Their sum is

7 Category 3 Meet #1, October, What is the greatest possible difference of two primes if both of those primes are between 50 and 100? 2. Use the following clues to find the value of n: n is a whole number n is divisible by 24 n is greater than 300 n is not divisible by 17 n is less than 400 n is divisible by 21 the sum of the digits of n is Find the sum of all the different prime factors of 364,

8 Solutions to Category 3 Meet #1, October, To get the greatest possible difference, we will want to find the prime closest to 100 and subtract the prime closest to = 9 11, so it s not prime, and 51 = 3 17, so it s not prime either. Both 97 and 53 are prime, though, so our greatest difference is 97 53, which is That n is divisible by 24 and 21 are the most 3 helpful clues to start with. Since 24 = 2 3 and 21 = 3 7, we know that n is divisible by 2 3, 3, and 7, which are relatively prime. This means that n is a multiple of = 168. The only multiple of 168 that is between 300 and 400 is = 336, so that must be it. Checking the other clues, we know that 336 cannot be divisible by 17, since we created and 17 is a it by multiplying ( ) different prime. The final clue says that the sum of the digits is 12 and this is true of our answer , 000 = and we know that = 2 5. Now we need to look for other prime factors in 364: = = 2 91 = So the different prime factors of 364,000 are 2, 5, 7, and 13. The sum of these numbers is 27.

9 Category 3 Meet #1, October, If the five-digit number 837A5 is known to be divisible by 15, what is the sum of all the possible values of the digit A? 2. Twin primes are two primes that have a positive difference of 2, such as 11 and 13. What is the sum of the least twin primes greater than 50? 3. Find the value of n, if n is a natural number, n is less than 100, n is the product of two primes, the sum of the digits of n is 10, and the positive difference between the two prime factors of n is a multiple of

10 Solutions to Category 3 Meet #1, October, or To be sure a number is divisible by 15, it must be divisible by both 3 and 5. The five-digit number 837A5 is definitely divisible by 5, since its units digit is a 5. If it is to be divisible by 3, the sum of its digits must be a multiple of 3. The known digits have a sum of = 23. This means that A can have the values 1, 4, or 7. The sum of these possible values is = There are no twin primes in the fifties or the sixties. Thus the least twin primes greater than 50 are 71 and 73. Their sum is 144. Editor note: The original meet had 144 as the answer, but 59 and 61 are also twin primes, so the correct answer should be 120. Thanks to Zhiping You for pointing this out. 3. There are too many possible products of two primes to start with that clue. The natural numbers less than 100 with a sum of digits equal to 10 are 19, 28, 37, 46, 55, 64, 73, 82, and 91. Of these, four of these are the product of two primes: 46 = 2 23, 55 = 5 11, 82 = 2 41, and 91 = Since the difference between the prime factors of 82 is 41 2 = 39 and 39 is a multiple of 13, n must be 82.

11 Category 3 Meet #1, October = 2 a 3 b 5 c 7 d 11 e Find the value of a + b + c + d + e. 2. Find the sum of all possible values of the digit N such that the 5-digit number 318N4 is divisible by Melanie s locker number is the product of the least pair of consecutive primes that have a difference of 6. What is Melanie s locker number?

12 Solutions to Category 3 Meet #1, October = , so a + b + c + d + e = =7. 2. A number that is divisible by 12 must be divisible by both 3 and 4. For the 5-digit number 318N4 to be divisble by 3, the sum of its digits must be a multiple of = 16, so N would have to be 2 or 5 or 8 to make a multiple of 3. This gives us 31824, 31854, and to consider. To determine which among these is divisible by 4, we need only check the last two digits of each number, since any multiple of 100 is divisble by and 84 are multiples of 4, but 54 is not. Thus only and are divisible by 12 and the sum of all possible values of N is = The least pair of consecutive primes with a difference of 6 is the pair 23 and 29. Their product is 667, so Melanie s locker number must be 667

13 Category 3 Meet #1, October How many pairs of primes have a sum of 24? 2. If the five-digit number 5N82N is divisible by 18, what is the value of N? 3. How many of the positive factors of 660 are odd?

14 Solutions to Category 3 Meet #1, October There are three (3) pairs of primes that have a sum of 24. They are: , , and For the five-digit number 5N82N to be divisible by 18, it must pass the divisibility tests for both 2 and 9. Since there is an N in the units place (ones place), we know that N has to be even. To be divisible by 9, the sum of the digits must be a multiple of 9. Currently the sum of the digits is 5 + N N = N. For N = 0, we get = 15, which is not a multiple of 9. For N = 2, we get = 19. For N = 4, we get = 23. For N = 6, we get = 27, which is a multiple of 9. This tells us that the five-digit number is divisible by 18. ( = 3157) Note that this is the only single-digit value of N that will make N equal a multiple of 9. Thus, N = The factor pairs of 660 are listed below. The eight (8) odd factors are in bold

15 Category 3 Meet #1, October Two prime numbers, each less than 50, have a difference of 35. What is the sum of these two primes? 2. The letters A and B each represent one digit in the five-digit number AB9BA. If AB9BA is divisible by 2, 3, 4, 6, 8, and 9, what is the value of 2A + B? 3. How many whole numbers between 80 and 100 are the product of two distinct primes? In other words, how many whole numbers between 80 and 100 have exactly four factors?

16 Solutions to Category 3 Meet #1, October After 2, all primes are odd. Any two odd primes will have an even difference. If the difference of two primes is odd, then 2 must be one of the primes. Since our difference is 35, the other prime must be = 37. Our two primes are 2 and 37 and their sum is = The sum A + B B + A must be a multiple of 9, since the five-digit number AB9BA is divisible by 9. This means that A + B = 9. Also, A must be even, since AB9BA is a divisible by 2. The possibilities for the last two digits BA are 18, 36, 54, 72, and 90. Only 36 and 72 are divisible by 4, so the 5-digit number is either or Since 936 is divisible by 8 and 972 is not, the number must be So A = 6 and B = 3, and the value of 2A + B is = The prime factorizations of all the numbers between 80 and 100 are listed below. The 8 that are products of two primes are in bold. 81 = = = = = = = = = = = = = = = = = = =

17 Category 3 Meet #1, October What is the least three-digit number that is divisible by exactly three different prime numbers? 2. The five-digit number 35N2N is divisible by 2, 3, 4, 6, 8, 9, and 12, among other numbers. What is the value of the digit N? 3. How much greater is the product of the first four primes than the product of the first three composites?

18 Solutions to Category 3 Meet #1, October 2006 Average score: 1.5 answers correct Some Incorrect Seen , 110, 120, Some people might be fooled by = 105, but = 102 is the least three-digit number that is divisible by exactly three primes. 2. N clearly must be an even digit, so 0, 2, 4, 6, and 8 are possible. For 35N2N to be divisible by 3, the sum of the digits must be a multiple of three. So far we have N N = N. Let s use the possible values of N to evaluate this expression. If N = 0, then N = = 10, which is not divisible by 3. If N = 2, then N = = 14, which is not divisible by 3. If N = 4, then N = = 18, which is divisible by 3. Neither N = 6 nor N = 8 gives a multiple of 3, so 4 is our only candidate. Let s make sure that the number is divisible by all the other numbers listed. It is divisible by 4 since the last two digits 24 are divisible by 4. It is divisible by 6 since it passes the test for 2 and 3. It is divisible by 8 since the last three digits 424 are divisible by 8. It is divisible by 9 since the sum of the digits (18) is divisible by 9. Finally, it is divisible by 12 since it passes the test for 3 and 4. The digit N is indeed The product of the first four primes is = 210. The product of the first three composites is = 192. The difference is = , 6

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Prime Time: Homework Examples from ACE

Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Factorizations: Searching for Factor Strings

" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

### 6.4 Special Factoring Rules

6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication

### Grade 7/8 Math Circles Fall 2012 Factors and Primes

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole

### . 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

### Primes. Name Period Number Theory

Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Number Factors. Number Factors Number of factors 1 1 1 16 1, 2, 4, 8, 16 5 2 1, 2 2 17 1, 17 2 3 1, 3 2 18 1, 2, 3, 6, 9, 18 6 4 1, 2, 4 3 19 1, 19 2

Factors This problem gives you the chance to: work with factors of numbers up to 30 A factor of a number divides into the number exactly. This table shows all the factors of most of the numbers up to 30.

### Prime Factorization 0.1. Overcoming Math Anxiety

0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### 1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result?

Black Equivalent Fractions and LCM 1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result? 2. The sum of three consecutive integers is

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Playing with Numbers

PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

### Cubes and Cube Roots

CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.

Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### 5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141)

Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141) A 3. Multiply each number by 1, 2, 3, 4, 5, and 6. a) 6 1 = 6 6 2 = 12 6 3 = 18 6 4 = 24 6 5 = 30 6 6 = 36 So, the first 6 multiples

### Factoring Numbers. Factoring numbers means that we break numbers down into the other whole numbers that multiply

Factoring Numbers Author/Creation: Pamela Dorr, September 2010. Summary: Describes two methods to help students determine the factors of a number. Learning Objectives: To define prime number and composite

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Factoring Whole Numbers

2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

### Perfect! A proper factor of a number is any factor of the number except the number itself. You can use proper factors to classify numbers.

Black Prime Factorization Perfect! A proper factor of a number is any factor of the number except the number itself. You can use proper factors to classify numbers. A number is abundant if the sum of its

### Common Core Standards for Fantasy Sports Worksheets. Page 1

Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### 2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### Sample Problems. Practice Problems

Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

### Factoring Special Polynomials

6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

### Squaring, Cubing, and Cube Rooting

Squaring, Cubing, and Cube Rooting Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@math.hmc.edu I still recall my thrill and disappointment when I read Mathematical Carnival [4], by

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

### 15 Prime and Composite Numbers

15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### An Introduction to Number Theory Prime Numbers and Their Applications.

East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 8-2006 An Introduction to Number Theory Prime Numbers and Their Applications. Crystal

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### Stupid Divisibility Tricks

Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

### 1.2. Successive Differences

1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Some practice problems for midterm 2

Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

### ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### FACTORS, PRIME NUMBERS, H.C.F. AND L.C.M.

Mathematics Revision Guides Factors, Prime Numbers, H.C.F. and L.C.M. Page 1 of 16 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier FACTORS, PRIME NUMBERS, H.C.F. AND L.C.M. Version:

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

### MATHS ACTIVITIES FOR REGISTRATION TIME

MATHS ACTIVITIES FOR REGISTRATION TIME At the beginning of the year, pair children as partners. You could match different ability children for support. Target Number Write a target number on the board.

### The last three chapters introduced three major proof techniques: direct,

CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

### Lowest Common Multiple and Highest Common Factor

Lowest Common Multiple and Highest Common Factor Multiple: The multiples of a number are its times table If you want to find out if a number is a multiple of another number you just need to divide the

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### MATHEMATICS. Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples. Equipment. MathSphere

MATHEMATICS Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples Paper, pencil, ruler. Equipment MathSphere 5330 Square numbers, prime numbers, factors and multiples

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

### Combinatorial Proofs

Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### Factoring - Factoring Special Products

6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Factoring Algebra- Chapter 8B Assignment Sheet

Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

### EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

### Factors and Products

CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

### Summary Of Mental Maths Targets EYFS Yr 6. Year 3. Count from 0 in multiples of 4 & 8, 50 & 100. Count back in 100s, 10s, 1s eg.

Autumn 1 Say the number names in order to 10. Read and write from 1 to 20 in numerals and words. Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward. Count from 0 in

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### Session 7 Fractions and Decimals

Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

### FACTORS AND MULTIPLES Answer Key

I. Find prime factors by factor tree method FACTORS AND MULTIPLES Answer Key a. 768 2 384 2 192 2 96 2 48 2 24 2 12 2 6 2 3 768 = 2*2*2*2*2*2*2*2 *3 b. 1608 3 536 2 268 2 134 2 67 1608 = 3*2*2*2*67 c.

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed