# mod 10 = mod 10 = 49 mod 10 = 9.

Save this PDF as:

Size: px
Start display at page:

Download "3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9."

## Transcription

1 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid UPC s Note: UPC stands for Universal Product Code, which is basically the product bar codes we had been discussing in lectures. Solution : For the first one, without the check digit, mod 10 = mod 10 = 49 mod 10 = 9. Clearly the check digit, 1, adds up to 9 to give 0 mod 10. Hence, this is a UPC indeed. For the second one, without the check digit, mod 10 = mod 10 = 22 mod 10 = 2. But the check digit here is 2, and mod 10 = 4 0. So, this is not a UPC. For the third one, without the check digit, mod 10 = mod 10 = 5 mod 10. But the check digit is 3, and mod 10 = 8 0 So, this is not a UPC. (2) (Exercise 13, Page 107) The following is the UPC for Hellman s 8 oz. Real Mayonnaise. Find the missing digit

2 2 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) Solution : Let us call this missing digit x. Then, without the check digit, x mod 10 = x + 12 mod 10 = x mod 10 = 3 + 3x mod 10. Now, we must have that, 3 + 3x + 2 mod 10 = 0, i.e., 5 + 3x mod 10 = 0. This is possible only if x = 5 which gives us the missing digit. (3) A bank identification number is a 9 digit number that occurs in the lower left hand corner of bank checks. Let the digits be n 1, n 2, n 3, n 4, n 5, n 6, n 7, n 8, n 9. For a 9 digit number to be a valid bank identification number, it must satisfy 7n 1 + 3n 2 + 9n 3 + 7n 4 + 3n 5 + 9n 6 + 7n 7 + 3n 8 + 9n 9 0 mod 10. (Exercise 21, Page 108) Determine the check digits (i.e. last digits) of the following bank codes: Solution : Let us call the check digit c. In the first code, we need, c 0 mod 10. = c 0 mod 10. = 0 + 9c 0 mod 10. So, the digit c needed to make 9c 0 mod 10 is 0. So, in the first code, the check digit is 0. In the second code, we need, c 0 mod 10. = c 0 mod 10. = 6 + 9c 0 mod 10. Now, the digit c needed to make 6 + 9c 0 mod 10 is 6. So, in the second code, the check digit is 6. (4) Show that the following statements are true: (a) mod 23. Solution : By Fermat s Little Theorem, mod 23. That is, mod 23. We can now square both sides to get, mod 23. Multiplying both sides by 5 3, we get, mod 23. That is, mod 23. Now, 125 = = So, 125 mod 23 is 10. Therefore, 5 47 mod 23 = 10.

3 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) 3 Next, 6 17 = 102 = = and so, 6 17 mod 23 = 10. Thus, mod 23. (b) mod 13. Solution : By Fermat s Little Theorem, mod 13, that is, mod 13. Taking a power of 4, mod 13. So, multiplying by 2 3 = 8 on both sides, mod 13. That is, 2 51 mod 13 = 8. Next, mod 13 = mod 13 = (13+3) (26+7) mod 13 = 3 7 mod 13 = 21 mod 13 = 8. Thus, mod 13. (5) Carefully look at the following mathematical reasoning. Write down what is wrong with it. I believe that mod 17. This is because, Fermat s theorem says that if p is prime, a p 1 1 mod p, and since 17 is a prime with 17 1 = 16, we must have, mod 17. Taking a power of 2 on both sides of the congruence, we get, mod 17. After you have answered what is the mistake above, write down the correct number between 0 and 16 that is mod 17. Solution : Fermat s little theorem says that if p is prime and a is an integer NOT DIV ISIBLEBY p, then, a p 1 1 mod p. Although, 17 is prime here, 68 is indeed divisible by 17 (17 4 = 68), and so Fermat s Little Theorem does not apply here. The correct answer should be mod 17 = 0. This is because, as 17 divides 68, 17 will divide any power of 68, and so, 17 divides (6) Prove the following statements using the principle of induction: (a) (2n 1) = n 2, for all natural numbers n. Solution : The statement S(n) is (2n 1) = n 2. Step 1: We check if this is true for n = 1. The left hand side is just 1, and the right hand side is 1 2 and hence is 1. So, S(1) is true. Step 2: We assume S(m) is true. That is, we assume, (2m 1) = m 2. Step 3: Now we need to prove that S(m + 1) is true. That is, we need

4 4 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) to prove that (2(m + 1) 1) = (m + 1) 2. The left hand side is (2m+1) = (2m 1)+(2m+1) = m 2 +2m+1 (from Step 2). But, m 2 +2m+1 = (m+1) 2. Therefore, (2(m+1) 1) = (m+1) 2, which completes our induction steps. Hence, by induction, the statement (2n 1) = n 2 is true for all natural numbers n. (b) 3 2n n+1 is divisible by 7, for all natural numbers n. Solution : The statement S(n) is 3 2n n+1 is divisible by 7. Step 1: We check if this is true for n = = = = 7, which of course is divisible by 7. So, S(1) is true. Step 2: We assume S(m) is true. That is, we assume, 3 2m m+1 is divisible by 7. So, there is an integer k for which, 3 2m m+1 = 7k. Then, 2 m+1 = 7k 3 2m 1. Step 3: Now we need to prove that S(m + 1) is true. That is, we need to prove that 3 2(m+1) (m+1)+1 is divisible by 7. Now, 3 2(m+1) (m+1)+1 = 3 2m m+1 2 = 3 2m+1 + (7k 3 2m 1 ) 2, (from Step 2) = 14k + 3 2m m 1, = 14k + 3 2m m 1, = 14k + 3 2m 1 (3 2 2) = 14k + 3 2m 1 7, which, of course, is divisible by 7. This completes our induction steps. Hence, by induction, 3 2n n+1 is divisible by 7, for all natural numbers n. (c) Let F n denote the nth Fibonacci number (so, F 1 = 1, F 2 = 1, F 3 = 2, F 4 = 3 and so on). Show that F F F 2 n = F n F n+1, for all natural numbers n. Solution : The statement S(n) is F1 2 + F F n 2 = F n F n+1. Step 1: We check if this is true for n = 1. The left hand side F1 2, which is just 1, and the right hand side is F 1 F 2 = 1 1 = 1. So, S(1) is true.

5 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) 5 Step 2: We assume S(m) is true. That is, we assume, F F F 2 m = F m F m+1. Step 3: Now we need to prove that S(m + 1) is true. That is, we need to prove that F1 2 + F F m+1 2 = F m+1 F m+2. The left hand side is F1 2 + F F m 2 + Fm+1 2 = F m F m+1 + Fm+1 2 = F m+1(f m + F m+1 ). Now, because F n is the nth Fibonacci number, F m + F m+1 = F m+2. Therefore, F1 2 + F F m+1 2 = F m+1 F m+2, which completes our induction steps. Hence, by induction, the statement F F F 2 n = F n F n+1 is true for all natural numbers n. (7) Prove the following statements using the method of contradiction: (a) The negative of an irrational number is irrational. Solution : Let x be an irrational number. Assume that x is rational. So, we can write x as p q where p, q are integers with q 0. Thus, x = p q = x = p q = p q. Since p and q are still integers, with q 0, x is a rational number, which is a contradiction. Hence, the negative of an irrational number is irrational. (b) There are no even primes that are bigger than 2. Solution : Suppose there are even primes bigger than 2. Let p be one such prime. Since p is even, this means that we can write p = 2k for some natural number k > 1. But, this implies that both 2 and k divide p, which is a contradiction, since p is prime. Hence, there are no even primes that are bigger than 2. (c) 6 is irrational. Solution : Assume 6 is rational. Then we can write, 6 = p q, where p and q are integers that have no common factors, and q 0. Squaring both sides, 6 = p2 q 2, 6q 2 = p 2.

6 6 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) Thus, 6 divides p 2. This means that both 2 and 3 divide p 2. Now, from what we did in class, 2 divides p 2 means 2 divides p and 3 divides p 2 means 3 divides p. That is, both 2 and 3 divide p, which gives us that 6 divides p. So, we can write p = 6k, for some k. Then, plugging this in the previous equation we get, 6q 2 = (6k) 2 = 36k 2, = q 2 = 6k 2. So, 6 divides q 2. By the same reasoning as before, this means that 6 divides q. Therefore p and q have a common factor 6, which is a contradiction. Therefore, 6 is irrational. (d) is irrational. Solution : Assume is rational. Then we can write, = p q, where p and q are integers that have no common factors, and q 0. Squaring both sides, ( ( 2 + 3) = p2 q 2, = = p2 q 2, = 5q 2 + 2q 2 6 = p 2, = 6 = p2 5q 2 2q 2. The right hand side above is clearly a rational number, with the numerator and denominator both being integers and the denominator being non-zero. Therefore, the above expression shows that 6 is a rational number, which is a contradiction by what we proved in part (c) of this problem. (8) Let A and B be two sets. Draw Venn diagrams and shade the regions for the following set expressions:

7 SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) 7 (a) (A B) c. Solution : The shaded area is the required region. (b) (A B) A. Solution : The area shaded in dark grey is the required region.

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other

### STRAND B: Number Theory. UNIT B2 Number Classification and Bases: Text * * * * * Contents. Section. B2.1 Number Classification. B2.

STRAND B: Number Theory B2 Number Classification and Bases Text Contents * * * * * Section B2. Number Classification B2.2 Binary Numbers B2.3 Adding and Subtracting Binary Numbers B2.4 Multiplying Binary

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### Pythagorean Triples Pythagorean triple similar primitive

Pythagorean Triples One of the most far-reaching problems to appear in Diophantus Arithmetica was his Problem II-8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers

### LESSON 1 PRIME NUMBERS AND FACTORISATION

LESSON 1 PRIME NUMBERS AND FACTORISATION 1.1 FACTORS: The natural numbers are the numbers 1,, 3, 4,. The integers are the naturals numbers together with 0 and the negative integers. That is the integers

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

### Solutions to Assignment 4

Solutions to Assignment 4 Math 412, Winter 2003 3.1.18 Define a new addition and multiplication on Z y a a + 1 and a a + a, where the operations on the right-hand side off the equal signs are ordinary

### GREATEST COMMON DIVISOR

DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

### Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction.

Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction. February 21, 2006 1 Proof by Induction Definition 1.1. A subset S of the natural numbers is said to be inductive if n S we have

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### Algebra for Digital Communication

EPFL - Section de Mathématiques Algebra for Digital Communication Fall semester 2008 Solutions for exercise sheet 1 Exercise 1. i) We will do a proof by contradiction. Suppose 2 a 2 but 2 a. We will obtain

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

### Proof: A logical argument establishing the truth of the theorem given the truth of the axioms and any previously proven theorems.

Math 232 - Discrete Math 2.1 Direct Proofs and Counterexamples Notes Axiom: Proposition that is assumed to be true. Proof: A logical argument establishing the truth of the theorem given the truth of the

### 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.

CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 5 Proofs: Mathematical Induction 1 Outline What is a Mathematical Induction? Strong Induction Common Mistakes 2 Introduction What is the formula of the sum of the first

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### Continued fractions and good approximations.

Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### 12 Greatest Common Divisors. The Euclidean Algorithm

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 12 Greatest Common Divisors. The Euclidean Algorithm As mentioned at the end of the previous section, we would like to

### 10 k + pm pm. 10 n p q = 2n 5 n p 2 a 5 b q = p

Week 7 Summary Lecture 13 Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is not divisible

### ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright Cengage Learning. All rights reserved.

### 2.1 Sets, power sets. Cartesian Products.

Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects. - used to group objects together, - often the objects with similar properties This description of a set (without

### CSCI 246 Class 5 RATIONAL NUMBERS, QUOTIENT REMAINDER THEOREM

CSCI 246 Class 5 RATIONAL NUMBERS, QUOTIENT REMAINDER THEOREM Quiz Questions Lecture 8: Give the divisors of n when: n = 10 n = 0 Lecture 9: Say: 10 = 3*3 +1 What s the quotient q and the remainder r?

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### A fairly quick tempo of solutions discussions can be kept during the arithmetic problems.

Distributivity and related number tricks Notes: No calculators are to be used Each group of exercises is preceded by a short discussion of the concepts involved and one or two examples to be worked out

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### Introduction to mathematical arguments

Introduction to mathematical arguments (background handout for courses requiring proofs) by Michael Hutchings A mathematical proof is an argument which convinces other people that something is true. Math

### Practice Problems for First Test

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.-

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### 2 When is a 2-Digit Number the Sum of the Squares of its Digits?

When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

### MATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:

MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Solutions to Problems for Mathematics 2.5 DV Date: April 14,

Solutions to Problems for Mathematics 25 DV Date: April 14, 2010 1 Solution to Problem 1 The equation is 75 = 12 6 + 3 Solution to Problem 2 The remainder is 1 This is because 11 evenly divides the first

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

### Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### (3n 2) = (3n 2) = 1(3 1) 2 1 = (3k 2) =

Question 1 Prove using mathematical induction that for all n 1, Solution 1 + + 7 + + (n ) = n(n 1) For any integer n 1, let P n be the statement that 1 + + 7 + + (n ) = n(n 1) Base Case The statement P

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### b) Find smallest a > 0 such that 2 a 1 (mod 341). Solution: a) Use succesive squarings. We have 85 =

Problem 1. Prove that a b (mod c) if and only if a and b give the same remainders upon division by c. Solution: Let r a, r b be the remainders of a, b upon division by c respectively. Thus a r a (mod c)

### Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum.

Work sample portfolio summary WORK SAMPLE PORTFOLIO Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum. Each portfolio is an example

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### Factorizations: Searching for Factor Strings

" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

### Math 115 Spring 2014 Written Homework 3 Due Wednesday, February 19

Math 11 Spring 01 Written Homework 3 Due Wednesday, February 19 Instructions: Write complete solutions on separate paper (not spiral bound). If multiple pieces of paper are used, they must be stapled with

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

### Sets and Counting. Let A and B be two sets. It is easy to see (from the diagram above) that A B = A + B A B

Sets and Counting Let us remind that the integer part of a number is the greatest integer that is less or equal to. It is denoted by []. Eample [3.1] = 3, [.76] = but [ 3.1] = 4 and [.76] = 6 A B Let A

### Mathematical Induction

Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Congruences. Robert Friedman

Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Algebra 1A and 1B Summer Packet

Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the

### San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS

San Jose Math Circle October 17, 2009 ARITHMETIC AND GEOMETRIC PROGRESSIONS DEFINITION. An arithmetic progression is a (finite or infinite) sequence of numbers with the property that the difference between

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### Integers and division

CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.

### ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem

### Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff

Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture Brad Groff Contents 1 Congruent Numbers... 1.1 Basic Facts............................... and Elliptic Curves.1

### Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution.

Name : Instructor: Marius Ionescu Instructions: 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution. 3. If you need extra pages

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 1 (out of three) Plan 1. The Principle of Mathematical Induction 2. Induction Examples The Principle of Mathematical Induction Suppose we have

### First Degree Equations First degree equations contain variable terms to the first power and constants.

Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved

### Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

### (Notice also that this set is CLOSED, but does not have an IDENTITY and therefore also does not have the INVERSE PROPERTY.)

Definition 3.1 Group Suppose the binary operation p is defined for elements of the set G. Then G is a group with respect to p provided the following four conditions hold: 1. G is closed under p. That is,

### (Refer Slide Time: 1:41)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

### Right triangles and elliptic curves

Right triangles and elliptic curves Karl Rubin Ross Reunion July 2007 Karl Rubin (UCI) Right triangles and elliptic curves Ross Reunion, July 2007 1 / 34 Rational right triangles Question Given a positive

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Sets and set operations

CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

### Announcements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography

Announcements CS43: Discrete Structures More on Cryptography and Mathematical Induction Işıl Dillig Class canceled next Thursday I am out of town Homework 4 due Oct instead of next Thursday (Oct 18) Işıl

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Roots of Real Numbers

Roots of Real Numbers Math 97 Supplement LEARNING OBJECTIVES. Calculate the exact and approximate value of the square root of a real number.. Calculate the exact and approximate value of the cube root