MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

Size: px
Start display at page:

Download "MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS"

Transcription

1 MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor: Allen Bell Contact information: EMS E adbell@uwm.edu D2L: Go to then log in and find Number Theory (Math 537). (currently unavailable) Text and Topics Required text: An Introduction to Number Theory with Cryptography by James S. Kraft and Lawrence C. Washington; publisher Chapman and Hall/CRC. We will probably cover about half of the material in the book. I will cover some cryptographic content in class, but I will leave most to the interested student to read on his/her own. Optional supplemental texts: (1) Elementary Number Theory by Underwood Dudley, Dover Books. The second edition costs less than $10, and a copy of the first edition can be read or downloaded freely at (2) Elements of Number Theory by John Stillwell, Springer Undergraduate Texts in Mathematics. This introduction to number theory focuses on using ideas from abstract algebra. Topics will include factorization of integers, congruences, integer solutions of polynomial equations (Diophantine equations), sums of squares, some properties of (the set of) prime numbers, and the RSA cryptosystem. Other topics may include quadratic reciprocity, irrational numbers, Pell s equations, continued fractions, Bertrand s postulate, arithmetic functions, and Fermat s proof of his last theorem. Here is a sampling of questions we might consider. Let n be or one of your other favorite numbers. Is n prime? What is the prime factorization of n? What is the sum of the factors of n? Can we solve 14x + n y = 3 with x, y integers? Can we solve x 2 n (mod 11)? What is the smallest value of k such that 2 k 1 (mod n), if there is one? Can we write n = x 2 + y 2 for integers x, y ; what about n = x 2 + y 2 + z 2 or n = x 2 + y 2 + z 2 + w 2? Can we solve x 2 ny 2 = 1 for integers x, y? How many prime numbers p are there with p n? Office hours: My office hours will be 12:30-1:50 pm & 3:20-4:10 pm on Monday & Wednesday. I will generally be available on Tuesdays 1:00-1:50 pm, but you should check because there will be some department meetings during this time. You can also see me by appointment or any time you can find me in my office; do not hesitate to talk to me. All times are subject to change and to cancelation on some days due to other duties. Grades: Your grade will be based on examinations and homework, and possibly quizzes and presentations. The grading scale will be determined based on the class performance (i.e., there will be a curve). Here is an example of one weighting system for grades I have used in the past: homework counts for 20% of your grade, the two midterms 20% each, and the final exam 35%, with the remaining 5% for class participation and other activities.

2 Graduate students in the class will be required to do extra work. We will discuss this in class. Investment of time: A typical student should expect to spend 150 minutes per week in class and at least six hours per week studying and doing problems. The amount of time you need to spend outside of class may vary considerably from this estimate. When taking notes in class and when reading the text or any other material, try to work actively. Anticipate what the next step will be and attempt to come up with your own proofs and your own solutions. Other information: Links to UWM policies relevant to this class can be found at Note particularly the statements on academic misconduct and discriminatory conduct, as well as on students with disabilities. Please turn off and put away cell phones during class. If you have any special requirements or concerns regarding this course, please let me know as soon as possible. Friday, October 28 is the last day to drop the class with a W on your transcript. For other important dates, see dates-deadlines/. Homework: Homework will be assigned, collected, and graded regularly. There are many problems and exercises in the text, and it is vital that you work on a wide selection of them, including those that are not assigned to be turned in. It is impossible to really learn mathematics without doing problems! You are encouraged to review draft versions of your homework with me. We will discuss homework problems, graded and ungraded, in class whenever you have questions, and I encourage you to come to my office to talk about problems. You are free to discuss homework problems with other students, except that homework that is handed in for a grade must be your work. Please remember that if you don t do it yourself, you won t learn it. Exams: I anticipate that there will be two midterm exams during the semester and a comprehensive in-class written final exam. The first exam will be in October. The final exam will take place on Wednesday, December 21 from 12:30 to 2:30 p.m. You cannot take the final early. A make-up exam will not be given without a very good, documented reason that is acceptable to me. If you cannot come to an exam (for that very good reason), please let me know as far in advance as possible: you may call me, me, or leave a message at the Mathematics office, Sample: On the following pages is an exam, with solutions, from a previous offering of Math 537. This is meant to give you a general feeling for the class and its expectations. The exams in Fall 2016 will differ greatly from this exam, but there will always be an expectation that you justify your work and there will always be some proofs.

3 MATH 537 Final Exam December 18, 2002 Be sure to show your work and give clear, complete explanations in order to obtain full credit. If you re not sure about something, ask me. There are 100 points on this exam, plus two bonus questions; students had two hours. The highest score was 85, the average was 57.6, and the median was 62. On this test, σ(n) is the sum of the positive divisors of n and φ(n) is the Euler phi function of n. 1. (10) Find the order of 13 mod 17. Then use this information to find the multiplicative inverse of 13 mod (15) For what positive integers n, k is φ(kn) = kφ(n)? 3. (16) Prove the following constructive version of the Chinese Remainder Theorem. Suppose that m 1,..., m k are pairwise relatively prime positive integers and that a 1,..., a k are any integers. For each i, define M i to be the product of all m j except m i. (For example, M 1 = m 2 m k.) Set x = k i=1 a i M φ(m i) i. Show that x a i (mod m i ) for all i = 1,..., k. 4. (15) Recall that an affine cipher is one where we encode the letter x (where x = 0,..., 25 ) as ax + b mod 26 for some a, b with gcd(a, 26) = 1. Suppose that we guess (correctly!) that the letter E (04) has been encoded as W (22) and that T (19) has been encoded as B. What are the values of a, b? 5. (14) Let p be a prime number larger than 5. (a) Show that p divides infinitely many numbers of the form (b) [A little trickier] What about numbers of the form ? 6. (12) (a) Prove that if k > 1, then σ(kn) > kσ(n). (b) Prove that no multiple and no divisor of a perfect number is perfect, except the number itself. [Don t assume the perfect number is even.] Continues on next page.

4 7. (18) Recall that an integer n > 1 that is not prime is called a Carmichael number if a n a (mod n) for all integers a. In class, we stated that n is a Carmichael number if and only if n = p 1 p k for distinct primes p 1,..., p k, k 2, with the property that (p i 1) (n 1) for all i. We never proved that every Carmichael number has this form. We will do that in this problem. Thus we assume n is a Carmichael number and n = k i=1 p a i i for some positive integers a 1,..., a k and distinct primes p 1,..., p k. Fill in the details in the parts below. (a) If n is even, explain why n cannot be a Carmichael number. Hint: Consider a = 1. From now on, assume n is an odd Carmichael number. (b) Let r i be a primitive root mod p a i i for each i. By the Chinese Remainder Theorem, there is an integer x such that x r i (mod p a i i ) for each i. Explain why such a number x is relatively prime to n. (c) Explain why x n 1 1 (mod n). (d) Using parts (b) & (c), explain why p a i 1 i (p i 1) (n 1). (e) Using part (d), conclude that a i = 1 and (p i 1) (n 1) for each i. Bonus Question A. Prove that the equation x 2 3y 2 = 2z 2 has no solutions for positive integers x, y, z. Bonus Question B. Show that if p is a prime number, ( ) p (mod ). p

5 MATH 537 Final Exam Solutions December 18, 2002 These are sample solutions. Remember, there may be other ways to solve some problems (mod 17) and ( 4) 2 1 (mod 17), so 13 4 is congruent to 1 mod 17, but 13 2 is not. Thus ord = 4. Since 13 4 = , it follows that 13 3 is the multiplicative inverse of 13 mod 17. Note (mod 17). 2. First, note that if all prime factors of k occur in the prime factorization of n, we have φ(kn) = kφ(n), since only the first power of a prime p contributes a p 1 to the phi-function: higher powers contribute p s. Now write k = rs where gcd(r, n) = 1 and the primes factors of s are those of k that occur in n. Then gcd(r, sn) = 1, so we have φ(kn) = φ(rsn) = φ(r)φ(sn) = φ(r)sn. This equals kn = rsn only if φ(r) = r, that is, r = 1. Thus φ(kn) = kφ(n) iff the prime factors of k all occur in the prime factorization of n. 3. Note that for any j, gcd(m j, m j ) = 1. Thus M φ(m j) j 1 (mod m j ) by Euler s Theorem. If i j, on the other hand, we have m j M i. Thus M φ(m i) i 0 (mod m j ) for these i. It follows that x a j 1 = a j (mod m j ) for each j. 4. The information we re given yields two congruences: a4 + b 22 (mod 26) and a19 + b 1 (mod 26). Subtracting these yields 15a 21 (mod 26), which has solution a = 9. Substituting this back into either of the original congruences yields b = (a) These are numbers of the form 10 n 1, where n is the number of digits. We wish to show such a number is congruent to 1 mod p for infinitely many n, that is 10 n 1 (mod p). Since gcd(10, p) = 1, we know 10 has some order m mod p. Now take n = km for any positive integer k and we get a value of n that works. (b) This time the number is n 1 i=0 10 i = (10 n 1)/(10 1). Since gcd(9, p) = 1, such a number is divisible by p if and only if 10 n 1 (mod p). This happens infinitely often, just as in (a). 6. (a) Let d 1,..., d r be the divisors of n. Then kd 1,..., kd r are divisors of kn. Furthermore, this list does not include 1. Therefore, σ(kn) 1 + kd kd r = 1 + kσ(n) > kσ(n). (b) If m = kn, then σ(m) > kσ(n) = 2m, so m is not perfect. If n = km, then 2km = 2n = σ(n) > kσ(m), so m is not perfect. 7. (a) If n is even, ( 1) n = 1, and this is not congruent to 1 unless n = 2. But 2 is prime, so n cannot be 2. (b) If gcd(x, n) > 1, then there must be a prime p i dividing both x and n. But x r i (mod p i ), and gcd(r i, p i ) = 1. Thus this is impossible.

6 (c) We have x x n 1 x 1 (mod n). Since gcd(x, n) = 1, we can cancel x and get x n 1 1 (mod n). (d) By part (c), we get x n 1 1 (mod p a i i ). Since x is congruent to r i, it has the same order, which must divide n 1. Thus φ(p a i i ) n 1, as desired. (e) Clearly gcd(p i, n 1) = 1, so the result in (d) can only hold if a i 1 = 0, i.e., a i = 1. Putting this together with part (d), we re done. Bonus A Assume the equation has a solution. If there is a solution with all of x, y, z even, we can divide each of them by 2. If we keep doing this, we ll eventually get a solution where at least one of them is odd. Furthermore, if x, y are both even, x 2 3y 2 is divisible by 4, and this would force z to be even. Thus there must be a solution with at least one of x, y odd. On the other hand, if exactly one of x, y is odd, we would have x 2 3y 2 odd, and hence it could not equal 2z 2. Thus there Must be a solution with both x, y odd. Now consider the congruence x 2 3y 2 2z 2 (mod 8). Since x, y are odd, x 2, y 2 are both congruent to 1, so we have 2 2z 2 (mod 8). This is impossible, since mod 8, z 2 is one of 0, 1, 4. Thus there is no solution after all. Bonus B This is true when p = 2, so assume p is odd. Let x = ( 1)( 2) ( p+1). Then x ( 1) p (p 1) (mod ). Since p 1 is even, x (p 1)! (mod ). Now ( ) ( ) p = px/(p 1)!, so we have (p 1)! p p(p 1)! (mod ). Since (p 1)! is relatively prime to p, we can cancel it to get ( ) p p (mod ). Question: numerical evidence suggests that ( ) p p (mod p 3 ) for an odd prime p. Is this true?

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

More information

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach. Student Resources. Printed Version Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

More information

Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

Lesson Plan. N.RN.3: Use properties of rational and irrational numbers. N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

More information

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works.

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. MATH 13150: Freshman Seminar Unit 18 1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. 1.1. Bob and Alice. Suppose that Alice wants to send a message to Bob over the internet

More information

RSA and Primality Testing

RSA and Primality Testing and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

Stupid Divisibility Tricks

Stupid Divisibility Tricks Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Lecture 13: Factoring Integers

Lecture 13: Factoring Integers CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

More information

Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

More information

Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 RSA Encryption Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.

More information

Congruent Number Problem

Congruent Number Problem University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

A Study on the Necessary Conditions for Odd Perfect Numbers

A Study on the Necessary Conditions for Odd Perfect Numbers A Study on the Necessary Conditions for Odd Perfect Numbers Ben Stevens U63750064 Abstract A collection of all of the known necessary conditions for an odd perfect number to exist, along with brief descriptions

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Evan Chen evanchen@mit.edu February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why

More information

GMAT SYLLABI. Types of Assignments - 1 -

GMAT SYLLABI. Types of Assignments - 1 - GMAT SYLLABI The syllabi on the following pages list the math and verbal assignments for each class. Your homework assignments depend on your current math and verbal scores. Be sure to read How to Use

More information

Public Key Cryptography and RSA. Review: Number Theory Basics

Public Key Cryptography and RSA. Review: Number Theory Basics Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Prime Factorization 0.1. Overcoming Math Anxiety

Prime Factorization 0.1. Overcoming Math Anxiety 0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

More information

Factoring Whole Numbers

Factoring Whole Numbers 2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

More information

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

More information

Napa Valley College Fall 2015 Math 106-67528: College Algebra (Prerequisite: Math 94/Intermediate Alg.)

Napa Valley College Fall 2015 Math 106-67528: College Algebra (Prerequisite: Math 94/Intermediate Alg.) 1 Napa Valley College Fall 2015 Math 106-67528: College Algebra (Prerequisite: Math 94/Intermediate Alg.) Room 1204 Instructor: Yolanda Woods Office: Bldg. 1000 Rm. 1031R Phone: 707-256-7757 M-Th 9:30-10:35

More information

An Introduction to the RSA Encryption Method

An Introduction to the RSA Encryption Method April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

More information

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014! GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11. 9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

More information

Community College of Philadelphia Spring 2010 Math 017-Elementary Algebra SYLLABUS

Community College of Philadelphia Spring 2010 Math 017-Elementary Algebra SYLLABUS SYLLABUS Instructor: *********************************************************************** Course Number: Math 017 CRN: 11837 Section: 027 Class ime: uesday and hursday between 5:15 pm and 6:35 pm Classroom:

More information

The Euclidean Algorithm

The Euclidean Algorithm The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

More information

DigitalCommons@University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Carmichael numbers and pseudoprimes

Carmichael numbers and pseudoprimes Carmichael numbers and pseudoprimes Notes by G.J.O. Jameson Introduction Recall that Fermat s little theorem says that if p is prime and a is not a multiple of p, then a p 1 1 mod p. This theorem gives

More information

Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory. Lars-Åke Lindahl Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

Grade 7/8 Math Circles Fall 2012 Factors and Primes

Grade 7/8 Math Circles Fall 2012 Factors and Primes 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

Math 453: Elementary Number Theory Definitions and Theorems

Math 453: Elementary Number Theory Definitions and Theorems Math 453: Elementary Number Theory Definitions and Theorems (Class Notes, Spring 2011 A.J. Hildebrand) Version 5-4-2011 Contents About these notes 3 1 Divisibility and Factorization 4 1.1 Divisibility.......................................

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Our Primitive Roots. Chris Lyons

Our Primitive Roots. Chris Lyons Our Primitive Roots Chris Lyons Abstract When n is not divisible by 2 or 5, the decimal expansion of the number /n is an infinite repetition of some finite sequence of r digits. For instance, when n =

More information

On Generalized Fermat Numbers 3 2n +1

On Generalized Fermat Numbers 3 2n +1 Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Math 121- Online College Algebra Syllabus Spring 2015

Math 121- Online College Algebra Syllabus Spring 2015 Math 121- Online College Algebra Syllabus Spring 2015 Instructor: Michael Azlin Office: Hume 218 Office Hours: M/W: 10:00 11:30am, T/Th: 9:00 10:30am, or by appt (Note: No W/Th hours during test weeks)

More information

Factoring & Primality

Factoring & Primality Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

Computer and Network Security

Computer and Network Security MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest

More information

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

The University of Akron Department of Mathematics. 3450:145-803 COLLEGE ALGEBRA 4 credits Spring 2015

The University of Akron Department of Mathematics. 3450:145-803 COLLEGE ALGEBRA 4 credits Spring 2015 The University of Akron Department of Mathematics 3450:145-803 COLLEGE ALGEBRA 4 credits Spring 2015 Instructor: Jonathan Hafner Email: jhafner@zips.uakron.edu Office: CAS 249 Phone: (330) 972 6158 Office

More information

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1

More information

Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive

Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Primality - Factorization

Primality - Factorization Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information