# Computing exponents modulo a number: Repeated squaring

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that mod 341 = 1? You can do this using the method of repeated squaring; we ll illustrate by calculating (1415) 13 mod Start by looking at the exponent (13) and represent it as a sum of powers of 2. To do this, find the largest power of 2 less than your exponent; in this case it s 2 3 = 8. Subtract 8 from 13, getting 5. Then 5 = = So 13 = Now (1415) 13 mod 2537 = (1415) (1+4+8) mod So all I have to do is to calculate the numbers (1415) 1 mod 2537, (1415) 4 mod 2537, and (1415) 8 mod 2537 and multiply them together, then take the product mod I already have the first number: I could raise it to the 4th power and take the result mod 2537, but to be systematic I ll square it, take the result mod 2537, and then repeat that same process mod 2537 = mod 2537 = 532. So to get mod 2537 I square 532 = and take this mod 2537 = To get (1415) 8 mod 2537 I square (1415) 4 mod 2537 and take the result mod So I square 1417, getting which mod 2537 is Multiply and take the result mod The result is

2 Correctness of RSA Now we are ready to prove that the RSA encryption and decryption functions are inverses of each other. We ll check that d(e(m)) = M, where e(m) = M e mod pq, and d(c) = C s mod pq, where s is an inverse of e modulo (p 1)(q 1). To do this, we ll need Fermat s Little Theorem, together with a simple lemma: Lemma If p and q are distinct primes, N M (mod p), and N M (mod q), then N M (mod pq). Proof: By hypothesis N M = jp for some j, and N M = kq for some k. Thus p kq. But p is a prime, and cannot divide q, so p k. Thus k = lp and so N M = lpq, which is what we need. (The easy way to see this, of course, is to use the uniqueness part of the Chinese Remainder Theorem.) We now want to show d(e(m)) = M, and writing this out: C s mod pq = M, where C = M e mod pq. To do this we ll show C s M (mod p) and C s M (mod q). The conclusion then follows from the lemma. 2

3 RSA Correctness, continued Our goal is now to show C s M (mod p), where s is an inverse of e modulo (p 1)(q 1). We also need C s M (mod q), but the proof will be exactly the same. Now We claim C s = (M e mod pq) s M es C s M es mod p; this is because C s M es = jpq = (jq)p for some j. What is M es mod p? (mod pq). Since s is an inverse of e modulo (p 1)(q 1), we have es = 1 + k(p 1)(q 1) for some k. Therefore M es = M 1+k(p 1)(q 1) = M 1 (M (p 1) ) k(q 1). 3

4 RSA Correctness, continued From last slide M es = M 1+k(p 1)(q 1) = M 1 (M (p 1) ) k(q 1). We are trying to prove C s M (mod p). On the last slide we showed C s M es (mod p). We take both sides of the top equation mod p, because we want M es mod p. We get M es mod p = ((M 1 (M (p 1) ) k(q 1) ) mod p = (M (M (p 1) mod p) k(q 1) ) mod p. There are now two cases. It s possible that p M so that M mod p = 0. But then M es mod p = 0, so that C s = M es M (mod p). This is our desired conclusion, so we consider the case that p does not divide M. In this case, by Fermat s little theorem, M (p 1) mod p = 1. Thus M es mod p = (M 1 k(q 1) ) mod p = M mod p. Thus in this case, C s M (mod p) as well, finishing the proof. 4

5 Summing up Let s look at what math we needed to do this RSA encryption. Correctness depended on Fermat s little theorem, whose proof depended on the idea of a one-to-one and onto function. None of the ideas made any sense without the notion of an equivalence relation (congruence mod n in our examples). Feasibility depended on the gcd algorithm extended to find multiplicative inverses. The extended algorithm was proved correct by strong induction (actually proving the sm + tn theorem), and the inductive proof gave the formulas we needed. In that inductive proof, we gave a formal statement of a proposition P (n), using logic and quantifiers. Analyzing the efficiency involved another theorem (Lame) whose proof was by strong induction. GCDs exist using the lattice of positive integers under the divisibility ordering. So, almost all of the discrete math ideas we introduced were exemplified in understanding the application. 5

6 What s next? Encryption functions are a special case of what are called computable functions from strings to strings. In EECS 376 you learn about what kinds of functions can be computed at all. Most functions, in a precise sense, cannot be computed there is no program even conceivable that could calculate them. You also learn about useful things like finite-state automata. These have applications everywhere in computer science. Specifying different kinds of (theoretical models of) computation requires all of the discrete math ideas we have learned. We have not done things like counting and combinatorics. You do learn these things in a probability course. The discrete math ideas help understand this stuff too. Don t forget about it! 6

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public

### RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003

RSA Encryption Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.

### Announcements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography

Announcements CS43: Discrete Structures More on Cryptography and Mathematical Induction Işıl Dillig Class canceled next Thursday I am out of town Homework 4 due Oct instead of next Thursday (Oct 18) Işıl

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### 3. (5%) Use the Euclidean algorithm to find gcd(742, 1908). Sol: gcd(742, 1908) = gcd(742, 424) = gcd(424, 318) = gcd(318, 106) = 106

Mid-term Examination on Discrete Mathematics 1. (4%) Encrypt the message LOVE by translating the letters A through Z into numbers 0 through 25, applying the encryption function f(p) = (3p + 7) (mod 26),

### 9 Modular Exponentiation and Cryptography

9 Modular Exponentiation and Cryptography 9.1 Modular Exponentiation Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system.

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Mathematics of Cryptography

Number Theory Modular Arithmetic: Two numbers equivalent mod n if their difference is multiple of n example: 7 and 10 are equivalent mod 3 but not mod 4 7 mod 3 10 mod 3 = 1; 7 mod 4 = 3, 10 mod 4 = 2.

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Solutions to Practice Problems

Solutions to Practice Problems March 205. Given n = pq and φ(n = (p (q, we find p and q as the roots of the quadratic equation (x p(x q = x 2 (n φ(n + x + n = 0. The roots are p, q = 2[ n φ(n+ ± (n φ(n+2

### Some practice problems for midterm 2

Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### 10 k + pm pm. 10 n p q = 2n 5 n p 2 a 5 b q = p

Week 7 Summary Lecture 13 Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is not divisible

### Discrete Square Root. Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter / 11

Discrete Square Root Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 11 Discrete Square Root Problem The discrete

### Continued fractions and good approximations.

Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our

### Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p.

Computing square roots mod p We now have very effective ways to determine whether the quadratic congruence x a (mod p), p an odd prime, is solvable. What we need to complete this discussion is an effective

### Lecture 13: Factoring Integers

CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

### Outline. Cryptography. Bret Benesh. Math 331

Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math 331 2 3 The internet is a lawless place, and people have access to all sorts of information. What is keeping people

### Cryptography: RSA and the discrete logarithm problem

Cryptography: and the discrete logarithm problem R. Hayden Advanced Maths Lectures Department of Computing Imperial College London February 2010 Public key cryptography Assymmetric cryptography two keys:

### 1 Die hard, once and for all

ENGG 2440A: Discrete Mathematics for Engineers Lecture 4 The Chinese University of Hong Kong, Fall 2014 6 and 7 October 2014 Number theory is the branch of mathematics that studies properties of the integers.

### (x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Primality - Factorization

Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### EULER S THEOREM. 1. Introduction Fermat s little theorem is an important property of integers to a prime modulus. a p 1 1 mod p.

EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

### Integers, Division, and Divisibility

Number Theory Notes (v. 4.23 October 31, 2002) 1 Number Theory is the branch of mathematics that deals with integers and their properties, especially properties relating to arithmetic operations like addition,

### 3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

### Congruences. Robert Friedman

Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

### b) Find smallest a > 0 such that 2 a 1 (mod 341). Solution: a) Use succesive squarings. We have 85 =

Problem 1. Prove that a b (mod c) if and only if a and b give the same remainders upon division by c. Solution: Let r a, r b be the remainders of a, b upon division by c respectively. Thus a r a (mod c)

### Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### The application of prime numbers to RSA encryption

The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered

MODULAR ARITHMETIC KEITH CONRAD. Introduction We will define the notion of congruent integers (with respect to a modulus) and develop some basic ideas of modular arithmetic. Applications of modular arithmetic

### RSA and Primality Testing

and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Euler s Totient Theorem

Euler s Totient Theorem Misha Lavrov ARML Practice 11/11/2012 Example We want to be able to solve the following type of problem: Problem (VTRMC 2012/4.).. 3 What are the last two digits of 3 33. }{{} 2012

### Cryptography and Network Security Chapter 8

Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:

Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1,...,N

### Problem Set 5. AABB = 11k = (10 + 1)k = (10 + 1)XY Z = XY Z0 + XY Z XYZ0 + XYZ AABB

Problem Set 5 1. (a) Four-digit number S = aabb is a square. Find it; (hint: 11 is a factor of S) (b) If n is a sum of two square, so is 2n. (Frank) Solution: (a) Since (A + B) (A + B) = 0, and 11 0, 11

### An Introduction to the RSA Encryption Method

April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

### MATH 13150: Freshman Seminar Unit 14

MATH 13150: Freshman Seminar Unit 14 1. Powers in mod p arithmetic In this Unit, we will study powers a n (mod p). It will turn out that these are much easier to compute then one would imagine. Let s recall

### The Mathematics of the RSA Public-Key Cryptosystem

The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through

### Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

### Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### 1) A very simple example of RSA encryption

Solved Examples 1) A very simple example of RSA encryption This is an extremely simple example using numbers you can work out on a pocket calculator (those of you over the age of 35 45 can probably even

### Mathematics of Cryptography Part I

CHAPTER 2 Mathematics of Cryptography Part I (Solution to Odd-Numbered Problems) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinity to positive infinity.

### The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm

The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm Maria D. Kelly December 7, 2009 Abstract The RSA algorithm, developed in 1977 by Rivest, Shamir, and Adlemen, is an algorithm

### Elementary factoring algorithms

Math 5330 Spring 013 Elementary factoring algorithms The RSA cryptosystem is founded on the idea that, in general, factoring is hard. Where as with Fermat s Little Theorem and some related ideas, one can

### Notes for Recitation 5

6.042/18.062J Mathematics for Computer Science September 24, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 5 1 Exponentiation and Modular Arithmetic Recall that RSA encryption and decryption

### Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

### Factoring. Factoring 1

Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### RSA Attacks. By Abdulaziz Alrasheed and Fatima

RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.

### Modulo a Prime Number

Modulo a Prime Number We have seen that modular arithmetic can both be easier than normal arithmetic (in how powers behave), and more difficult (in that we can t always divide). But when n is a prime number,

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

### A Factoring and Discrete Logarithm based Cryptosystem

Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques

### MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

### Integers and division

CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.

### Cryptography. Course 2: attacks against RSA. Jean-Sébastien Coron. September 26, Université du Luxembourg

Course 2: attacks against RSA Université du Luxembourg September 26, 2010 Attacks against RSA Factoring Equivalence between factoring and breaking RSA? Mathematical attacks Attacks against plain RSA encryption

### Maths delivers! A guide for teachers Years 11 and 12. RSA Encryption

1 Maths delivers! 2 3 4 5 6 7 8 9 10 11 12 A guide for teachers Years 11 and 12 RSA Encryption Maths delivers! RSA Encryption Dr Michael Evans AMSI Editor: Dr Jane Pitkethly, La Trobe University Illustrations

### Finite Fields and Error-Correcting Codes

Lecture Notes in Mathematics Finite Fields and Error-Correcting Codes Karl-Gustav Andersson (Lund University) (version 1.013-16 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents

### Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

### NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO ii Number Theory Amin Witno Department of Basic Sciences Philadelphia University JORDAN 19392 Originally written for Math 313 students at Philadelphia University in Jordan, this

### RSA Cryptosystem. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong. RSA Cryptosystem

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will discuss the RSA cryptosystem, which is widely adopted as a way to encrypt a message, or

### CLASS 3, GIVEN ON 9/27/2010, FOR MATH 25, FALL 2010

CLASS 3, GIVEN ON 9/27/2010, FOR MATH 25, FALL 2010 1. Greatest common divisor Suppose a, b are two integers. If another integer d satisfies d a, d b, we call d a common divisor of a, b. Notice that as

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### The Teacher s Circle Number Theory, Part 1 Joshua Zucker, August 14, 2006

The Teacher s Circle Number Theory, Part 1 Joshua Zucker, August 14, 2006 joshua.zucker@stanfordalumni.org [A few words about MathCounts and its web site http://mathcounts.org at some point.] Number theory

### GREATEST COMMON DIVISOR

DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers

### Integers: applications, base conversions.

CS 441 Discrete Mathematics for CS Lecture 14 Integers: applications, base conversions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Modular arithmetic in CS Modular arithmetic and congruencies

### PUBLIC KEY ENCRYPTION

PUBLIC KEY ENCRYPTION http://www.tutorialspoint.com/cryptography/public_key_encryption.htm Copyright tutorialspoint.com Public Key Cryptography Unlike symmetric key cryptography, we do not find historical

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1

### Discrete Mathematics

Slides for Part IA CST 2014/15 Discrete Mathematics Prof Marcelo Fiore Marcelo.Fiore@cl.cam.ac.uk What are we up to? Learn to read and write, and also work with, mathematical

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### L - Standard Letter Grade P - Pass/No Pass Repeatability: N - Course may not be repeated

Course: MATH 26 Division: 10 Also Listed As: 200930, INACTIVE COURSE Short Title: Full Title: DISCRETE MATHEMATIC Discrete Mathematics Contact Hours/Week Lecture: 4 Lab: 0 Other: 0 Total: 4 4 Number of

### APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and