# Congruent Number Problem

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 University of Waterloo October 28th, 2015

2 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases even famous men quite so much as to discover, or rediscover, a genuine mathematical theorem. (G. H. Hardy) Number theory can be dissected into many different areas: 1 Elementary Number Theory 2 Algebraic Number Theory 3 Analytic Number Theory 4 Diophantine Equations 5 Algebraic Geometry 6 Langlands Program 7... The beauty of number theory is that it often has simple to state problems with amazingly difficult proofs. We will see one such example today of an easy to state problem with a not so easy solution.

3 Determine which positive integers N can be expressed as the area of a right angled triangle with side lengths all rational. For example, the number 6 is a congruent number since it is the area of the famous right angled triangle.

4 Determine which positive integers N can be expressed as the area of a right angled triangle with side lengths all rational. Can you find another congruent number? Can you find infinitely many such numbers? Can you find a number which is not a congruent number? Can you determine which numbers between 1 and 8 that are congruent numbers?

5 Some Sample Solutions

6 Infinitely Many Solutions (Easy way) Take the solution from the triangle and multiply it by any positive integer greater than one to get a new triangle with a new area! For example, multiply everything by 10 to get a triangle and this has area A = 1 2 (30)(40) = 600. Solutions found in this way are plentiful but uninteresting since there is a primitive way to discover them.

7 Squarefree To restrict this, we will from now on be looking for squarefree solutions, solution where no positive integer squared divides the area. For example 12 is not square free since 2 2 evenly divides 12, 50 is not square free since 5 2 = 25 divides 50 where as 10 is squarefree since 10 = 2 5 and thus no square divides 10. If the area N of a congruent number is not squarefree, say N = s 2 t where s > 1 is an integer, then divide the base, height and hypotenuse of the triangle by s to show that t is a [smaller] congruent number. In this way there is no harm in assuming that the area is squarefree because finding the squarefree congruent numbers means we can find non-squarefree numbers by multiplying every side of the triangle by s to get congruent numbers of the form s 2 t.

8 Infinitely Many Solutions Another way we can find more congruent numbers is to find Pythagorean triples, that is integer solutions to x 2 + y 2 = z 2 There is a well known parameterization of these solutions given by: x = d(m 2 n 2 ) y = 2dmn z = d(m 2 + n 2 ) where d, m, n are integers and m and n have opposite parity (Exercise 1). These triangles with base x and height y have area A = 2d 2 (m 3 n mn 3 ) which give infinitely many values (even when d = 1!) In fact, if a number N is congruent then there must be some integers d, m, n that we can plug in to achieve the area N.

9 Infinitely Many Solutions Table using Pythagorean triples, d = 1, x = m 2 n 2, y = 2mn, z = m 2 + n 2 and m > n are coprime integers (they share no common divisor) with opposite parity. m n (x, y, z) A = xy/2 Squarefree part 2 1 (3,4,5) (5,12,13) (15,8,17) (7,24,25) (21,20,29) (35,12,27) (9,40,41) (45,28,53) (63,16,65)

10 Algorithm to Find Congruent Numbers In fact one can use Pythagorean triples to show that all numbers that are congruent must eventually appear as the square free part of the previous table. However this algorithm is terribly inefficient. For example, Don Zagier was the first person to give an explicit triangle to show that the number 157 is a congruent number. The smallest side lengths are given by: x = y = z =

11 Algorithm to Find Congruent Numbers For the previous solution, the smallest m and n values (minimizing m + n) correspond to: m = n = N = mn/2 = If you re searching based on the smallest m + n and you were looking at numbers a second, it would take you around years to find this solution. So how did Don Zagier find this solution?

12 The Number 1 is Not Congruent What about showing that numbers are not congruent? For example, the number 1 is not congruent. To prove this, we would need to show that no matter how hard we try, there cannot be a triangle with rational side lengths and area 1. To show that no object exists, we often use a mathematical technique called Proof by Contradiction, assume the object exists and then in some way or another, we break math. In this case, we also use a technique due to Fermat called Infinite Descent.

13 Numbers Between 1 and 8 Which Are Congruent By our discussion earlier, we need only to look at the squarefree numbers. The numbers 1,2,3 are all not congruent. The numbers 5,6,7 are all congruent. How does one find a quick criteria for determining if a number is congruent?

14 A Powerful Theorem Theorem 1 (Tunnel s Theorem). Let n be an odd positive squarefree integer. Then if the number of triples of integers x, y, z satisfying 2x 2 + y 2 + 8z 2 = n is not exactly double the number of triples satisfying then n is not congruent. 2x 2 + y z 2 = n

15 A Powerful Theorem Pt. 2 Theorem 2 (Tunnel s Theorem). Let n be an even positive squarefree integer. Then if the number of triples of integers x, y, z satisfying 8x 2 + 2y z 2 = n is not exactly double the number of triples satisfying then n is not congruent. 8x 2 + 2y z 2 = n

16 Example The above theorems are useful to show that a number is not congruent. For example, since 2(0) 2 + (±1) 2 + 8(0) 2 = 1 2(0) 2 + (±1) (0) 2 = 1 and these are the only integer solutions to these equations. Both equations have two solutions. As the number of solutions to these equations are equal, Tunnel s theorem states that 1 is not a congruent number.

17 A Powerful Conditional Theorem Theorem 3 (Tunnel s Theorem). Let n be an odd positive squarefree integer. Assume the Birch Swinnerton-Dyer conjecture. Then if the number of triples of integers x, y, z satisfying 2x 2 + y 2 + 8z 2 = n is exactly double the number of triples satisfying then n is congruent. 2x 2 + y z 2 = n

18 A Powerful Conditional Theorem Pt. 2 Theorem 4 (Tunnel s Theorem). Let n be an even positive squarefree integer. Assume the Birch Swinnerton-Dyer conjecture. Then if the number of triples of integers x, y, z satisfying 8x 2 + 2y z 2 = n is exactly double the number of triples satisfying then n is congruent. 8x 2 + 2y z 2 = n

19 Example The above conditional theorems are useful to convince oneself that a number is congruent (but do not form a formal proof unless the Birch-Swinnerton Dyer Conjecture is true). For example, since 2x 2 + y 2 + 8z 2 = 5 2x 2 + y z 2 = 5 have no integer solutions and so, conditional on the Birch Swinnerton-Dyer conjecture, 5 is congruent by Tunnel s Theorem (of course we know unconditionally they are congruent numbers since we generated the triangles for them!) Similar statements hold for 6 and 7.

20 Elliptic Curves The question remains: How did Don Zagier find this solution? He used the theory of elliptic curves and found a rational point on the elliptic curve y 2 = x x. Next time we will start with how the congruent number problem relates to eliiptic curves and study these vastly rich arithmetic objects!

21 Thank you!

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### Pythagorean Triples Pythagorean triple similar primitive

Pythagorean Triples One of the most far-reaching problems to appear in Diophantus Arithmetica was his Problem II-8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

### Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions

### Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff

Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture Brad Groff Contents 1 Congruent Numbers... 1.1 Basic Facts............................... and Elliptic Curves.1

### A Non-Existence Property of Pythagorean Triangles with a 3-D Application

A Non-Existence Property of Pythagorean Triangles with a 3-D Application Konstantine Zelator Department of Mathematics and Computer Science Rhode Island College 600 Mount Pleasant Avenue Providence, RI

### Grade 6 Math Circles March 24/25, 2015 Pythagorean Theorem Solutions

Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 4/5, 015 Pythagorean Theorem Solutions Triangles: They re Alright When They

### MATH 361: NUMBER THEORY FIRST LECTURE

MATH 361: NUMBER THEORY FIRST LECTURE 1. Introduction As a provisional definition, view number theory as the study of the properties of the positive integers, Z + = {1, 2, 3, }. Of particular interest,

### Right triangles and elliptic curves

Right triangles and elliptic curves Karl Rubin Ross Reunion July 2007 Karl Rubin (UCI) Right triangles and elliptic curves Ross Reunion, July 2007 1 / 34 Rational right triangles Question Given a positive

### DigitalCommons@University of Nebraska - Lincoln

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

### PYTHAGOREAN TRIPLES PETE L. CLARK

PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =

### TRIANGLES ON THE LATTICE OF INTEGERS. Department of Mathematics Rowan University Glassboro, NJ Andrew Roibal and Abdulkadir Hassen

TRIANGLES ON THE LATTICE OF INTEGERS Andrew Roibal and Abdulkadir Hassen Department of Mathematics Rowan University Glassboro, NJ 08028 I. Introduction In this article we will be studying triangles whose

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

### The Equation x 2 + y 2 = z 2

The Equation x 2 + y 2 = z 2 The equation x 2 + y 2 = z 2 is associated with the Pythagorean theorem: In a right triangle the sum of the squares on the sides is equal to the square on the hypotenuse. We

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Number Theory Homework.

Number Theory Homework. 1. Pythagorean triples and rational points on quadratics and cubics. 1.1. Pythagorean triples. Recall the Pythagorean theorem which is that in a right triangle with legs of length

### Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Pythagorean triples. Darryl McCullough. University of Oklahoma

The a, b, c s of Pythagorean triples Darryl McCullough University of Oklahoma September 10, 2001 1 A Pythagorean triple PT is an ordered triple a, b, c of positive integers such that a 2 + b 2 = c 2. When

### Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers

Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers Amnon Yekutieli Department of Mathematics Ben Gurion University email: amyekut@math.bgu.ac.il Notes available at http://www.math.bgu.ac.il/~amyekut/lectures

### Instructions for SA Completion

Instructions for SA Completion 1- Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive

### RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES DARRYL MCCULLOUGH AND ELIZABETH WADE In [9], P. W. Wade and W. R. Wade (no relation to the second author gave a recursion formula that produces Pythagorean

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### Chapter 3: Elementary Number Theory and Methods of Proof. January 31, 2010

Chapter 3: Elementary Number Theory and Methods of Proof January 31, 2010 3.4 - Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Quotient-Remainder Theorem Given

### The Mathematics of Origami

The Mathematics of Origami Sheri Yin June 3, 2009 1 Contents 1 Introduction 3 2 Some Basics in Abstract Algebra 4 2.1 Groups................................. 4 2.2 Ring..................................

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

### Is this number prime? Berkeley Math Circle Kiran Kedlaya

Is this number prime? Berkeley Math Circle 2002 2003 Kiran Kedlaya Given a positive integer, how do you check whether it is prime (has itself and 1 as its only two positive divisors) or composite (not

### 4.2 Euclid s Classification of Pythagorean Triples

178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### PYTHAGOREAN TRIPLES M. SUNIL R. KOSWATTA HARPER COLLEGE, ILLINOIS

PYTHAGOREAN TRIPLES M. SUNIL R. KOSWATTA HARPER COLLEGE, ILLINOIS Astract. This talk is ased on a three week summer workshop (Los Angeles 2004) conducted y Professor Hung-Hsi Wu, University of California,

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Pythagorean Triples and Fermat s Last Theorem

Pythagorean Triples and Fermat s Last Theorem A. DeCelles Notes for talk at the Science Speakers Series at Goshen College Document created: 05/10/011 Last updated: 06/05/011 (graphics added) It is an amazing

### PYTHAGOREAN NUMBERS. Bowling Green State University, Bowling Green, OH (Submitted February 1988)

S u p r i y a Mohanty a n d S. P. Mohanty Bowling Green State University, Bowling Green, OH 43403-0221 (Submitted February 1988) Let M be a right angled triangle with legs x and y and hypotenuse z. Then

Pythagorean Quadruples 1. Pythagorean and Primitive Pythagorean Quadruples A few years ago, I became interested with those 3 vectors with integer coordinates and integer length or norm. The simplest example

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

Copyright by Christina Lau 011 The Report Committee for Christina Lau Certifies that this is the approved version of the following report: Pythagorean Theorem Extensions APPROVED BY SUPERVISING COMMITTEE:

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational

### Reciprocal Properties of Pythagorean triangles

arxiv:1110.0217v1 [math.gm] 2 Oct 2011 Reciprocal Properties of Pythagorean triangles Konstantine Zelator Mathematics, Statistics, and Computer Science 212 Ben Franklin Hall Bloomsburg University of Pennsylvania

### Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

### Pythagorean Triples. becomes

Solution Commentary: Solution of Main Problems: Pythagorean Triples 1. If m = (n + 1), n = [m -1]/ and n+1 = [m +1]/. Then, by substitution, the equation n + (n + 1) = (n+1) m + 1 becomes + m =. Now, because

### Problem Set 5. AABB = 11k = (10 + 1)k = (10 + 1)XY Z = XY Z0 + XY Z XYZ0 + XYZ AABB

Problem Set 5 1. (a) Four-digit number S = aabb is a square. Find it; (hint: 11 is a factor of S) (b) If n is a sum of two square, so is 2n. (Frank) Solution: (a) Since (A + B) (A + B) = 0, and 11 0, 11

### Practice Problems for First Test

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.-

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

### Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: kamel@just.edu.jo,

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### 1 Investigation of Right-angled Triangles

1 Investigation of Right-angled Triangles Answering this investigation Some tasks in this investigation require you to use Geogebra (www.geogebra. org). All the files are viewable online, so you will not

### It is time to prove some theorems. There are various strategies for doing

CHAPTER 4 Direct Proof It is time to prove some theorems. There are various strategies for doing this; we now examine the most straightforward approach, a technique called direct proof. As we begin, it

### Characterizing the Sum of Two Cubes

1 3 47 6 3 11 Journal of Integer Sequences, Vol. 6 (003), Article 03.4.6 Characterizing the Sum of Two Cubes Kevin A. Broughan University of Waikato Hamilton 001 New Zealand kab@waikato.ac.nz Abstract

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

### THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM a 2 + b 2 = c 2 CFE 3285V OPEN CAPTIONED ALLIED VIDEO CORPORTATION 1993 Grade Levels: 9-12 14 minutes DESCRIPTION Reviews the definition of a right triangle before a brief history

### THE BIRCH AND SWINNERTON-DYER CONJECTURE

THE BIRCH AND SWINNERTON-DYER CONJECTURE ANDREW WILES A polynomial relation f(x, y) = 0 in two variables defines a curve C 0. If the coefficients of the polynomial are rational numbers, then one can ask

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

### Definition 1 Let a and b be positive integers. A linear combination of a and b is any number n = ax + by, (1) where x and y are whole numbers.

Greatest Common Divisors and Linear Combinations Let a and b be positive integers The greatest common divisor of a and b ( gcd(a, b) ) has a close and very useful connection to things called linear combinations

### 2 The Euclidean algorithm

2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In

### G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...

### An Innocent Investigation

An Innocent Investigation D. Joyce, Clark University January 2006 The beginning. Have you ever wondered why every number is either even or odd? I don t mean to ask if you ever wondered whether every number

### Solving Certain Cubic Equations: An Introduction to the Birch and Swinnerton-Dyer Conjecture. William Stein

Solving Certain Cubic Equations: An Introduction to the Birch and Swinnerton-Dyer Conjecture February 28, 2004 at Brown SUMS William Stein http://modular.fas.harvard.edu/sums Read the title. Point out

### THE PROOF IS IN THE PICTURE

THE PROOF IS IN THE PICTURE (an introduction to proofs without words) LAMC INTERMEDIATE GROUP - 11/24/13 WARM UP (PAPER FOLDING) Theorem: The square root of 2 is irrational. We prove this via the mathematical

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### 9.6 The Pythagorean Theorem

Section 9.6 The Pythagorean Theorem 959 9.6 The Pythagorean Theorem Pythagoras was a Greek mathematician and philosopher, born on the island of Samos (ca. 582 BC). He founded a number of schools, one in

### 3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### PERIMETERS OF PRIMITIVE PYTHAGOREAN TRIANGLES. 1. Introduction

PERIMETERS OF PRIMITIVE PYTHAGOREAN TRIANGLES LINDSEY WITCOSKY ADVISOR: DR. RUSS GORDON Abstract. This paper examines two methods of determining whether a positive integer can correspond to the semiperimeter

### DETERMINATION OF HERONIAN TRIANGLES

DETERMINATION OF HERONIAN TRIANGLES JOHN R.CARLSON San Diego State College, San Diego, California 1. A Pythagorean triangle is defined as any right-triangle having integral sides. Using the well-known

### Grade 7/8 Math Circles Fall 2012 Factors and Primes

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Geometry - Chapter 2 Review

Name: Class: Date: Geometry - Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.

### PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

### An introduction to number theory and Diophantine equations

An introduction to number theory and Diophantine equations Lillian Pierce April 20, 2010 Lattice points and circles What is the area of a circle of radius r? You may have just thought without hesitation

### Chapter Two. Number Theory

Chapter Two Number Theory 2.1 INTRODUCTION Number theory is that area of mathematics dealing with the properties of the integers under the ordinary operations of addition, subtraction, multiplication and

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Introduction to the Mathematics of Zome

Introduction to the Mathematics of Zome Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles July 1, 008 Abstract This article provides a gentle introduction to the Mathematics of Zome,

### a c Pythagorean Theorem: a 2 + b 2 = c 2

Section 2.1: The Pythagorean Theorem The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT

### If it is raining, then it is cloudy. If an integer (whole number) n is greater than 4.5, then n is greater than 4.

47 Lesson 3: The Converse of the Pythagorean Theorem, Pythagorean Triples and the 3-Dimensional Pythagorean Theorem Recall that the Pythagorean Theorem tells us how to calculate the length of one side

### MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

### Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

### ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright Cengage Learning. All rights reserved.

### 12 Greatest Common Divisors. The Euclidean Algorithm

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 12 Greatest Common Divisors. The Euclidean Algorithm As mentioned at the end of the previous section, we would like to

### Pick any positive integer. If the integer is even, divide it by 2. If it is odd,

Multiplying and Dividing Integers Learning Goals In this lesson, you will: Multiply integers. Divide integers. Pick any positive integer. If the integer is even, divide it by 2. If it is odd, multiply

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other