# On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

Save this PDF as:

Size: px
Start display at page:

Download "On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples"

## Transcription

1 On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, Introduction 1.1 Mazur s Theorem Let C be a non-singular rational cubic curve, and suppose that C(Q) contains a point of finite order m. Then either 1 m 10 or m = 12. More precisely, the set of all points of finite order in C(Q) forms a subgroup which has one of the following two forms: (i) A cyclic group of order N with 1 N 10 or N = 12. (ii) The product of a cyclic group of order two and a cyclic group of order 2N with 1 N The extreme case According to Mazur s Theorem, C(Q) tor must be isomorphic to one of the listed groups. Of these possible torsion subgroups, has the most elements; = 16. Curves with sixteen torsion points are thus considered to be the most extreme legal elliptic curves. Today we ll look at such a type of elliptic curve for which C(Q) tor = Relation to Pythagorean triples A Pythagorean triple is any element (a, b, c) N 3 such that a 2 + b 2 = c 2. If additionally gcd(a, b, c) = 1, then (a, b, c) is called a primitive Pythagorean triple. We showed on the first day of class that a = m 2 n 2, b = 2mn, and c = m 2 + n 2, for some m, n such that m > n, gcd(m, n)= 1, and m and n are not congruent modulo 2. 1

2 2.1 Claim Let (A, B, C) be a Pythagorean triple. Then let C : y 2 = x(x + A 4 )(x + B 4 ). (1) Then C(Q) tor and C(Q) tor = 16. Before we investigate and prove this claim, let s digress a bit and explore the multitude of curves of this form. 2.2 Algorithm that generates Pythagorean triples Surprisingly, we can use the Euclidean Algorithm to find all Pythagorean triples of the form (x, y, p) where p is prime. Additionally, these Pythagorean triples can be multiplied by scalars or added to generate all other Pythagorean triples. For example, (7,24,25) is a primitive Pythagorean triple that is not of this form Proposition Given a prime p, the following statements are equivalent: a) p 1 (mod 4). b) There exists a Pythagorean triple (x, y, p). c) -1 is a square modulo p Algorithm, first step Suppose p 1 (mod 4). Fermat proved that there infinitely many primes congruent to 1 modulo 4. We can use an algorithm to find the corresponding Pythagorean triple (x, y, p). First, solve the congruence a 2 1 (mod p). (It may help to cheat by using Mathematica for this step.) Additionally, we already know two facts about a: a) Clearly, ord p (a)= 4. b) Congruences of the form x 2 a (mod p), such that a and p is prime, have 0 or 2 incongruent solutions modulo p. By Proposition 2.2.1, a 2 1 (mod p) has 2 incongruent solutions, which can either be written as ±a, or as a and p a. For the algorithm, we need a to be a positive integer less than p Algorithm, second step Next use the Euclidean Algorithm on p and a. Although we usually use the Euclidean Algorithm to find greatest common divisors, we already know that gcd(p, a)=1. In this case, we are interested in the remainders. Let m and n be the two greatest remainders which are less than p, m > n. Then, remarkably, x = m 2 n 2, y = 2mn, and p = m 2 + n 2. 2

3 2.2.4 Examples Here is a demonstrative example. Let p = 89; a is found to be = 34(2) = 21(1) = 13(1) = 8(1) = 5(1) + 3 p Then m = 8 and n = 5. Thus x = ( ) = 39 and y = 2(8)(5) = 80. Hence, the corresponding Pythagorean triple is (39,80,89). This method is especially useful for finding very large Pythagorean triples. Take the one billionth prime, p = We find that a = , p , and the 12th and 13th remainders of the Euclidean Algorithm on p and a are and This generates the Pythagorean triple ( , , ) Operations Clearly, we can multiply a Pythagorean triple by a positive integer to generate another Pythagorean triple. Using an analogue in the complex plane, we can also find an operation that generates a third Pythagorean triple from any two. Using these two operations, we can express all Pythagorean triples in terms of triples generated by our algorithm. Suppose (a, b, c) and (e, f, g) are Pythagorean triples. In the complex plane, let z= a + bi and w= e + fi. (a + bi)(e + fi) = (ae bf) + i(af + be) (ae bf) 2 + (af + be) 2 = (a 2 + b 2 )(e 2 + f 2 ) = z 2 w 2 = (cg) 2. (2) Thus ( ae bf, af + be, cg) is a Pythagorean triple. Define this to be the sum of the Pythagorean triples (a, b, c) and (e, f, g). 3 The Pythagorean elliptic curve 3.1 Claim restated Let (A, B, C) be a Pythagorean triple. Then let C : y 2 = x(x + A 4 )(x + B 4 ). (3) Making use of the corresponding triples, we can consider every curve of this form to have the same additive and multiplicative properties as the corresponding triples. Again we claim that C(Q) tor and C(Q) tor = 16. 3

4 3.2 Nagell-Lutz method Let s try, blindly, to find C(Q) tor using the Nagell-Lutz Theorem. On the curve, f(x)= x(x+a 4 )(x+b 4 ). The theorem tells us that if P =(x, y) C(Q) tor, then y = 0 or y 2 Disc(f). If y = 0, the resulting equation has three solutions: (0, 0), ( A 4, 0) and ( B 4, 0). All three solutions are in fact torsion points of order two. Including the identity, we have found four torsion points. After this, however, things get messy. Using the formula for discriminant, we find that Disc(f) = A 8 B 8 (A 4 B 4 ) 2 (4) This means if y 0, y A 4 B 4 (A 4 B 4 ). For Mathematica, this is good enough, but we would like to have a more efficient method. Take the simplest curve, analogous to (4, 3, 5). Then y , a product with = 270 distinct positive divisors to check. 3.3 Lemma Let C : y 2 = (x a)(x b)(x c), a, b, c, and suppose P = (u, v) is a nonidentity rational point on C. Then there exists a rational point Q Csuch that P = 2Q iff (u a), (u b) and (u c) are perfect squares Proof Suppose u a = A 2, u b = B 2, and u c = C 2. Define the point Q: Q = (u + AB AC BC, (A + B)(A C)(B C)). (5) Then, we have X(2Q) = u. Suppose P = 2Q, where Q = (r, s). Let L : y = mx + n be the tangent line to C at Q. Then Q = (r, s) and P = Q Q = (u, v) are both on L, which means they satisfy the equation (x a)(x b)(x c) = y 2 = (mx n) 2 Moreover, since L is tangent to C at Q, the equation (x a)(x b)(x c) (mx n) 2 = 0 has the three roots r, r, u. Thus it is the case that: (x a)(x b)(x c) (mx n) 2 = (x r) 2 (x u) (6) Without loss of generality, setting x = a in equation 6 gives (ma n) 2 = (u a)(a r) 2 Suppose a = r. Then Q = (a, s) = (a, 0) and P = 2Q is the identity, a contradiction. Thus u a is a perfect square. Using this Lemma, we can find points that have higher order than two from (0,0), which is a point we can easily verify to be a 2-torsion point. 4

5 3.4 Finding some torsion points Let s begin with a curve of the form C : y 2 = x(x+r 2 )(x+s 2 ). Applying equation 5 of the Lemma to the 2-torsion point (0, 0), we find that P = (rs, rs(r + s)) is a point of order 4 on C. We also know that ( r 2, 0) is a 2-torsion point on the curve. Because of Mazur s Theorem, this is enough information to show that the torsion subgroup of C : y 2 = x(x + r 2 )(x + s 2 ). either is 4 or. They are the only two possible torsion subgroups by Mazur s Theorem that have a point of order 4 and two different points of order 2. Moreover, the torsion subgroup must contain Let r = A 2 and s = B 2. Then P = (rs, rs(r + s)) = (A 2 B 2, A 2 B 2 C 2 ). Using equation 5 of the Lemma generates the point of order 8 (AB(A + C)(B + C), ABC(A + C)(B + C)(A + B)). The existence of this torsion point proves 4. our original claim, that C(Q) tor and C(Q) tor = Finding the rest of the torsion points The fact that C(Q) tor is a group implies a very useful fact that should be explicitly stated: C(Q) tor is closed under addition Isomorphism Define a group isomorphism f : C(Q) tor using a table (page 6). Beginning with the chart below, we will use closure under addition to find the others. Note we have several different ways to plug in our points; f is just an example. Other ways will result in other permutations of the 16 torsion points. C(Q) tor (0, 0) O (0, 1) (AB(A + C)(B + C), ABC(A + C)(B + C)(A + C)) (0, 2) (0, 3) (0, 4) (0, 0) (0, 5) (0, 6) (0, 7) (1, 0) ( A 4, 0) (1, 1) (1, 2) (1, 3) (1, 4) ( B 4, 0) (1, 5) (1, 6) (1, 7) 5

6 4 The torsion subgroup stated Addition on C(Q) tor corresponds with addition on, which is much easier. After adding the corresponding points on the curve, we arrive at the following table, the group isomorphism f: C(Q) tor Order (0, 0) O 1 (0, 1) (AB(A + C)(B + C), ABC(A + C)(B + C)(A + C)) 8 (0, 2) (A 2 B 2, A 2 B 2 C 2 ) 4 (0, 3) (AB(C B)(C A), ABC(A + B)(C A)(C B)) 8 (0, 4) (0, 0) 2 (0, 5) (AB(C B)(C A), ABC(A + B)(C A)(C B)) 8 (0, 6) (A 2 B 2, A 2 B 2 C 2 ) 4 (0, 7) (AB(A + C)(B + C), ABC(A + C)(B + C)(A + C)) 8 (1, 0) ( A 4, 0) 2 (1, 1) (AB(C + A)(B C), ABC(C + A)(C B)(B A)) 8 (1, 2) ( A 2 B 2, A 2 B 2 (A 2 B 2 )) 4 (1, 3) (AB(B + C)(A C), ABC(B A)(C A)(B + C)) 8 (1, 4) ( B 4, 0) 2 (1, 5) (AB(B + C)(A C), ABC(B A)(C A)(B + C)) 8 (1, 6) ( A 2 B 2, A 2 B 2 (A 2 B 2 )) 4 (1, 7) (AB(C + A)(B C), ABC(C + A)(C B)(B A)) 8 6

### Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff

Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture Brad Groff Contents 1 Congruent Numbers... 1.1 Basic Facts............................... and Elliptic Curves.1

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### PYTHAGOREAN TRIPLES PETE L. CLARK

PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =

### Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

### MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Practice Problems for First Test

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.-

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

3. QUADRATIC CONGRUENCES 3.1. Quadratics Over a Finite Field We re all familiar with the quadratic equation in the context of real or complex numbers. The formula for the solutions to ax + bx + c = 0 (where

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other

### Solutions to Homework Set 3 (Solutions to Homework Problems from Chapter 2)

Solutions to Homework Set 3 (Solutions to Homework Problems from Chapter 2) Problems from 21 211 Prove that a b (mod n) if and only if a and b leave the same remainder when divided by n Proof Suppose a

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### TRIANGLES ON THE LATTICE OF INTEGERS. Department of Mathematics Rowan University Glassboro, NJ Andrew Roibal and Abdulkadir Hassen

TRIANGLES ON THE LATTICE OF INTEGERS Andrew Roibal and Abdulkadir Hassen Department of Mathematics Rowan University Glassboro, NJ 08028 I. Introduction In this article we will be studying triangles whose

### Solutions to Practice Problems

Solutions to Practice Problems March 205. Given n = pq and φ(n = (p (q, we find p and q as the roots of the quadratic equation (x p(x q = x 2 (n φ(n + x + n = 0. The roots are p, q = 2[ n φ(n+ ± (n φ(n+2

### APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

### Number Theory 2. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007 April 8, 2007

Number Theory Paul Yiu Department of Mathematics Florida Atlantic University Spring 007 April 8, 007 Contents 1 Preliminaries 101 1.1 Infinitude of prime numbers............... 101 1. Euclidean algorithm

### Continued fractions and good approximations.

Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### Right triangles and elliptic curves

Right triangles and elliptic curves Karl Rubin Ross Reunion July 2007 Karl Rubin (UCI) Right triangles and elliptic curves Ross Reunion, July 2007 1 / 34 Rational right triangles Question Given a positive

### 2 The Euclidean algorithm

2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

### Congruences. Robert Friedman

Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

### b) Find smallest a > 0 such that 2 a 1 (mod 341). Solution: a) Use succesive squarings. We have 85 =

Problem 1. Prove that a b (mod c) if and only if a and b give the same remainders upon division by c. Solution: Let r a, r b be the remainders of a, b upon division by c respectively. Thus a r a (mod c)

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### Stanford University Educational Program for Gifted Youth (EPGY) Number Theory. Dana Paquin, Ph.D.

Stanford University Educational Program for Gifted Youth (EPGY) Dana Paquin, Ph.D. paquin@math.stanford.edu Summer 2010 Note: These lecture notes are adapted from the following sources: 1. Ivan Niven,

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### 12 Greatest Common Divisors. The Euclidean Algorithm

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 12 Greatest Common Divisors. The Euclidean Algorithm As mentioned at the end of the previous section, we would like to

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

### NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that

NON SINGULAR MATRICES DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that AB = I n = BA. Any matrix B with the above property is called

### Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### 10 k + pm pm. 10 n p q = 2n 5 n p 2 a 5 b q = p

Week 7 Summary Lecture 13 Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is not divisible

### Course notes on Number Theory

Course notes on Number Theory In Number Theory, we make the decision to work entirely with whole numbers. There are many reasons for this besides just mathematical interest, not the least of which is that

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### Matrices: 2.3 The Inverse of Matrices

September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

### Problem Set 5. AABB = 11k = (10 + 1)k = (10 + 1)XY Z = XY Z0 + XY Z XYZ0 + XYZ AABB

Problem Set 5 1. (a) Four-digit number S = aabb is a square. Find it; (hint: 11 is a factor of S) (b) If n is a sum of two square, so is 2n. (Frank) Solution: (a) Since (A + B) (A + B) = 0, and 11 0, 11

### Chapter 6. Number Theory. 6.1 The Division Algorithm

Chapter 6 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

### Basic Properties of Rings

Basic Properties of Rings A ring is an algebraic structure with an addition operation and a multiplication operation. These operations are required to satisfy many (but not all!) familiar properties. Some

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### Number Theory Homework.

Number Theory Homework. 1. Pythagorean triples and rational points on quadratics and cubics. 1.1. Pythagorean triples. Recall the Pythagorean theorem which is that in a right triangle with legs of length

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### 5.1 Commutative rings; Integral Domains

5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

### Pythagorean Triples Pythagorean triple similar primitive

Pythagorean Triples One of the most far-reaching problems to appear in Diophantus Arithmetica was his Problem II-8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2

### Quotient Rings of Polynomial Rings

Quotient Rings of Polynomial Rings 8-7-009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### 11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

### Overview of Number Theory Basics. Divisibility

Overview of Number Theory Basics Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Divisibility Definition Given integers a and b, b 0, b divides a (denoted b a) if integer c, s.t. a = cb. b is called

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### 4. FIRST STEPS IN THE THEORY 4.1. A

4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We

### NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO ii Number Theory Amin Witno Department of Basic Sciences Philadelphia University JORDAN 19392 Originally written for Math 313 students at Philadelphia University in Jordan, this

### Algebraic Systems, Fall 2013, September 1, 2013 Edition. Todd Cochrane

Algebraic Systems, Fall 2013, September 1, 2013 Edition Todd Cochrane Contents Notation 5 Chapter 0. Axioms for the set of Integers Z. 7 Chapter 1. Algebraic Properties of the Integers 9 1.1. Background

### Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

Advanced Maths Lecture 3 Next generation cryptography and the discrete logarithm problem for elliptic curves Richard A. Hayden rh@doc.ic.ac.uk EC crypto p. 1 Public key cryptography Asymmetric cryptography

### Primality - Factorization

Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

### Chapter Two. Number Theory

Chapter Two Number Theory 2.1 INTRODUCTION Number theory is that area of mathematics dealing with the properties of the integers under the ordinary operations of addition, subtraction, multiplication and

### Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p.

Computing square roots mod p We now have very effective ways to determine whether the quadratic congruence x a (mod p), p an odd prime, is solvable. What we need to complete this discussion is an effective

### 4.2 Euclid s Classification of Pythagorean Triples

178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1,...,N

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Congruent Number Problem

University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### Degree project CUBIC CONGRUENCE EQUATIONS

Degree project CUBIC CONGRUENCE EQUATIONS Author: Qadeer Ahmad Supervisor: Per-Anders Svensson Date: 2012-05-09 Subject: Mathematics and Modeling Level: Master Course code:5ma11e Abstract Let N m(f(x))

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### Characterizing the Sum of Two Cubes

1 3 47 6 3 11 Journal of Integer Sequences, Vol. 6 (003), Article 03.4.6 Characterizing the Sum of Two Cubes Kevin A. Broughan University of Waikato Hamilton 001 New Zealand kab@waikato.ac.nz Abstract

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### RSA and Primality Testing

and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2