# Important Probability Distributions OPRE 6301

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Important Probability Distributions OPRE 6301

2 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names. Here, we survey and study basic properties of some of them. We will discuss the following distributions: Binomial Poisson Uniform Normal Exponential The first two are discrete and the last three continuous. 1

3 Binomial Distribution... Consider the following scenarios: The number of heads/tails in a sequence of coin flips Vote counts for two different candidates in an election The number of male/female employees in a company The number of accounts that are in compliance or not in compliance with an accounting procedure The number of successful sales calls The number of defective products in a production run The number of days in a month your company s computer network experiences a problem All of these are situations where the binomial distribution may be applicable. 2

4 Canonical Framework... There is a set of assumptions which, if valid, would lead to a binomial distribution. These are: A set of n experiments or trials are conducted. Each trial could result in either a success or a failure. The probability p of success is the same for all trials. The outcomes of different trials are independent. We are interested in the total number of successes in these n trials. Under the above assumptions, let X be the total number of successes. Then, X is called a binomial random variable, and the probability distribution of X is called the binomial distribution. 3

5 Binomial Probability-Mass Function... Let X be a binomial random variable. Then, its probabilitymass function is: P(X = x) = for x = 0, 1, 2,..., n. n! x!(n x)! px (1 p) n x (1) The values of n and p are called the parameters of the distribution. To understand (1), note that: The probability for observing any sequence of n independent trials that contains x successes and n x failures is p n (1 p) n x. The total number of such sequences is equal to ( ) n n! x x!(n x)! (i.e., the total number of possible combinations when we randomly select x objects out of n objects). 4

6 Example: Multiple-Choice Exam Consider an exam that contains 10 multiple-choice questions with 4 possible choices for each question, only one of which is correct. Suppose a student is to select the answer for every question randomly. Let X be the number of questions the student answers correctly. Then, X has a binomial distribution with parameters n = 10 and p = (Convince yourself that all assumptions for a binomial distribution are reasonable in this setting.) What is the probability for the student to get no answer correct? Answer: 10! P(X = 0) = 0!(10 0)! (0.25)0 (1 0.25) 10 0 = (0.75) 10 =

7 What is the probability for the student to get two answers correct? Answer: P(X = 2) = 10! 2!8! (0.25)2 (1 0.25) 8 = 45 (0.25) 2 (0.75) 8 = What is the probability for the student to fail the test (i.e., to have less than 6 correct answers)? Answer: P(X 5) = 5 P(X = i) i=0 = = Binomial probabilities can be computed using the Excel function BINOMDIST(). Two other examples are given in a separate Excel file. 6

8 Binomial Mean and Variance... It can be shown that µ = E(X) = np and σ 2 = V (X) = np(1 p). For the previous example, we have E(X) = = 2.5. V (X) = 10 (0.25) (1 0.25) =

9 Poisson Distribution... The Poisson distribution is another family of distributions that arises in a great number of business situations. It usually is applicable in situations where random events occur at a certain rate over a period of time. Consider the following scenarios: The hourly number of customers arriving at a bank The daily number of accidents on a particular stretch of highway The hourly number of accesses to a particular web server The daily number of emergency calls in Dallas The number of typos in a book The monthly number of employees who had an absence in a large company Monthly demands for a particular product All of these are situations where the Poisson distribution may be applicable. 8

10 Canonical Framework... Like the Binomial distribution, the Poisson distribution arises when a set of canonical assumptions are reasonably valid. These are: The number of events that occur in any time interval is independent of the number of events in any other disjoint interval. Here, time interval is the standard example of an exposure variable and other interpretations are possible. Example: Error rate per page in a book. The distribution of number of events in an interval is the same for all intervals of the same size. For a small time interval, the probability of observing an event is proportional to the length of the interval. The proportionality constant corresponds to the rate at which events occur. The probability of observing two or more events in an interval approaches zero as the interval becomes smaller. 9

11 Under the above assumptions, let λ be the rate at which events occur, t be the length of a time interval, and X be the total number of events in that time interval. Then, X is called a Poisson random variable and the probability distribution of X is called the Poisson distribution. Let µ λt; then, µ can be interpreted as the average, or mean, number of events in an interval of length t. 10

12 Poisson Probability-Mass Function... Let X be a Poisson random variable. Then, its probabilitymass function is: µ µx P(X = x) = e x! for x = 0, 1, 2,.... (2) The value of µ is the parameter of the distribution. For a given time interval of interest, in an application, µ can be specified as λ times the length of that interval. Example: Typos The number of typographical errors in a big textbook is Poisson distributed with a mean of 1.5 per 100 pages. Suppose 100 pages of the book are randomly selected. What is the probability that there are no typos? Answer: µ µx P(X = 0) = e x! = e ! =

13 Suppose 400 pages of the book are randomly selected. What are the probabilities for having no typos and for having five or fewer typos? Answers: and P(X 5) = (1.5 4)0 P(X = 0) = e 0! = P(X = i) i=0 = = Poisson probabilities can be computed using the Excel function POISSON(). Further numerical examples of the Poisson distribution are given in a separate Excel file. 12

14 Mean and Variance It can be shown that E(X) = µ and V (X) = µ. Interpretation of (2) The form of (2) seems mysterious. The best way to understand it is via the binomial distribution. Consider a time interval and divide it into n equally-sized subintervals. Suppose n is very large so that either one or zero event can occur in a subinterval. Suppose further that the probability for an event to occur in a subinterval is µ/n, independent of what occurs in other subintervals. 13

15 Under these assumptions, the total number of events, X, in that interval has a binomial distribution with parameters n and µ/n. That is, P(X = x) = for x = 0, 1, 2,..., n. n! x!(n x)! ( µ n) x ( 1 µ n) n x (3) Note that E(X) = n (µ/n) = µ, suggesting that (3) and (1) are consistent. Indeed, it can be shown that as n approaches, (3) becomes (2). This useful fact is called Poisson approximation to the binomial distribution. We will see several other examples of such limiting approximations in future chapters. They provide simple and accurate approximations to otherwise unmanageable expressions. 14

16 General Continuous Distributions... Recall that a continuous random variable or distribution is defined via a probability density function. Let f(x) (nonnegative) be the density function of variable X. Then, f(x) is the rate at which probability accumulates in the neighborhood of x. In other words, f(x) h P(x < X x + h) when h (a positive number) is sufficiently small. It follows from this rate interpretation that for any interval (x 1, x 2 ], we have P(x 1 < X x 2 ) = moreover, we must have x2 f(x) dx = 1. x 1 f(x) dx ; (4) Note that the probability for a continuous random variable to assume any particular value is 0; this can be seen by setting x 1 = x 2 in (4). 15

17 Recall further that the integral of a function over an interval is the area under that function over the given interval. We can therefore visualize P(x 1 < X x 2 ) as the area of the yellow region below: f(x) x 1 x 2 x 16

18 For < x <, the function F(x) P(X x) = x f(y) dy (i.e., let x 1 = and x 2 = x in (4)) is called the cumulative distribution function of X. F(x) can also be used to describe a random variable, since f(x) is the derivative of F(x). Various probabilities of interest regarding a variable X can all be computed via either f(x) or F(x). We next discuss three important continuous distributions: uniform, normal, and exponential. 17

19 Uniform Distribution... The uniform distribution is the simplest example of a continuous probability distribution. A random variable X is said to be uniformly distributed if its density function is given by: f(x) = 1 b a for < a x b <. Visually, we have (5) f(x) a b x where the shaded region has area (b a)[1/(b a)] = 1 (width times height). 18

20 The values a and b are the parameters of the uniform distribution. It can be shown that E(X) = a + b 2 and V (X) = (b a)2 12. The standard uniform density has parameters a = 0 and b = 1; and hence f(x) = 1 for 0 x 1 and 0 otherwise. The Excel function RAND() pretends to generate independent samples from this density function. 19

21 Example: Gasoline Sales Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Answer: P(2500 < X 3000) = Visually, we have f(x) = ( ) 2,000 5,000 x and the answer corresponds to the area in blue. 20

22 What is the probability that the service station will sell at least 4,000 gallons? Answer: P(X > 4000) = Visually, we have f(x) = ( ) 2,000 5,000 x What is the probability that the service station will sell exactly 2,500 gallons? Answer: P(X = 2500) = 0, since the area of a vertical line at 2,500 is 0. f(x) 2,000 5,000 x 21

23 Normal Distribution... The normal distribution is the most important distribution in statistics, since it arises naturally in numerous applications. The key reason is that large sums of (small) random variables often turn out to be normally distributed; a more-complete discussion of this will be given in Chapter 9. A random variable X is said to have the normal distribution with parameters µ and σ if its density function is given by: { 1 f(x) = exp 1 ( ) } x µ 2 (6) 2π σ 2 σ for < x <. It can be shown that E(X) = µ and V (X) = σ 2. Thus, the normal distribution is characterized by a mean µ and a standard deviation σ. 22

24 A typical normal density curve looks like this: Thus, the curve is bell shaped and is symmetric around the mean µ. The standard deviation σ controls the flatness of the curve. Details... 23

25 Increasing the mean shifts the density curve to the right... Increasing the standard deivation flattens the density curve... 24

26 Calculating Normal Probabilities... A normal distribution whose mean is 0 and standard deviation is 1 is called the standard normal distribution. In this case, the density function assumes the simpler form: f(x) = 1 e x2 /2 (7) 2π for < x <. Table 3 in Appendix B of the text can be used to calculate probabilities associated with the standard normal distribution. The Excel function NORMSDIST() (where S is for standard ) can also be used. Denote by Z a random variable that follows the standard normal distribution. Then, Table 3 gives the probability P(0 < Z z) for any nonnegative value z; whereas NORMSDIST() returns P(Z z) for any z from to, i.e., values of the cumulative distribution function. For general parameter values, the Excel function NOR- MDIST() (without S in the middle) can be used directly. However,... 25

27 A standard practice is to convert a normal random variable X with arbitrary parameters µ and σ into a standardized normal random variable Z with parameters 0 and 1 via the transformation: this is illustrated in: Z = X µ σ ; (8) This shifts the mean of X to zero 0 0 This changes the shape of the curve 26

28 Example 1: Build Time of Computers Suppose the time required to build a computer is normally distributed with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability for the assembly time of a computer to be between 45 and 60 minutes? Answer: We wish to compute P(45 < X 60). To do this, we first rewrite the event of interest into a form that is in terms of a standardized variable Z = (X 50)/10, as follows. P ( Next, observe that < X ) = P( 0.5 < Z 1). P( 0.5 < Z 1) = P(Z 1) P(Z 0.5). Using the Excel function NORMSDIST(), we find that P(Z 1) = and P(Z 0.5) = Hence, the answer is =

29 Table 3 can also be used for this calculation: P( 0.5 < Z 1) = P( 0.5 < Z 0) + P(0 < Z 1) = P(0 < Z 0.5) + P(0 < Z 1) = = , where the first equality follows from the second equality is due to the fact that the normal density curve is symmetric, and the third equality is from Table 3. Is it reasonable to assume that the build time is normally distributed? Reasoning: The build time can be thought of as the sum of times needed to build many individual components. 28

30 Example 2: Stock Returns Suppose the return of an investment in a stock over a given time period is normally distributed with a mean of 10% and a standard deviation of 5%. Reasoning: Price movement of a stock over the given period can be thought of as the sum of a long sequence of small movements. What is the probability of losing money over the given period? Answer: We wish to determine P(X 0). Following the steps in the previous example, we obtain P(X 0) ( X 10 = P 5 = P(Z 2) = ) 5 29

31 What is the effect of doubling the standard deviation to 10? Answer: A similar calculation yields ( X 10 P(X 0) = P 0 10 ) = P(Z 1) = , which is almost 7 times larger than the previous answer. Thus, increasing the standard deviation increases the probability of losing money. This reiterates the fact that the standard deviation is a measure of risk. Example 3: Midterm Scores Why did the frequency distribution of the Midterm scores resemble a normal density curve? Reasoning: The total score of an exam is the sum of scores for many individual problems/parts. 30

32 Finding z for Given Probability... Most of the calculations above are of the form: Find the probability P(Z z) for a given value of z. Often times, we are also interested in an inverse problem: Find the value of z A such that the probability for Z to be greater than z A equals a specified value A. Formally, our question is: For what value of z A do we have This can be visualized as: P(Z > z A ) = A? (9) Questions like these will be relevant in statistical inference. 31

33 Examples: Find z A for A = (or 2.5%). That is, what is z 0.025? Answer: Observe that P(Z > z ) = 1 P(Z z ). Area =.025 Observer further that P(Z z ) = 1 P(Z > z ) = = 0.975, where the second equality follows from the definition of z

34 Hence, our problem is equivalent to that of finding z such that P(Z z ) = That is, we are interested in the inverse of a cumulative distribution function; this is similar to finding percentiles using an ogive. The Excel function NORMSDIST() (which is a cumulative distribution function) has an inverse: NORMSINV(). Using this inverse function with argument 0.975, we find that z = For A = 0.05, we have z 0.05 = For A = 0.01, we have z 0.01 =

35 Exponential Distribution... Another useful continuous distribution is the exponential distribution, which has the following probability density function: for x 0. f(x) = λe λx (10) This family of distributions is characterized by a single parameter λ, which is called the rate. Intuitively, λ can be thought of as the instantaneous failure rate of a device at any time t, given that the device has survived up to t. The exponential distribution is typically used to model time intervals between random events... 34

36 Examples: The length of time between telephone calls The length of time between arrivals at a service station The life time of electronic components, i.e., an interfailure time An important fact is that when times between random events follow the exponential distribution with rate λ, then the total number of events in a time period of length t follows the Poisson distribution with parameter λt. If a random variable X is exponentially distributed with rate λ, then it can be shown that E(X) = 1 ( ) 2 1 and V (X) =. λ λ 35

37 For λ = 0.5, 1, and 2, the shapes of the expenential density curve are: Observe that the greater the rate, the faster the curve drops. Or, the lower the rate, the flatter the curve. Several useful formulas are: P {X x} = 1 e λx P {X > x} = e λx P {x 1 < X x 2 } = e λx 1 e λx 2 These correspond to the areas under the density curve to the left of x, to the right of x, and between x 1 and x 2, respectively. 36

38 Example 1: Lifetime of a Battery The lifetime X of an alkaline battery is exponentially distributed with λ = 0.05 per hour. What are the mean and standard deviation of the battery s lifetime? Answer: E(X) = SD(X) = = 20 hours. What are the probabilities for the battery to last between 10 and 15 hours and to last more than 20 hours? Answer: P(10 < X 15) = e e = P(X > 20) = e = (The Excel function EXP() can be used for these calculations.) 37

39 Example 2: Arrivals at a Gas Station The arrival rate of cars at a gas station is λ = 40 customers per hour. (This is equivalent to saying that the interarrival times are exponentially distributed with rate 40 per hour.) What is the probability of having no arrivals in a 5- minute interval? Answer: P(X > 5 60 ) = e 40 (5/60) = What are the mean and variance of the number, N, of arrivals in 5 minutes? Answer: The variable N has a Poisson distribution with parameter µ = λt = 40 (5/60) = Hence, E(N) = and V (N) = What is the probability for having 3 arrivals in a 5- minute interval? Answer: P(N = 3) = e 3! =

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

### e.g. arrival of a customer to a service station or breakdown of a component in some system.

Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

### Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2

Math 370, Spring 2008 Prof. A.J. Hildebrand Practice Test 2 About this test. This is a practice test made up of a random collection of 15 problems from past Course 1/P actuarial exams. Most of the problems

### Sums of Independent Random Variables

Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 October 22, 214 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / October

### STAT 3502. x 0 < x < 1

Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

### Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

### Normal Distribution as an Approximation to the Binomial Distribution

Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

### Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

### Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

### , for x = 0, 1, 2, 3,... (4.1) (1 + 1/n) n = 2.71828... b x /x! = e b, x=0

Chapter 4 The Poisson Distribution 4.1 The Fish Distribution? The Poisson distribution is named after Simeon-Denis Poisson (1781 1840). In addition, poisson is French for fish. In this chapter we will

### Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

### Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016

Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are

### Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

### Continuous Random Variables

Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

### 6 3 The Standard Normal Distribution

290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

### Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

### Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

### Part I Learning about SPSS

STATS 1000 / STATS 1004 / STATS 1504 Statistical Practice 1 Practical Week 5 2015 Practical Outline In this practical, we will look at how to do binomial calculations in Excel. look at how to do normal

### Binomial random variables

Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

### Chapter 2, part 2. Petter Mostad

Chapter 2, part 2 Petter Mostad mostad@chalmers.se Parametrical families of probability distributions How can we solve the problem of learning about the population distribution from the sample? Usual procedure:

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

### The Exponential Distribution

21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

### Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

### Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

### 4: Probability. What is probability? Random variables (RVs)

4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random

### Mind on Statistics. Chapter 8

Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable

### Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE

### Probability Distributions

Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

### Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

### MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

### Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

### ST 371 (VIII): Theory of Joint Distributions

ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or

### What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

### Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers

Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.18 Attitudes toward drinking and behavior studies. Some of the methods in this section are approximations

### 2. Discrete random variables

2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

### WEEK #22: PDFs and CDFs, Measures of Center and Spread

WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook

### Introduction to Probability

Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

### Betting with the Kelly Criterion

Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### 4. Joint Distributions

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### Probabilities and Random Variables

Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so

sheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution

### Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### The Normal Curve. The Normal Curve and The Sampling Distribution

Discrete vs Continuous Data The Normal Curve and The Sampling Distribution We have seen examples of probability distributions for discrete variables X, such as the binomial distribution. We could use it

### STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### 6 POISSON DISTRIBUTIONS

6 POISSON DISTRIBUTIONS Chapter 6 Poisson Distributions Objectives After studying this chapter you should be able to recognise when to use the Poisson distribution; be able to apply the Poisson distribution

### Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,

### Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

### VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

### Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

### Chapter 9 Monté Carlo Simulation

MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

### Estimating the Average Value of a Function

Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

### Probability Distributions

CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

### STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

### Review the following from Chapter 5

Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

### Statistics 104: Section 6!

Page 1 Statistics 104: Section 6! TF: Deirdre (say: Dear-dra) Bloome Email: dbloome@fas.harvard.edu Section Times Thursday 2pm-3pm in SC 109, Thursday 5pm-6pm in SC 705 Office Hours: Thursday 6pm-7pm SC

### Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete

### Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5

ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has

### Examination 110 Probability and Statistics Examination

Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

### Continuous Random Variables and the Normal Distribution

CHAPTER 6 Continuous Random Variables and the Normal Distribution CHAPTER OUTLINE 6.1 The Standard Normal Distribution 6.2 Standardizing a Normal Distribution 6.3 Applications of the Normal Distribution

### 5 Cumulative Frequency Distributions, Area under the Curve & Probability Basics 5.1 Relative Frequencies, Cumulative Frequencies, and Ogives

5 Cumulative Frequency Distributions, Area under the Curve & Probability Basics 5.1 Relative Frequencies, Cumulative Frequencies, and Ogives We often have to compute the total of the observations in a

### Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

### 0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

. A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

### Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

### Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

### 2 Applications to Business and Economics

2 Applications to Business and Economics APPLYING THE DEFINITE INTEGRAL 442 Chapter 6 Further Topics in Integration In Section 6.1, you saw that area can be expressed as the limit of a sum, then evaluated

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### Statistics 100A Homework 4 Solutions

Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

### Binomial random variables (Review)

Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams

Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set

### Key Concept. Density Curve

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in