Overview of Number Theory Basics. Divisibility


 Adam Dickerson
 3 years ago
 Views:
Transcription
1 Overview of Number Theory Basics Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Divisibility Definition Given integers a and b, b 0, b divides a (denoted b a) if integer c, s.t. a = cb. b is called a divisor of a. (Transitivity) Given integers a, b, c, all >, with a b and b c, then a c. Proof: a b => m s.t. ma = b b c => n s.t. nb = c, nma = c, We obtain that q = mn, s.t c = aq, so a c
2 Divisibility (cont.) Given integers a, b, c, x, y all >, with a b and a c, then a bx + cy. Proof: a b => m s.t. ma = b a c => n s.t. na = c bx + cy = a(mx + ny), therefore a bx +cy Divisibility (cont.) (Division algorithm) Given integers a,b such that a>0, a<b then there exist two unique integers q and r, 0 r < a s.t. b = aq + r. Proof: Uniqueness of q and r: assume q and r s.t b = aq + r, 0 r < a, q integer then aq + r=aq + r a(qq )=r r qq = (r r)/a as 0 r,r <a a < (r r) < a  < (r r)/a < So  < qq <, but qq is integer, therefore q = q and r = r 2
3 Prime and Composite Numbers Definition An integer n > is called a prime number if its positive divisors are and n. Definition Any integer number n > that is not prime, is called a composite number. Example Prime numbers: 2, 3, 5, 7,, 3,7 Composite numbers: 4, 6, 25, 900, 7778, Decomposition in Product of Primes (Fundamental of Arithmetic) Any integer number n > can be written as a product of prime numbers (>), and the product is unique if the numbers are written in increasing order. e e 2 2 n = p p... p ek k Example: 84 =
4 Greatest Common Divisor (GCD) Definition Given integers a > 0 and b > 0, we define gcd(a, b) = c, the greatest common divisor (GCD), as the greatest number that divides both a and b. Example gcd(256, 00)=4 Definition Two integers a > 0 and b > 0 are relatively prime if gcd(a, b) =. Example 25 and 28 are relatively prime. Given where p i are prime numbers then GCD using Prime Decomposition e f e 2 2 f2 2 n = p p... p m = p p... p ek k k f k and then gcd(n,m) = p min(e, f ) p 2 min(e 2, f 2 )...p k min(e k, f k ) Example: 84= = gcd(84,90)=
5 GCD as a Linear Combination Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers. Proof: Let t be the smallest integer, t = ax + by d a and d b d ax + by, so d t. We now show t d. First t a; otherwise, a = tu + r, 0 < r < t; r = a  ut = a  u(ax+by) = a(ux) + b(uy), so we found another linear combination and r < t. Contradiction. Similarly t b, so t is a common divisor of a and b, thus t gcd (a, b) = d. So t = d. Example gcd(00, 36) = 4 = = GCD and Multiplication Given integers a, b, m >. If gcd(a, m) = gcd(b, m) =, then gcd(ab, m) = Proof idea: ax + ym = = bz + tm Find u and v such that (ab)u + mv = 5
6 GCD and Division If g = gcd(a, b), where a > b, then gcd (a/g, b/g) = (a/g and b/g are relatively prime). Proof: Assume gcd(a/g, b/g) = d, then a/g = md and b/g = nd. a = gmd and b = gnd, therefore gd a and gd b Therefore gdg, d, so d =. Example gcd(00, 36) = 4 gcd (00/4, 36/4) = gcd(25, 9) = GCD and Division Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r). Proof: Let gcd(b, a) = d and gcd(a, r) = e, this means d b and d a, so d b  aq, so d r Since gcd(a, r) = e, we obtain d e. e a and e r, so e aq + r, so e b, Since gcd(b, a) = d, we obtain e d. Therefore d = e 6
7 Finding GCD Using the : Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r). Euclidian Algorithm Find gcd (b, a) while a 0 do return a r b mod a b a a r Euclidian Algorithm Example Find gcd(43, 0) 43 = = = gcd (43, 0) = 7
8 Towards Extended Euclidian Algorithm : Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers. How to find such x and y? If a and b are relative prime, then there exist x and y such that ax + by =. In other words, ax mod b =. Euclidian Algorithm Example Find gcd(43, ) 43 = + 32 = = = gcd (43, ) = 32 = 43 5 = 3 32 = = = = =
9 Extended Euclidian Algorithm x=; y=0; d=a; r=0; s=; t=b; while (t>0) { } q = d/t u=xqr; v=yqs; w=dqt x=r; y=s; d=t r=u; s=v; t=w return (d, x, y) Invariants: ax + by = d ar + bs = t Equivalence Relation Definition A relation is defined as any subset of a cartesian product. We denote a relation (a,b) R as arb, a A and b B. Definition A relation is an equivalence relation on a set S, if R is Reflexive: ara for all a R Symmetric: for all a, b R, arb bra. Transitive: for all a,b,c R, arb and brc arc Example = is an equivalence relation on N 9
10 Definition: Modulo Operation a modn = r q,s.t. a = q n+ r Example: 7 mod 3 = 7 mod 3 = 2 Definition (Congruence): where 0 r n a b mod n a mod n = b mod n Congruence Relation Congruence mod n is an equivalence relation: Reflexive: a a (mod n) Symmetric: a b(mod n) iff b a mod n. Transitive: a b(mod n) and b c(mod n) a c(mod n) 0
11 Congruence Relation Properties ) If a b (mod n) and c d (mod n), then: a ± c b ± d (mod n) and ac bd (mod n) 2) If a b (mod n) and d n then: a b (mod d) Reduced Set of Residues Definition: A reduced set of residues (RSR) modulo m is a set of integers R each relatively prime to m, so that every integer relatively prime to m is congruent to exactly one integer in R.
12 The group (Z n *, ) Z n * consists of all integers in [..n] that are relative prime to n Z n * = { a a n and gcd(a,n)= } is a reduced set of residues modulo n (Z n *, ) is a group gcd(a,n)= and gcd(b,n)= gcd(ab, n)= given a Z n *, how to compute a ? Linear Equation Modulo If gcd(a, n) =, the equation has a unique solution, 0< x < n ax mod n Proof Idea: if ax (mod n) and ax 2 (mod n), then a(x x 2 ) 0 (mod n), then n a(x x 2 ), then n (x x 2 ), then x x 2 =0 2
13 Linear Equation Modulo (cont.) If gcd(a, n) =, the equation has a solution. ax b mod n Proof Idea: x = a  b mod n Chinese Reminder (CRT) Let n, n 2,,,, n k be integers s.t. gcd(n i, n j ) =, i j. x a x... x There exists a unique solution modulo n = n n 2 n k a 2 mod mod n n 2 a k mod n k 3
14 Proof of CMT Consider the function χ: Z n Z n Z n2 Z nk χ(x) = (x mod n,, x mod n k ) We need to prove that χ is a bijection. For i k, define m i = n / n i, then gcd(m i,n i )= For i k, define y i = m  i mod n i Define function ρ(a,a2,,ak) = Σ a i m i y i mod n a i m i y i a i (mod n i ) a i m i y i 0 (mod n j ) where i j Proof of CMT Example of the mappings: n =3, n 2 =5, n=5 χ: ρ: m =5, y =2, m y =0, m 2 y 2 =6, (,) (,) (2,2) (,2) (,4) (,3) (,2) (,4) (2,3) (2,) 20+6 (2,) (2,2) (,3) (2,3) (2,4) (2,4)
15 Example of CMT: n =7, n 2 =, n 3 =3, n=00 m =43, m 2 =9, m 3 =77 y =43  mod 7 = 3  mod 7 = 5 y 2 =9  mod = 3  mod = 4 x 5 (mod 7) x 3 (mod ) x 0 (mod 3) y 3 =77  mod 3 = 2  mod 3 = 2 x=( ) mod 00 = 3907 mod 00 = 894 The Euler Phi Function Definition Given an integer n, Φ(n) = Z n * is the number of all numbers a such that 0 < a < n and a is relatively prime to n (i.e., gcd(a, n)=). : If gcd(m,n) =, Φ(mn) = Φ(m) Φ(n) 5
16 The Euler Phi Function : Formula for Φ(n) Let p be prime, e, m, n be positive integers ) Φ(p) = p 2) Φ(p e ) = p e p e e e2 ek 3) If n = p p... p then 2 Φ( n) = n( k )( p )...( p p 2 k ) Fermat s Little Fermat s Little If p is a prime number and a is a natural number that is not a multiple of p, then a p (mod p) Proof idea: gcd(a, p) =, then the set { i*a mod p} 0< i < p is a permutation of the set {,, p}.(otherwise we have 0<n<m<p s.t. ma mod p = na mod p p (ma  na) p (mn), where 0<mn < p ) a * 2a * *(p)a = (p)! a p (p)! (mod p) Since gcd((p)!, p) =, we obtain a p (mod p) 6
17 Consequence of Fermat s  p is a prime number and  a, e and f are positive numbers  e f mod p and  p does not divide a, then a e a f (mod p) Proof idea: a e = a q(p) + f = a f (a (p) ) q by applying Fermat s theorem we obtain a e a f (mod p) Euler s Euler s Given integer n >, such that gcd(a, n) = then a Φ(n) (mod n) Corollary Given integer n >, such that gcd(a, n) = then a Φ(n) mod n is a multiplicative inverse of a mod n. Corollary Given integer n >, x, y, and a positive integers with gcd(a, n) =. If x y (mod Φ(n)), then a x a y (mod n). 7
18 Prime number distribution and testing RSA Efficiency of modular arithmetic Next 8
Public Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
More informationb) Find smallest a > 0 such that 2 a 1 (mod 341). Solution: a) Use succesive squarings. We have 85 =
Problem 1. Prove that a b (mod c) if and only if a and b give the same remainders upon division by c. Solution: Let r a, r b be the remainders of a, b upon division by c respectively. Thus a r a (mod c)
More informationCryptography and Network Security Number Theory
Cryptography and Network Security Number Theory XiangYang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationApplications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationPractice Problems for First Test
Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.
More informationSolutions to Homework Set 3 (Solutions to Homework Problems from Chapter 2)
Solutions to Homework Set 3 (Solutions to Homework Problems from Chapter 2) Problems from 21 211 Prove that a b (mod n) if and only if a and b leave the same remainder when divided by n Proof Suppose a
More informationChapter 6. Number Theory. 6.1 The Division Algorithm
Chapter 6 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,
More informationMTH 382 Number Theory Spring 2003 Practice Problems for the Final
MTH 382 Number Theory Spring 2003 Practice Problems for the Final (1) Find the quotient and remainder in the Division Algorithm, (a) with divisor 16 and dividend 95, (b) with divisor 16 and dividend 95,
More information3. QUADRATIC CONGRUENCES
3. QUADRATIC CONGRUENCES 3.1. Quadratics Over a Finite Field We re all familiar with the quadratic equation in the context of real or complex numbers. The formula for the solutions to ax + bx + c = 0 (where
More informationCHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
More informationCongruences. Robert Friedman
Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition
More informationTheory of Numbers. Divisibility Theory in the Integers, The Theory of Congruences, NumberTheoretic Functions, Primitive Roots, Quadratic Residues
Theory of Numbers Divisibility Theory in the Integers, The Theory of Congruences, NumberTheoretic Functions, Primitive Roots, Quadratic Residues Yotsanan Meemark Informal style based on the course 2301331
More informationABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
More informationReview for Final Exam
Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters
More information8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
More informationAlgebraic Systems, Fall 2013, September 1, 2013 Edition. Todd Cochrane
Algebraic Systems, Fall 2013, September 1, 2013 Edition Todd Cochrane Contents Notation 5 Chapter 0. Axioms for the set of Integers Z. 7 Chapter 1. Algebraic Properties of the Integers 9 1.1. Background
More informationHomework 5 Solutions
Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which
More informationNUMBER THEORY AMIN WITNO
NUMBER THEORY AMIN WITNO ii Number Theory Amin Witno Department of Basic Sciences Philadelphia University JORDAN 19392 Originally written for Math 313 students at Philadelphia University in Jordan, this
More informationToday s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
More informationDiscrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
More informationOn the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
More informationFurther linear algebra. Chapter I. Integers.
Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides
More informationNumber Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures
Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it
More informationNumber Theory 2. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007 April 8, 2007
Number Theory Paul Yiu Department of Mathematics Florida Atlantic University Spring 007 April 8, 007 Contents 1 Preliminaries 101 1.1 Infinitude of prime numbers............... 101 1. Euclidean algorithm
More informationComputer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
More informationHomework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
More informationCourse notes on Number Theory
Course notes on Number Theory In Number Theory, we make the decision to work entirely with whole numbers. There are many reasons for this besides just mathematical interest, not the least of which is that
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationRSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
More information8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
More informationMathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR
Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGrawHill The McGrawHill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,
More informationSUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationNumber Theory: A Mathemythical Approach. Student Resources. Printed Version
Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................
More informationMathematics of Cryptography
Number Theory Modular Arithmetic: Two numbers equivalent mod n if their difference is multiple of n example: 7 and 10 are equivalent mod 3 but not mod 4 7 mod 3 10 mod 3 = 1; 7 mod 4 = 3, 10 mod 4 = 2.
More information3. Applications of Number Theory
3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a
More informationSolutions to Practice Problems
Solutions to Practice Problems March 205. Given n = pq and φ(n = (p (q, we find p and q as the roots of the quadratic equation (x p(x q = x 2 (n φ(n + x + n = 0. The roots are p, q = 2[ n φ(n+ ± (n φ(n+2
More informationProblem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00
18.781 Problem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list
More informationMathematical induction & Recursion
CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,
More informationBreaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
More information3. Equivalence Relations. Discussion
3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,
More informationIntermediate Math Circles March 7, 2012 Linear Diophantine Equations II
Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine
More informationElementary Number Theory
Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003Dec of notes by W. Edwin Clark, University of South Florida, 2002Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,
More informationPrime Numbers. Chapter Primes and Composites
Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are
More informationMathematics of Cryptography Part I
CHAPTER 2 Mathematics of Cryptography Part I (Solution to OddNumbered Problems) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinity to positive infinity.
More informationCryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
More informationEULER S THEOREM. 1. Introduction Fermat s little theorem is an important property of integers to a prime modulus. a p 1 1 mod p.
EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If
More informationEuler s Totient Theorem
Euler s Totient Theorem Misha Lavrov ARML Practice 11/11/2012 Example We want to be able to solve the following type of problem: Problem (VTRMC 2012/4.).. 3 What are the last two digits of 3 33. }{{} 2012
More informationGREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
More informationModule 5: Basic Number Theory
Module 5: Basic Number Theory Theme 1: Division Given two integers, say a and b, the quotient b=a may or may not be an integer (e.g., 16=4 =4but 12=5 = 2:4). Number theory concerns the former case, and
More informationDiscrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University
Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called
More informationFractions and Decimals
Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first
More informationLectures on Number Theory. LarsÅke Lindahl
Lectures on Number Theory LarsÅke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder
More informationMA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES
MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions
More information1 Die hard, once and for all
ENGG 2440A: Discrete Mathematics for Engineers Lecture 4 The Chinese University of Hong Kong, Fall 2014 6 and 7 October 2014 Number theory is the branch of mathematics that studies properties of the integers.
More informationQuotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
More information12 Greatest Common Divisors. The Euclidean Algorithm
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 12 Greatest Common Divisors. The Euclidean Algorithm As mentioned at the end of the previous section, we would like to
More informationDegree project CUBIC CONGRUENCE EQUATIONS
Degree project CUBIC CONGRUENCE EQUATIONS Author: Qadeer Ahmad Supervisor: PerAnders Svensson Date: 20120509 Subject: Mathematics and Modeling Level: Master Course code:5ma11e Abstract Let N m(f(x))
More informationp 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)
.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other
More informationNumber Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
More informationMATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
More informationV55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical
More information4. Number Theory (Part 2)
4. Number Theory (Part 2) Terence Sim Mathematics is the queen of the sciences and number theory is the queen of mathematics. Reading Sections 4.8, 5.2 5.4 of Epp. Carl Friedrich Gauss, 1777 1855 4.3.
More informationEquivalence Relations
Equivalence Relations Definition An equivalence relation on a set S, is a relation on S which is reflexive, symmetric and transitive. Examples: Let S = Z and define R = {(x,y) x and y have the same parity}
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1,...,N
More informationIntegers and division
CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.
More informationStanford University Educational Program for Gifted Youth (EPGY) Number Theory. Dana Paquin, Ph.D.
Stanford University Educational Program for Gifted Youth (EPGY) Dana Paquin, Ph.D. paquin@math.stanford.edu Summer 2010 Note: These lecture notes are adapted from the following sources: 1. Ivan Niven,
More informationAlgebra for Digital Communication
EPFL  Section de Mathématiques Algebra for Digital Communication Fall semester 2008 Solutions for exercise sheet 1 Exercise 1. i) We will do a proof by contradiction. Suppose 2 a 2 but 2 a. We will obtain
More information26 Ideals and Quotient Rings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed
More informationHandout NUMBER THEORY
Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationTheorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.
Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,
More information4 Unique Factorization and Applications
Number Theory (part 4): Unique Factorization and Applications (by Evan Dummit, 2014, v. 1.00) Contents 4 Unique Factorization and Applications 1 4.1 Integral Domains...............................................
More informationPYTHAGOREAN TRIPLES PETE L. CLARK
PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =
More informationCHAPTER 5: MODULAR ARITHMETIC
CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called
More informationCryptography ALICE BOB DECRYPT ENCRYPT OSCAR
Cryptography What is cryptography? Formal Definition: The art or science concerning the principles, means, and methods for rendering plain information unintelligible, and for restoring encrypted information
More informationChapter Two. Number Theory
Chapter Two Number Theory 2.1 INTRODUCTION Number theory is that area of mathematics dealing with the properties of the integers under the ordinary operations of addition, subtraction, multiplication and
More informationChapter 9. Computational Number Theory. 9.1 The basic groups Integers mod N Groups
Chapter 9 Computational Number Theory 9.1 The basic groups We let Z = {..., 2, 1,0,1,2,...} denote the set of integers. We let Z + = {1,2,...} denote the set of positive integers and N = {0,1,2,...} the
More informationThe cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
More informationORDERS OF ELEMENTS IN A GROUP
ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since
More informationMath 453: Elementary Number Theory Definitions and Theorems
Math 453: Elementary Number Theory Definitions and Theorems (Class Notes, Spring 2011 A.J. Hildebrand) Version 542011 Contents About these notes 3 1 Divisibility and Factorization 4 1.1 Divisibility.......................................
More informationPublic Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. PrivateKey Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
More informationGCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!
GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are
More informationMathematics of Cryptography
CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter
More information10 k + pm pm. 10 n p q = 2n 5 n p 2 a 5 b q = p
Week 7 Summary Lecture 13 Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is not divisible
More informationFactoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
More informationMath 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
More informationAbstract Algebra Theory and Applications. Thomas W. Judson Stephen F. Austin State University
Abstract Algebra Theory and Applications Thomas W. Judson Stephen F. Austin State University August 16, 2013 ii Copyright 19972013 by Thomas W. Judson. Permission is granted to copy, distribute and/or
More informationPublicKey Cryptography. Oregon State University
PublicKey Cryptography Çetin Kaya Koç Oregon State University 1 Sender M Receiver Adversary Objective: Secure communication over an insecure channel 2 Solution: Secretkey cryptography Exchange the key
More informationIntegers, Division, and Divisibility
Number Theory Notes (v. 4.23 October 31, 2002) 1 Number Theory is the branch of mathematics that deals with integers and their properties, especially properties relating to arithmetic operations like addition,
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationGroups in Cryptography
Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary
More informationCryptography. Helmer Aslaksen Department of Mathematics National University of Singapore
Cryptography Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/sfm/ 1 Basic Concepts There are many situations in life where
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More information2 The Euclidean algorithm
2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In
More informationComputing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
More information