# Integer roots of quadratic and cubic polynomials with integer coefficients

Size: px
Start display at page:

Transcription

1 Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street Bloomsburg, PA U.S.A. Konstantine Zelator P.O. Box 4280 Pittsburgh, PA 15203

3 In Section 7, Theorem 5, parametrically describes a certain family of quadratic polynomials with integer coefficients; and with integral zeros. As for Theorems 1 and 2, they are extremely well known; and both found in Section 2. These two theorems; at least in part, can be found pretty much in every college algebra/pre-calculus book (for example see reference [3]); not to mention more advanced books. Theorem 1 combines two very well-known results into one. It states that every nth degree polynomial with complex number coefficients; has exactly n complex roots, counting multiplicities. And it (Th. 1) also gives the factorization of a polynomial into n linear factors. See reference [4]. Lastly, Theorem 2 is the familiar rational root theorem. We start with two definitions. Definition 1: A proper rational number is a rational number which is not an integer. Definition 2. A monic polynomial (with complex coefficients), is a polynomial whose leading coefficient is equal to SOME PRELIMINARIES FROM ALGEBRA First, we state the very well-known Theorems 1 and 2. Theorem 1 (n roots and linear factorization theorem) ; 1, 0;,,,.,,,,,. In more advanced algebra courses; students learn that a polynomial function (in one variable ) over an algebraically closed field ; and with coefficients from the field ; has exactly zeros in, counting multiplicities. Such is the case, in particular, when, the field of complex numbers. For more details, see reference [4]. For Theorem 2 below, see reference [1] and [3] Theorem 2 (Rational Root Theorem) ; 1, 0;,,,,.,.. l l 2

4 , l 0;., ; l. It follows immediately from Th. 1(b) (with a straightforward expansion/calculation), that if is a quadratic trinomial with complex number coefficients,, ; and roots and. Then ; and consequently and (1) Likewise, if is a cubic polynomial function with complex number coefficients,,, ; and roots,,. Then Theorem 1, part (b) implies that ; and accordingly, 2 In the case of the trinomial ; we also have the familiar quadratic formula that gives us the two roots and : 4 2, THREE LEMMAS FROM NUMBER THEORY Lemma 1 (Euclid s lemma) (see [1]) Suppose that a, b, c, are positive integers, and that a is a divisor of the product bc. Also, assume that the integer a is relatively prime to the integer c. Then, a is a divisor of c. Lemma 2 (nth power lemma) (see [2]) Let n be a positive integer. Then, a positive integer b is the nth power of a positive rational number; if, and only if, b is the nth power of a positive integer. In particular, b is a rational square; if, and only if it is an integer square. Lemma 3 Suppose that the sum and the product of two rational numbers; are both integers. Then, both of these two rational numbers are integers. 3

5 Proof: Let, be two such rational numbers. Then, (4) Where, are integers. If 0, then, and we are done. Similarly if 0. Next assume that both and are nonzero. We write and in lowest terms with positive denominators: l, l ; where, are integers; and l,l are positive integers such that,l 1,l ; and so,l 1,l as well (5a) Note: we have used the standard notation, ; to denote the greatest common divisor between two integers and. Combining (4) with (5a), we obtain l l l l l l (5b) The first equation in (5b) implies, l l l ; which in turn implies l l l (5c) According to (5c), the positive integer l is divisor of the product l ; and since by (5a), it is relatively prime to ; it follows by Lemma 1, that l is a divisor of the positive integer l. A similar argument (using once again the first equation in (5b)); shows that l is a divisor l as well. Since l and l are positive integers which are divisors of each other; they must be equal: l =l. Hence by the second equation in (5b) we get, l (5d) Since l =l ; (5a) implies (,l 1,l ; which in turn gives, l 1 (an exercise in elementary number theory). This last condition, in conjunction with (5d), implies that l 1; and so l 1l. Hence, ; both and are integers. 4

6 4. THEOREM 3 AND ITS TWO PROOFS Theorem 3 Let, being a quadratic trinomial with integer coefficients a, b, c. Then, both roots or zeros of are integers; if, and only if, (i) The integer 4 is an integer or perfect square. And (ii) The leading coefficient a is a divisor of both b and c. First proof: First assume that both roots r and r are integers. From (1) we have, r r and r r ; Which clearly implies that both and are integers; which in turn implies that a is a divisor of both coefficients b and c. By completing the square we have, Since is a root; we have 0. And so, 0; or equivalently (multiply both sides by 4a) 2 4; which proves that 4 is a perfect or integer square, since is an integer (and thus, so is 2. Now the converse. Assume that 4 ; where k is a nonnegative integer. And that a is a divisor of both b and c. From the quadratic formula (3), we have ; which shows that both and are both rational numbers. Moreover, and are both integers (since a is a divisor of b and c). Thus, both the sum ; and the product are integers. Hence by Lemma 3 it follows that both are integers. Second Proof: First, assume that both are integers. As in the first proof; it follows from and ; that a is a divisor of both b and c. Furthermore from the quadratic formula (3); we have that. Which implies that since, b, a are all rationals; the number 4; must also be rational. 5

7 That is, the integer 4 must be a rational square. Hence; by Lemma 2; the integer 4 must be a perfect or integer square. Let us prove the converse. Suppose that a is a divisor of both b and c. And also, assume that 4 is a perfect square. We have,,, 4 ;,, 0 From (6) we get, Equation (7) shows that is a divisor of ; and therefore a must be a divisor of m (an exercise in elementary number theory). We put,, 8 Combining (8) with the quadratic formula (3); we see that, If 0 we obtain, 9 While if 0, we have, 9 Also, combining (7) with (8) yields, 4 10 Equation (10) clearly shows that the integers u and t have the same parity: they are both even, or both odd. Hence (9i) and (9ii) imply that are both integers. Observation 1 5. FOUR OBSERVATIONS If an nth degree polynomial p(x) has integer leading coefficient a n ; and if all the roots r 1,r 2,,r n ; are also integers. Then, it follows from Theorem 1, part (b); that all the other coefficients,,, must also be integers (just expand the right-hand side and collect terms); and that the leading coefficient a n must be a divisor of each one of the other coefficients 6

8 ,,,. And so the corresponding monic polynomial, ; has integer coefficients, and of course, the exact same integer roots as p(x). Observation 2 If p(x) is an nth degree monic polynomial with integral coefficients, that is 1 and,,,. Then, a consequence of Theorem 2 is that if p(x) has at least one rational root. Then, each of its rational roots or zeros, much be an integer. Equivalently, p(x) cannot have a rational root which is a proper rational number. Further equivalently, each real root (if any) of p(x); must be either an integer or otherwise an irrational number. Observation 3 Note that Observation 2 does imply Lemma 3. Inded, suppose that and are rational numbers such that ; were, are inegers. Obviously and are the two rational roots of the monic quadratic trinomial ; ; Since t(x) is a monic polynomial with integer coefficients; each of its rational roots must be integral, by Observation 2. Hence, both must be integers. Observation 4 An immediate consequence of Theorem 3 is that the monic trinomial (with b, c integers) has two integers roots; if and only if 4 is an integral square. Similarly, the trinomial has two integer roots; if and only if the integer 4 is the square of an integer. 6. FIVE SPECIAL CASES OF CUBICS In this section, we consider five special cases of cubic or degree 3 monic polynomials with integer coefficients; ;,, And with all three roots of c(x) being integers Special Case 1: The number 0 is a root of c(x); so that d=0 7

9 Let be the other two integer roots; and 0. By (2) we have, Clearly are the two integer roots of the monic trinomial ; By Observation 4, it follows that this will happen precisely when 4 is an integer square. Summary Let be a monic cubic polynomial with integer coefficients. Then c(x) has three integer roots with zero being one of them; precisely when the following conditions are satisfied; 0 and 4 ; k a nonnegative integer Then, the three integer roots of c(x) are:, 2 Special Case 2: The number 1 is a root of c(x), 2 0 Clearly, this occurs if, and only if, the condition 1 is satisfied. Let,, and 1, be the three integer roots of c(x). From (2) we get 1 Note that the second equation results by adding the first and third equations memberwise; due to the condition 1. The numbers and are the two roots of the quadratic trinomial 1. Once again, Observation 4 tells us that is quadratic trinomial will have two integer roots if, and only if, 1 4 is an integer square Summary Let be a monic cubic polynomial with integer coefficients. Then c(x) has three integer roots with 1 being among them; precisely if the following conditions are satisfied: 8

10 1 and 1 4, k a nonnegative integer. Then, the three roots are:,, 1 Special Case 3: The number -1 is a root of c(x) This case is analogous to Special Case 2. We invite the reader to fill in the details. Summary Let be a monic cubic polynomial with integer coefficients. Then c(x) has three integer roots with -1 being among them; precisely when ; k a nonnegative integer. Then, the three roots are: 1 2, 1, 2 1 Special Case 4: c(x) has a triple (i.e. multiplicity 3) integer root Let r be that root. We have, (Identically equal as polynomial functions); ; 3 3 Which 3, 3, ;,, Summary Let be a monic polynomial with integer coefficients. Then c(x) has a triple integer root r if, and only if, The integer root is 3 27 Special Case 5: c(x) has a double integer root and another integer root Let M be the integer root of multiplicity 2; and N, distinct from M; the integer root of multiplicity 1. First, by (2) we obtain

11 Now, ; as we know from calculus, its derivative function is 3² 2. Also, from theorem 1, part (b); we have ². Putting these three together we have, Also from the product rule in calculus we have, 2 ; 0; The coefficients of c (x) are the integers 3,2b, and c. Since M is an integer; it then follows from (1), that the other root of the trinomial c (x); must be a rational number. (See note below) Hence by (3) it follows that the real number, ; must be a rational number; which in turn implies that the integer 4 3c is the square of rational number. Hence, by Lemma 2; the integer 4 3c must be an integer square. We have, 4 3c ; K a nonnegative integer. Clearly k must be even; K 2; for some nonnegative integer k. Thus, 0, 2 3c 12 Note: Above, one can argue without using Lemma 2. Simply by saying that since M is a root. Then by (3), ; In either case, ; Let us continue. Equation (12) clearly shows that either both integers b and k are divisible by 3; or neither of them is. So, we consider two cases. The case in which neither b or k is a multiple of 3; and the case with both b and k being multiples of 3. Case 1: The two roots of the quadratic trinomial 3 2. One of these two rational numbers is the integer M. Note that k must be even; otherwise (if k were odd) both of these numbers would be proper rationals. Furthermore, if 3 (i.e. both b and k congruent to 1(mod3); or both congruent to 2(mod3)); then, while the other root is a proper rational. On the other hand, if 3 (i.e. one of b, k; is 10

12 congruent to 1(mod3), the other congruent to 2(mod3), then ; while is a proper rational. The value of N is determined by 10; and the value of d is determined by 10. A routine calculation shows that the equation 10 is also satisfied (by using (12) as well). Note that k actually cannot equal zero; for this would imply, a triple root of the cubic polynomial ;contrary to the assumption that M is a double root. Case 2: 03 Since both b and k are divisible by 3; equation (12) implies that c must also be divisible by 3 as well. We put, And thus by (12) and (13) we get, 14 The quadratic trinomial takes the form, 3 2 3, 3, 3; 13,, Clearly then, M is one of the two integer roots of the monic quadratic trinomial 2. These two integers are and. Again, as in Case 1; the value of N is determined by 10; and the value of d by 10. And, one can easily check that 10 is also met. And t cannot be zero, since M is a double root; not a triple root. We summarize the results of Cases 1 and 2 in Theorem 4 below. Theorem 4 Consider the monic cubic polynomial with integer coefficients,. Then, has an integer root M of multiplicity 2, and an integer root N of multiplicity 1. If and only if, the coefficients b, c, d; satisfy precisely one of the group conditions: Group 1: 03; 03, an even positive integer, 3, 13; since 03, and The roots are and. 11 Group 2: 03; 03, an even positive integer, 3,, and. The roots are..

13 Group 3: 3,3, ; with B, C being integers; and t a positive integer. Also with 2. The roots are 2. Group 4: 3,3, ;, being a integers; and t a positive integer. Also with 2. The roots are and A FAMILY OF QUADRATIC TRINOMIALS WITH INTEGER COEFFICIENTS AND INTEGRAL ROOTS In this last section we endeavor to describe a certain type of quadratic trinomials. These are trinomials with two integer roots and with the integer coefficients a, b, c; satisfying 1 ; where p is a prime number. Analysis of the above type of quadratic trinomials By Theorem 3, since has two integer roots ; we must have (precise conditions), 4 ; 15 Since, a prime; and since b is divisible by a; it easily follows that =1 or p. But 1; thus we must have ; which means that. Also since c is a multiple of a; we have 15 We have, then yield, since p; 14, Which implies that p must be a divisor of k;, a positive integer. And we obtain, from the last equation, 1 4 ; 14. Definition 3: A quadratic trinomial with integer coefficients is said to be a p-type 1; where p is a prime; if it has two integer roots and the coefficients satisfy the conditions 1. 12

14 We can now state Theorem 5. Theorem 5 For a given prime p, there are exactly four groups p-type 1 quadratic trinomials with integer coefficients. Group 1: Coefficients are,, ; where T is an odd positive integer. The two integer roots are,. Group 2: Coefficients are,, ; where T is an odd positive integer. The two integer roots are,. Group 3: Coefficients are,, ; where T is an odd positive integer. The two integer roots are,. Group 4: Coefficients are,, ; where T is an odd positive integer. The two integer roots are,. Note: We see that each of the above four groups; is a one-parameter family. The parameter being the odd positive integer T. 13

15 REFERENCES [1] Kenneth H. Rosen, Elementary Number Theory and its applications, fifth edition, PEARSON, Addison Wesley ISBN: (2005). For Lemma 1 (Lemma 3.4 in the above book), see page 109 For Theorem 2 (Rational Root Theorem), see page 115 (Th. 3.18) [2] W. Sierpinski, Elementary Theory of Numbers, original edition, Warsaw, Poland, pp. 488 (no ISBN in the original edition 1964). More recent edition, Elsevier Publishing in After that, UMI Books on Demand, ProQuest company. ISBN: For Lemma 2, see Th. 7 on page 16. [3]Mark Dugopolski, College Algebra, 5 th edition, Addison-Wesley. ISBN: ISBN: (2011) For the Fund. Th. Of Algebra and the Rational Zero Theorem, see page 275. For the n-root Theorem, see page 283. [4] Thomas W. Hungerford, Abstract Algebra, An Introduction, second edition, SAUNDERS COLLEGE PUBLISHING, Harcourt Brace College Publishers. ISBN: (1997) For Theorem 1, see page 115 Also, see page

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### 5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### Factoring Cubic Polynomials

Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than

### The last three chapters introduced three major proof techniques: direct,

CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### GREATEST COMMON DIVISOR

DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Lecture Notes on Polynomials

Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

### Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### 4.3 Lagrange Approximation

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### 0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### SOLVING POLYNOMIAL EQUATIONS BY RADICALS

SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### How To Prove The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### Discrete Mathematics: Homework 7 solution. Due: 2011.6.03

EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### DigitalCommons@University of Nebraska - Lincoln

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

### Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

### Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

### RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### Finding Solutions of Polynomial Equations

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### 3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Factoring Polynomials

Factoring Polynomials Any Any Any natural number that that that greater greater than than than 1 1can can 1 be can be be factored into into into a a a product of of of prime prime numbers. For For For