# Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Save this PDF as:

Size: px
Start display at page:

Download "Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov"

## Transcription

1 Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

2 Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES HISTORY A prime number is a natural number that can only be divisible by two distinct natural numbers: 1 and itself. The history of prime numbers begins with the Ancient Greeks. A record of Euclid s Elements showed important theorems about primes and the fundamental theorem of arithmetic. Then in the 17 th century another mathematician by the name Pierre de Fermat made a break thru in studying prime numbers with Fermat s Little Theorem (however at the time there was no proof of this theorem), and Fermat Numbers. After Fermat there comes many mathematicians that will further study the ideas of prime numbers the mystery of sequences containing only prime numbers. There are many different types of prime number sequences. However the reason why that this topic still has yet to be fully understood is because even till this day there are only a finite number of primes known. A mathematician by the name Euclid came up with a theorem stating that there are infinitely many primes. Proof (Euclid): Consider any finite set of primes. Multiply all of them together and add 1 (see Euclid number). The resulting number is not divisible by any of the primes in the finite set we considered, because dividing by any of these would give a remainder of 1. Because all non-prime numbers can be decomposed into a product of underlying primes, then either this resultant number is prime itself, or there is a prime number or prime numbers which the resultant number could be decomposed into but are not in the original finite set of primes. Either way, there is at least one more prime that was not in the finite set we started with. This argument applies no matter what finite set we began with. So there are more primes than any given finite number. (Euclid, Elements: Book IX, Proposition 20 Because there are infinitely many prime it takes a lot of time and expensive computers to come up with consecutively bigger prime numbers. Thus it is very hard to test a new

3 Lee 3 Prime number sequence without the proper intelligence. A fun fact: currently the largest prime number known is 2 43,112,609-1, the number is a Mersenne prime (a prime in the 2^n-1 format). This number has nearly 13 million digits! THEOREMS AND STANDARD SEQUENCES Let us now further investigate the theorems behind prime sequences that are known today. Fermat Numbers: Fermat came up with the idea that all numbers with the form Fn=2^(2^n)+1 will always be a prime number. However this is only true till n=4, after that Euler later discovers that for n 5 the numbers are all composite. The only known Fermat Primes are: F0= 3 F1= 5 F2= 17 F3= 257 F4= Thus a failed attempt in trying to create an infinite sequence containing only primes. Mersenne Prime: A monk named Mersenne studied the ideas of Fermat and tried coming up with another sequence with only primes. He came up with the formula (2^n)-1. However there are certain conditions. 2 ab 1= (2 a 1)(1+2 a + 2 a2a +2 3a + +2 (b-1)a ) This identity shows that the number can only be prime if n is also a prime. Till this day Mersenne Primes are still being studied. As of 2009 there are only 46 known Mersenne Primes, one of them being the largest known prime number: (2 43,112,609 1). However the idea that Mersenne Primes will always be a prime number as long as n is a prime number is not true. For example for n=11, the number is 2047= 23x89.

4 Lee 4 Twin Primes: Twin primes are prime numbers that have a difference on only 2, and because they come in pairs they are called twin primes. An example of twin primes are (3,5), (11,13) etc. Just like Mersenne primes, it is still unknown if there are infinitely many twin primes. However it has been proven that every twin pairs except (3,5) comes in the form (6n-1, 6n+1) and n being any natural number, with the exception of n=1., n must end in 0,2,3,5,7, or 8. It is an easy proof to prove this. It has also been proven that a twin pair is a twin prime only if 4((m-1)!+1) -m (mod m (m+2)). (However this proof is much harder to prove.) The twin primes started a whole new chapter in prime sequences; the generalization is now prime numbers that have a difference of n, n being any natural number. For example sexy primes are prime numbers that have a difference of 6 between them. Many more prime sequences can be found at: It is clear that it is very hard to test if a sequence really contains only primes, however there are actual methods of verifying primality in a number or sequence. There are 6 main methods of testing if a number is really prime: 1. AKS primality test 2. Fermat primality test 3. Lucas primality test 4. Soloway-Stassen prilamity test 5. Miller-Rabin primality test 6. Elliptic cure primality proving. Each of these tests play a big role on finding new prime numbers and eventually finding new prime sequences. So after finding a prime number, what is their use? It may be surprising but prime numbers are a huge influence in the world of cryptography. Many public-key cryptography algorithms such as RSA or the Diffie-Hellman Key exchange. Prime numbers are also used in many theorems in the mathematical world. An example is the fundamental theorem of arithmetic, which stats that any positive integer greater than 1 can be written in a product of one or more primes. The proof of this theorem consists of

5 Lee 5 two steps, the first to show that the every number is a product of zero or more primes; the second to show that any two representations may be joined into a single representation. Another surprising way prime numbers are used is in biology, specifically in DNA testing. Chains of DNA that only have genes that adds up to a prime number intrigue scientists. These chains seem to have a important impact on the human body, unfortunately many of them create a negative symptom on the body. INVESTIGATION: Since there are infinitely many primes and so much uncovered areas of prime sequences, anyone can further investigate this topic, and I have decided to do just that. Lets take a set S, this set contains only natural numbers that are prime and have 11 as its last 2 digits; S= {211, 311, 811, 911, 1511 }. By studying a sequence like this, perhaps it can help us make a generalization of sequences like {277, 677, 977 }; sequences that contain only prime numbers and have a same two prime numbers as its last 2 digits. So to begin the investigation I studied the beginning digits of these numbers, since the last two digits will always be 11. (To the following numbers just add 11 to the end and you will get the numbers in set S). By doing this I noticed a pattern. 2 2 (mod 3) 3 0 (mod 3) 8 2 (mod 3) 9 0 (mod 3) 15 0 (mod 3) 18 0 (mod 3) 20 2 (mod 3) 21 0 (mod 3) 23 2 (mod 3) 24 0 (mod 3) 27 0 (mod 3) 30 0 (mod 3)

6 Lee (mod 3) 39 0 (mod 3) 41 2 (mod 3) 42 0 (mod 3) 50 2 (mod 3) 57 0 (mod 3) 60 0(mod 3) 63 0 (mod 3) 69 0 (mod 3) 72 0 (mod 3) 74 2 (mod 3) 81 0 (mod 3) All the numbers in set S are either 0 or 2 mod 3, and the form a certain pattern with the 0 s and the 2 s. There seems to be a pattern of (2,0,2,0) (0,0,0) (2,0,2,0) etc Perhaps a pattern like this can be furthered studied to help us create a generalization of similar sequences such as this one.

7 Lee 7 SOURCES

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

### Summer High School 2009 Aaron Bertram. 1. Prime Numbers. Let s start with some notation:

Summer High School 2009 Aaron Bertram 1. Prime Numbers. Let s start with some notation: N = {1, 2, 3, 4, 5,...} is the (infinite) set of natural numbers. Z = {..., 3, 2, 1, 0, 1, 2, 3,...} is the set of

### EULER S THEOREM. 1. Introduction Fermat s little theorem is an important property of integers to a prime modulus. a p 1 1 mod p.

EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

### Students in their first advanced mathematics classes are often surprised

CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are

### Odd Perfect Numbers. way back to the ancient Greek era. A perfect number is both a positive integer that is the sum of

Stephanie Mijat Math 301 Odd Perfect Numbers Perfect numbers have been an interesting topic of study for mathematicians dating all the way back to the ancient Greek era. A perfect number is both a positive

### Prime Numbers The generation of prime numbers is needed for many public key algorithms:

CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 1 7 Number Theory 2 7.1 Prime Numbers Prime Numbers The generation of prime numbers is needed for many public key algorithms: RSA: Need to find p and q to compute

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive

Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Lecture 1: Elementary Number Theory

Lecture 1: Elementary Number Theory The integers are the simplest and most fundamental objects in discrete mathematics. All calculations by computers are based on the arithmetical operations with integers

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1,...,N

### 5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

### Practice Problems for First Test

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.-

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Prime numbers for Cryptography

Prime numbers for Cryptography What this is going to cover Primes, products of primes and factorisation How to win a million dollars Generating small primes quickly How many primes are there and how many

### 15 Prime and Composite Numbers

15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### Congruences. Robert Friedman

Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

### Number Theory Learning Module 2 Prime Numbers and Integer Factorization in Sage 1

Learning Module 2 Prime Numbers and Integer Factorization in Sage 1 1 Objectives. Learn how to test for primality and generate prime numbers and in Sage. Learn how to work with factorizations in Sage.

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Mathematics is the queen of sciences and number theory is the queen of mathematics.

Number Theory Mathematics is the queen of sciences and number theory is the queen of mathematics. But why is it computer science? It turns out to be critical for cryptography! Carl Friedrich Gauss Division

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### Announcements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography

Announcements CS43: Discrete Structures More on Cryptography and Mathematical Induction Işıl Dillig Class canceled next Thursday I am out of town Homework 4 due Oct instead of next Thursday (Oct 18) Işıl

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Integers and division

CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.

### Is this number prime? Berkeley Math Circle Kiran Kedlaya

Is this number prime? Berkeley Math Circle 2002 2003 Kiran Kedlaya Given a positive integer, how do you check whether it is prime (has itself and 1 as its only two positive divisors) or composite (not

### The Teacher s Circle Number Theory, Part 1 Joshua Zucker, August 14, 2006

The Teacher s Circle Number Theory, Part 1 Joshua Zucker, August 14, 2006 joshua.zucker@stanfordalumni.org [A few words about MathCounts and its web site http://mathcounts.org at some point.] Number theory

### Decimal Expansion of Rational Numbers

Decimal Expansion of Rational Numbers Helmer Aslaksen Dept. of Teacher Education & Dept. of Mathematics University of Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Why is 0.999... = 1? We

### Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

### Cryptography: RSA and the discrete logarithm problem

Cryptography: and the discrete logarithm problem R. Hayden Advanced Maths Lectures Department of Computing Imperial College London February 2010 Public key cryptography Assymmetric cryptography two keys:

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### The Laws of Cryptography Cryptographers Favorite Algorithms

2 The Laws of Cryptography Cryptographers Favorite Algorithms 2.1 The Extended Euclidean Algorithm. The previous section introduced the field known as the integers mod p, denoted or. Most of the field

### Solutions to Practice Problems

Solutions to Practice Problems March 205. Given n = pq and φ(n = (p (q, we find p and q as the roots of the quadratic equation (x p(x q = x 2 (n φ(n + x + n = 0. The roots are p, q = 2[ n φ(n+ ± (n φ(n+2

### On Generalized Fermat Numbers 3 2n +1

Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic

### Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

### Section 6-2 Mathematical Induction

6- Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that

### The Mathematics of the RSA Public-Key Cryptosystem

The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Structure and randomness in the prime numbers. Science colloquium January 17, A small selection of results in number theory. Terence Tao (UCLA)

Structure and randomness in the prime numbers A small selection of results in number theory Science colloquium January 17, 2007 Terence Tao (UCLA) 1 Prime numbers A prime number is a natural number larger

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

### Right triangles and elliptic curves

Right triangles and elliptic curves Karl Rubin Ross Reunion July 2007 Karl Rubin (UCI) Right triangles and elliptic curves Ross Reunion, July 2007 1 / 34 Rational right triangles Question Given a positive

### 2 The Euclidean algorithm

2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In

### PRIME NUMBERS & SECRET MESSAGES

PRIME NUMBERS & SECRET MESSAGES I. RSA CODEBREAKER GAME This is a game with two players or teams. The players take turns selecting either prime or composite numbers as outlined on the board below. The

### 9 Modular Exponentiation and Cryptography

9 Modular Exponentiation and Cryptography 9.1 Modular Exponentiation Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system.

### (x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

### Doug Ravenel. October 15, 2008

Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

### Working with whole numbers

1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and

### MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

### Euclid s Algorithm for the Greatest Common Divisor Desh Ranjan Department of Computer Science New Mexico State University

Euclid s Algorithm for the Greatest Common Divisor Desh Ranjan Department of Computer Science New Mexico State University 1 Numbers, Division and Euclid Mathematician (to shepherd): Hey, you have exactly

### Euclid s Algorithm for the Greatest Common Divisor Desh Ranjan Department of Computer Science New Mexico State University

Euclid s Algorithm for the Greatest Common Divisor Desh Ranjan Department of Computer Science New Mexico State University 1 Numbers, Division and Euclid People have been using numbers, and operations on

### Generating Prime Numbers

Generating Prime Numbers Lauren Snyder 1 Historical Background A number p is prime if it is a natural number greater than 1 whose only divisors are 1 and p. The first 25 prime numbers are 2, 3, 5, 7, 11,

### 2 Primality and Compositeness Tests

Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 1635-1642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/

### 4.2 Euclid s Classification of Pythagorean Triples

178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Course notes on Number Theory

Course notes on Number Theory In Number Theory, we make the decision to work entirely with whole numbers. There are many reasons for this besides just mathematical interest, not the least of which is that

### 1 Die hard, once and for all

ENGG 2440A: Discrete Mathematics for Engineers Lecture 4 The Chinese University of Hong Kong, Fall 2014 6 and 7 October 2014 Number theory is the branch of mathematics that studies properties of the integers.

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### Outline. Cryptography. Bret Benesh. Math 331

Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math 331 2 3 The internet is a lawless place, and people have access to all sorts of information. What is keeping people

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

### Polygonal Numbers. By Daniela Betancourt and Timothy Park. Project for MA 341 Introduction to Number Theory

Polygonal Numbers 1 Polygonal Numbers By Daniela Betancourt and Timothy Park Project for MA 341 Introduction to Number Theory Boston University Summer Term 009 Instructor: Kalin Kostadinov Daniela Betancourt

### NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO ii Number Theory Amin Witno Department of Basic Sciences Philadelphia University JORDAN 19392 Originally written for Math 313 students at Philadelphia University in Jordan, this

### Lecture Notes: Cryptography Part 2

Lecture Notes: Cryptography Part 2 Gordan pflegte etwa zu sagen: Die Zahlentheorie ist nützlich, weil man nämlich mit ihr promovieren kann. Gordan used to say something to the effect that Number Theory

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### Euler s Totient Theorem

Euler s Totient Theorem Misha Lavrov ARML Practice 11/11/2012 Example We want to be able to solve the following type of problem: Problem (VTRMC 2012/4.).. 3 What are the last two digits of 3 33. }{{} 2012

### Topics in Number Theory

Chapter 1 Topics in Number Theory We assume familiarity with the number systems. The notion of a number line, which extends from to +, represents the ordering of the real numbers. Among these, the counting

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### This section demonstrates some different techniques of proving some general statements.

Section 4. Number Theory 4.. Introduction This section demonstrates some different techniques of proving some general statements. Examples: Prove that the sum of any two odd numbers is even. Firstly you

### Foundations of Logic and Mathematics

Yves Nievergelt Foundations of Logic and Mathematics Applications to Computer Science and Cryptography Birkhäuser Boston Basel Berlin Contents Preface Outline xiii xv A Theory 1 0 Boolean Algebraic Logic

### Orders Modulo A Prime

Orders Modulo A Prime Evan Chen March 6, 2015 In this article I develop the notion of the order of an element modulo n, and use it to prove the famous n 2 + 1 lemma as well as a generalization to arbitrary

### Asymmetric Cryptography. Mahalingam Ramkumar Department of CSE Mississippi State University

Asymmetric Cryptography Mahalingam Ramkumar Department of CSE Mississippi State University Mathematical Preliminaries CRT Chinese Remainder Theorem Euler Phi Function Fermat's Theorem Euler Fermat's Theorem

### Cryptography and Network Security Chapter 8

Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:

### CS 341 Homework 9 Languages That Are and Are Not Regular

CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w

### ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

### Finding Prime Numbers. (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,..., n) (2, 3,, 5,, 7,, 9,, 11,, 13,, 15,...,?n)

Finding Prime Numbers There are some pretty slow and pretty fast methods for producing prime numbers. (We want a fast one!) The classic method is called the sieve of Eratosthenes. (Yes, another Greek!)

### CRYPTOGRAPHY AND NETWORK SECURITY Principles and Practice

CRYPTOGRAPHY AND NETWORK SECURITY Principles and Practice THIRD EDITION William Stallings Prentice Hall Pearson Education International CONTENTS CHAPTER 1 OVERVIEW 1 1.1 1.2 1.3 1.4 1.5 1.6 PART ONE CHAPTER

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Introduction to Cryptography ECE 597XX/697XX

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 6 Introduction to Public-Key Cryptography Israel Koren ECE597/697 Koren Part.6.1

### TEXAS A&M UNIVERSITY. Prime Factorization. A History and Discussion. Jason R. Prince. April 4, 2011

TEXAS A&M UNIVERSITY Prime Factorization A History and Discussion Jason R. Prince April 4, 2011 Introduction In this paper we will discuss prime factorization, in particular we will look at some of the

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Stanford University Educational Program for Gifted Youth (EPGY) Number Theory. Dana Paquin, Ph.D.

Stanford University Educational Program for Gifted Youth (EPGY) Dana Paquin, Ph.D. paquin@math.stanford.edu Summer 2010 Note: These lecture notes are adapted from the following sources: 1. Ivan Niven,

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility