Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates"

Transcription

1 Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates Chapter 4 Sections 4.1 and 4.3 make use of commercial FEA program to look at this. D Conduction- General Considerations Two-dimensional conduction: There are many real situations where the heat transfer is not one-dimensional and is two or three-dimensional. In these cases we may apply a number of different approaches depending on specifics of the problem. These include analytical, graphical and numerical approaches

2 D Conduction- General Considerations Two-dimensional conduction: Temperature distribution is characterized by two spatial coordinates, e.g., T (x,y). Heat flux vector is characterized by two directional components, e.g., q and q. x y Assuming steady-state, two-dimensional conduction in a rectangular domain with constant thermal conductivity and heat generation, the heat equation is: T T q ( x, y) + + = 0 x y k Assuming steady-state, two-dimensional conduction in a rectangular domain with constant thermal conductivity and no heat generation, the heat equation is: T x T y + = 0 Solution Methods The Heat Equation and Methods of Solution Solution Methods: Exact/Analytical: Separation of Variables (Section 4.) Limited to simple geometries and boundary conditions. i ( ) Approximate/Graphical q = 0 : Flux Plotting (Section 4 S.1) Of limited value for quantitative considerations but a quick aid to establishing physical insights. Approximate/Numerical: Finite-Difference, Finite Element or Boundary Element Method. Most useful approach and adaptable to any level of complexity.

3 D Conduction- General Considerations Consider heat transfer in a long, prismatic solid with two isothermal surfaces and two insulated surfaces: Note the shapes of lines of constant temperature (isotherms) and heat flow lines (adiabats). What is the relationship between isotherms and heat flow lines? Perpendicular! Exact/Analytical: Separation of Variables (Section 4.) Exact mathematical solutions to heat conduction equation Only limited cases can be solved this way Simple -D case is illustrated in Section 4. of Text for a rectangular plate with three sides of the plate held at a constant temperature T 1 and the fourth held at T. letting ( T T) 1 θ =, then the H.C. eqn is ( T T) 1 θ θ + = 0 and θ has value between 0 and 1 x y The boundary conditions are then 0 or 1 as shown

4 Exact/Analytical: Separation of Variables (Section 4.) The solution uses separation of variables, i.e., letting θ ( xy, ) = Xx ( ) Y( y) which by substitution (and dividing by XY) gives 1 X 1 Y = and θ has value between 0 and 1 X x Y y which can be reduced to ordinary differential eqns X x X y + λ X = λ Y = 0 0 for which a solution exists (although quite complicated) See Eqn 4.19 Exact/Analytical: Superposition principle In certain cases Superposition can be used for the solution of linear, homogeneous PDE s any superposition of solutions of linear, homogeneous PDE s is again a solution, and the particular solutions may then be combined to obtain more general solutions. the superposition principle, also known as superposition property, states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). Mathematically, for a linear system, F, defined by F(x) = y, where x is some sort of stimulus (input) and y is some sort of response (output), the superposition (i.e., sum) of stimuli yields a superposition of the respective responses: F(x 1 +x )=F(x 1 )+F(x ) The superposition principle holds because, by definition, a linear system must be additive. Laplace s equation for heat conduction is a linear differential equation

5 Exact/Analytical: Superposition principle Laplace s equation for heat conduction is a linear differential equation θ x θ y + = 0 Using superposition it is possible to solve a problem with complicated boundary conditions by adding the solutions for problems with simpler boundary conditions Example would be a rectangular plate where the boundaries are functions of x and y respectively. Then T(x,y)= T 1 (x,y) + T (x,y) This is simply illustrated Superposition - Simple Examples In electrical engineering combined waveform wave 1 wave Two waves in phase Two waves 180 out of phase Temperature fields and heat flow

6 Flux Plots Flux Plotting : Approximate/Graphical Method Utility: Requires delineation of isotherms and heat flow lines. Provides a i quick means of estimating the rate of heat flow. q = 0 Procedure: Systematic construction of nearly perpendicular isotherms and heat flow lines to achieve a network of curvilinear squares. Rules: On a schematic of the two-dimensional conduction domain, identify all lines of symmetry, which are equivalent to adiabats and hence heat flow lines. Sketch approximately uniformly spaced isotherms on the schematic, choosing a small to moderate number in accordance with the desired fineness of the network and rendering them approximately perpendicular to all adiabats at points of intersection. Draw heat flow lines in accordance with requirements for a network of curvilinear squares. See Supplemental Section 4 S.1. ( ) Flux Plots (cont.) Example: Square channel with isothermal inner and outer surfaces. Note simplification achieved by identifying lines of symmetry. Requirements for curvilinear squares: Intersection of isotherms and heat flow lines at right angles Approximate equivalence of sums of opposite sides ab + cd ac + bd Δx Δ y (4 S.1) Determination of heat rate: M i i= 1 q= q Mq, where M is the number of lanes i

7 Flux Plots (cont.) Example: Square channel with isothermal inner and outer surfaces. Determination of heat rate: M ΔT ΔT j i i M k( y ) j M ka Δ, i i= 1 q= q Mq 1 M q kδt N, 1 Δ x where l is depth of channel normal to page, N j= 1 Δ T = Δ T = N ΔT, j j Δx where N is the number of temperature increments in each lane M q kδt,for Δx Δy 1 N The Conduction Shape Factor Determination of heat rate: The previous method and expression can be used to define the shape factor, S q = S k Δ T, 1 M where S =, N Note for k = constant, q = 0 and boundary surfaces are isothermal 1 R t, cond ( D = ) S k Exact and approximate results for common two- and three-dimensional systems are provided in Table 4.1(a). For example, S

8 Shape Factor The Conduction Shape Factor Two-or-three dimensional heat transfer in a medium bounded by two isothermal surfaces at T 1 and T may be represented in terms of a conduction shape factor S. ( ) q= Sk T T (4.0) 1 Case 6. Long (L>>w) circular cylinder centered in square solid of equal length π L S = 1n 1.08 / ( w D) Two-dimensional conduction resistance: R cond ( ) ( Sk) 1 D = (4.1)

9 Dimensionless Heat Rate The Dimensionless Conduction Heat Rate For isothermal objects of surface area A s and temperature T 1 embedded in an infinite medium at temperature T, heat transfer may be represented by a dimensionless conduction heat rate q. ( ) q q ka T T / L * ss * = ss s 1 c (4.3) where the object s characteristic length L c is ( 4 ) 1 / L A / π c s (4.) Exact and approximate results for common systems are provided in Table 4.1 (b). For example, Case 1. Isothermal sphere q = 1 * ss * For any object, q 1. ss

10 Problem: Shape Factor Problem 4.9 Heat-generating radioactive waste in a buried container of known size and shape. Find container surface temperature. Schematic: ASSUMPTIONS: (1) Steady-state conditions, () Soil is a homogeneous medium of known and constant properties, (3) Negligible contact resistance. PROPERTIES: Table A.3, Soil (300 K): k=0.5 W/m K. ANALYSIS: From an energy balance on the container, π D q= k T T 1 D/ 4z ( ) 1 q= i Eg and from case 1 of Table 4.1(a), Problem: Shape Factor (cont.) Hence, ( 1 4 ) q D / z T1 = T + k π D 500W ( 1-m/40m) o o =0 C+ =9.7 C 0.5 W/m K π(m) COMMENTS: (1) If the canister is buried within an infinite medium of temperature T =0 C, we may use Case 1 of Table 4.1(b). With Eqns. (4.) and (4.3) yield * As = π D / and q ss = 1, q 500W T1 = T + = kπ D 0.5W/m K π(m) o o 0 C+ =96.5 C Does this value make sense to you? () Using case 1 of Table 4.1(a) with z, evaluate T 1. Does this value make sense to you?

11 Problem: Thermal Circuit Problem 4.4: Attachment of a long aluminum pin fin (D=5mm) to a base material of aluminum or stainless steel. Determine the fin heat rate and the junction temperature (a) without and (b) with a junction resistance. Schematic: The heat flow lines shown in the figure presume a fin effectiveness of ε > 1. How would the lines look f for ε < 1? f The heat flow lines shown in the figure presume a fin effectiveness of ε > 1. How would the lines look f for ε < 1? f ε <1 ε >1

12 Problem: Thermal Circuit (cont) ASSUMPTIONS: (1) Steady-state conditions, () Constant properties, (3) Large base material, (4) Infinite fin. PROPERTIES: Aluminum alloy, k = 40 W/m K, Stainless steel, k = 15 W/m K. ANALYSIS: (a,b) From the thermal circuit with the junction resistance, the heat rate and junction temperature are Tb T Tb T q f = = (1) Rtot Rb + Rt, j + Rf (, ) Tj = T + qf Rf + Rt j () From Case 10 of Table 4.1, S=D. Hence, from Eq. (4.1) Rb = 1 Skb = 1 ( Dkb) = ( 0.005m kb) 1 K/W With A c = π D, the junction resistance is 4 5 Rt, j= Rt, j Ac= 3 10 m K W π ( 0.005m) 4 = 1.58K W 1/ With qf = ( hpkac) θb for an infinite fin (Table 3.4) and P= πd, 1/ 3 1/ R f = ( hpkac) = 50 W m Kπ ( 0.005m) 40 W m K 4 = 16.4K W Problem: Thermal Circuit (cont.) Without R t,j With R t,j Base R b (K/W) q f (W) T j ( C) q f (W) T j ( C) Al alloy St. steel COMMENTS: (1) Why is the effect of the base material on the heat rate and the junction temperature substantial for the stainless steel and not for the aluminum? () Why is the relative effect of the contact resistance on the heat rate and the junction temperature more pronounced for the aluminum alloy base than for the stainless steel?

Solving Direct and Inverse Heat Conduction Problems

Solving Direct and Inverse Heat Conduction Problems Jan Taler Piotr Duda Solving Direct and Inverse Heat Conduction Problems 4y Springer Part I Heat Conduction Fundamentals 1 1 Fourier Law 3 Literature 6 2 Mass and Energy Balance Equations 7 2.1 Mass Balance

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

FIND: Characteristic length and Biot number. Validity of lumped capacitance approximation.

FIND: Characteristic length and Biot number. Validity of lumped capacitance approximation. Mech 302 Heat Transfer HW5 Solution 1. (Problem 5.5 in the Book except for part (e)) For each of the following cases, determine an appropriate characteristic length Lc and the corresponding Biot number

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

The two dimensional heat equation

The two dimensional heat equation The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.

More information

Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 02 One Dimensional Steady State Heat Transfer Lecture No. # 05 Extended

More information

The temperature of a body, in general, varies with time as well

The temperature of a body, in general, varies with time as well cen2935_ch4.qxd 11/3/5 3: PM Page 217 TRANSIENT HEAT CONDUCTION CHAPTER 4 The temperature of a body, in general, varies with time as well as position. In rectangular coordinates, this variation is expressed

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Gauss's Law. Gauss's Law in 3, 2, and 1 Dimension

Gauss's Law. Gauss's Law in 3, 2, and 1 Dimension [ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Fundamentals of Heat and Mass Transfer

Fundamentals of Heat and Mass Transfer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. SIXTH EDITION Fundamentals of Heat and Mass Transfer FRANK P. INCROPERA

More information

CHAPTER 3. Fourier Series

CHAPTER 3. Fourier Series `A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL

More information

Chapter 3. Gauss s Law

Chapter 3. Gauss s Law 3 3 3-0 Chapter 3 Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example

More information

Finite Element Analysis of Aluminum Billet Heating by Rotation in DC Magnetic Fields

Finite Element Analysis of Aluminum Billet Heating by Rotation in DC Magnetic Fields Finite Element Analysis of Aluminum Billet Heating by Rotation in DC Magnetic Fields Virgiliu Fire eanu, Tiberiu Tudorache POLITEHNICA University of Bucharest, EPM_NM Laboratory, 313 Spl. Independentei,

More information

Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

More information

k u (t) = k b + k s t

k u (t) = k b + k s t Chapter 2 Stripe domains in thin films 2.1 Films with perpendicular anisotropy In the first part of this chapter, we discuss the magnetization of films with perpendicular uniaxial anisotropy. The easy

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

1 The Diffusion Equation

1 The Diffusion Equation Jim Lambers ENERGY 28 Spring Quarter 2007-08 Lecture Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim Lambers. The Diffusion Equation This course considers

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Solutions to Problems for 2D & 3D Heat and Wave Equations

Solutions to Problems for 2D & 3D Heat and Wave Equations Solutions to Problems for D & 3D Heat and Wave Equations 18.303 Linear Partial Differential Equations Matthew J. Hancock Fall 006 1 Problem 1 A rectangular metal plate with sides of lengths L, H and insulated

More information

Double integrals. Notice: this material must not be used as a substitute for attending the lectures

Double integrals. Notice: this material must not be used as a substitute for attending the lectures ouble integrals Notice: this material must not be used as a substitute for attending the lectures . What is a double integral? Recall that a single integral is something of the form b a f(x) A double integral

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)

More information

1-D Steady Conduction: Plane Wall

1-D Steady Conduction: Plane Wall 1-D Steady Conduction: Plane Wall Governing Equation: d 2 T dx 2 0 Dirichlet Boundary Conditions: T(0) T s,1 ; T(L) T s,2 Solution: Heat Flux: Heat Flow: T(x) T s,1 + ( T s,2 T s,1 ) x L q ʹ x ʹ k dt dx

More information

Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate

Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate Chapter 19 Blasius solution 191 Boundary layer over a semi-infinite flat plate Let us consider a uniform and stationary flow impinging tangentially upon a vertical flat plate of semi-infinite length Fig

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

More information

2 A Dielectric Sphere in a Uniform Electric Field

2 A Dielectric Sphere in a Uniform Electric Field Dielectric Problems and Electric Susceptability Lecture 10 1 A Dielectric Filled Parallel Plate Capacitor Suppose an infinite, parallel plate capacitor with a dielectric of dielectric constant ǫ is inserted

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Fourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +

Fourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) + Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Practice Problems for Midterm 2

Practice Problems for Midterm 2 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

25.2. Applications of PDEs. Introduction. Prerequisites. Learning Outcomes

25.2. Applications of PDEs. Introduction. Prerequisites. Learning Outcomes Applications of PDEs 25.2 Introduction In this Section we discuss briefly some of the most important PDEs that arise in various branches of science and engineering. We shall see that some equations can

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

2 Topics in 3D Geometry

2 Topics in 3D Geometry 2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and

More information

Comsol Laboration: Heat Conduction in a Chip

Comsol Laboration: Heat Conduction in a Chip Comsol Laboration: Heat Conduction in a Chip JO, CSC January 11, 2012 1 Physical configuration A chip on a circuit board is heated inside and cooled by convection by the surrounding fluid. We consider

More information

MATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables.

MATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables. MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 1: Functions of severable variables. Created and compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate

More information

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

More information

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific

More information

PSS 27.2 The Electric Field of a Continuous Distribution of Charge

PSS 27.2 The Electric Field of a Continuous Distribution of Charge Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight Problem-Solving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

1 Measuring resistive devices

1 Measuring resistive devices 1 Measuring resistive devices 1.1 Sourcing Voltage A current can only be maintained in a closed circuit by a source of electrical energy. The simplest way to generate a current in a circuit is to use a

More information

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

1. (Problem 8.23 in the Book)

1. (Problem 8.23 in the Book) 1. (Problem 8.23 in the Book) SOLUTION Schematic An experimental nuclear core simulation apparatus consists of a long thin-walled metallic tube of diameter D and length L, which is electrically heated

More information

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

Electric Forces & Fields, Gauss s Law, Potential

Electric Forces & Fields, Gauss s Law, Potential This test covers Coulomb s Law, electric fields, Gauss s Law, electric potential energy, and electric potential, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice +q +2q

More information

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

More information

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012 Green s functions for Neumann boundary conditions Jerrold Franklin Department of Physics, Temple University, Philadelphia, PA 19122-682 arxiv:121.659v2 [physics.class-ph] 27 Aug 212 (Dated: August 28,

More information

Exam 2 Practice Problems Part 1 Solutions

Exam 2 Practice Problems Part 1 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Welcome to the first lesson of third module which is on thin-walled pressure vessels part one which is on the application of stress and strain.

Welcome to the first lesson of third module which is on thin-walled pressure vessels part one which is on the application of stress and strain. Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture -15 Application of Stress by Strain Thin-walled Pressure Vessels - I Welcome

More information

Iterative calculation of the heat transfer coefficient

Iterative calculation of the heat transfer coefficient Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, via Panfilio, 17 44121 Ferrara Aim The plate temperature of a cooling heat sink is an important parameter

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

ELG4125: Power Transmission Lines The most common methods for transfer of electric power are: Overhead AC; Underground AC; Overhead DC; Underground

ELG4125: Power Transmission Lines The most common methods for transfer of electric power are: Overhead AC; Underground AC; Overhead DC; Underground ELG4125: Power Transmission Lines The most common methods for transfer of electric power are: Overhead AC; Underground AC; Overhead DC; Underground DC Distribution Lines Distribution Lines and Transformers

More information

Contents. Bibliografische Informationen digitalisiert durch

Contents. Bibliografische Informationen  digitalisiert durch 1 Introduction 1 1.1 Introduction to Maple 1 1.1.1 Getting Started with Maple 1 1.1.2 Plotting with Maple 3 1.1.3 Solving Linear and Nonlinear Equations 5 1.1.4 Matrix Operations 6 1.1.5 Differential Equations

More information

VERTICAL STRESS INCREASES IN SOIL TYPES OF LOADING. Point Loads (P) Line Loads (q/unit length) Examples: - Posts. Examples: - Railroad track

VERTICAL STRESS INCREASES IN SOIL TYPES OF LOADING. Point Loads (P) Line Loads (q/unit length) Examples: - Posts. Examples: - Railroad track VERTICAL STRESS INCREASES IN SOIL Point Loads (P) TYPES OF LOADING Line Loads (q/unit length) Revised 0/015 Figure 6.11. Das FGE (005). Examples: - Posts Figure 6.1. Das FGE (005). Examples: - Railroad

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

1.7 Cylindrical and Spherical Coordinates

1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

SOLUTION OF Partial Differential Equations. (PDEs)

SOLUTION OF Partial Differential Equations. (PDEs) SOLUTION OF Partial Differential Equations (PDEs) Mathematics is the Language of Science PDEs are the expression of processes that occur across time & space: (x,t), (x,y), (x,y,z), or (x,y,z,t) Partial

More information

Ch. 20 Electric Circuits

Ch. 20 Electric Circuits Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Solutions to the Diffusion Equation L3 11/2/06

Solutions to the Diffusion Equation L3 11/2/06 Solutions to the Diffusion Equation 1 Solutions to Fick s Laws Fick s second law, isotropic one-dimensional diffusion, D independent of concentration "c "t = D "2 c "x 2 Figure removed due to copyright

More information

Definition and Evaluation of Mean Beam Lengths for Applications in Multidimensional Radiative Heat Transfer: A Mathematically Self-Consistent Approach

Definition and Evaluation of Mean Beam Lengths for Applications in Multidimensional Radiative Heat Transfer: A Mathematically Self-Consistent Approach Definition and Evaluation of Mean Beam Lengths for Applications in Multidimensional Radiative Heat Transfer: A Mathematically Self-Consistent Approach Walter W. Yuen Department of Mechanical Engineering,

More information

Stress Analysis Verification Manual

Stress Analysis Verification Manual Settle3D 3D settlement for foundations Stress Analysis Verification Manual 007-01 Rocscience Inc. Table of Contents Settle3D Stress Verification Problems 1 Vertical Stresses underneath Rectangular Footings

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article

Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article Todd A. Jankowski* 1, Debra P. Johnson

More information

UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering. Linear Equations: Engineering Supplement

UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering. Linear Equations: Engineering Supplement UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering Spring 203 Professor: S. Govindjee Linear Equations: Engineering Supplement Introduction The workhorse

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Physics 505 Fall 2007 Homework Assignment #2 Solutions. Textbook problems: Ch. 2: 2.2, 2.8, 2.10, 2.11

Physics 505 Fall 2007 Homework Assignment #2 Solutions. Textbook problems: Ch. 2: 2.2, 2.8, 2.10, 2.11 Physics 55 Fall 27 Homework Assignment #2 Solutions Textbook problems: Ch. 2: 2.2, 2.8, 2., 2. 2.2 Using the method of images, discuss the problem of a point charge q inside a hollow, grounded, conducting

More information

ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT

ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT www.arpapress.com/volumes/vol12issue2/ijrras_12_2_22.pdf ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT M. C. Anumaka Department of Electrical Electronics Engineering,

More information

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer

More information

4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer 4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

More information

Method of Green s Functions

Method of Green s Functions Method of Green s Functions 8.303 Linear Partial ifferential Equations Matthew J. Hancock Fall 006 We introduce another powerful method of solving PEs. First, we need to consider some preliminary definitions

More information

A Parametric study of a metal sandwich VIP. Kjartan Gudmundsson, PhD. dept of Civil and Architectural Engineering. KTH, Stockholm

A Parametric study of a metal sandwich VIP. Kjartan Gudmundsson, PhD. dept of Civil and Architectural Engineering. KTH, Stockholm A Parametric study of a metal sandwich VIP Kjartan Gudmundsson, PhD. dept of Civil and Architectural Engineering. KTH, Stockholm U-value, W/m 2 K outer walls, one family houses Year of construction www.norrlandstrahus.se

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Section 16.7 Triple Integrals in Cylindrical Coordinates

Section 16.7 Triple Integrals in Cylindrical Coordinates Section 6.7 Triple Integrals in Cylindrical Coordinates Integrating Functions in Different Coordinate Systems In Section 6.4, we used the polar coordinate system to help integrate functions over circular

More information

Simulation of Coupled Electromagnetic/ Thermal Systems using CAE Software

Simulation of Coupled Electromagnetic/ Thermal Systems using CAE Software www.integratedsoft.com Simulation of Coupled Electromagnetic/ Thermal Systems using CAE Software Content Executive Summary... 3 Overview... 3 Rotationally Symmetric Models... 5 Thermal Models... 5 Model

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

The Fundamentals of Thermoelectrics

The Fundamentals of Thermoelectrics The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements..................

More information