Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings


 Randell May
 1 years ago
 Views:
Transcription
1 1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library University Physics with Modern Physics, 13e Young/Freedman Instructor Resources etext Study Area Week 3  Gauss's Law [ Edit ] Overview Summary View Diagnostics View Print View with Answers Week 3  Gauss's Law Due: 10:00pm on Monday, October 15, 2012 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy Gauss's Law Learning Goal: To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable. Gauss's law is usually written where is the permittivity of vacuum. How should the integral in Gauss's law be evaluated? around the perimeter of a closed loop over the surface bounded by a closed loop over a closed surface In the integral for Gauss's law, the vector represents an infinitesimal surface element. The magnitude of is the area of the surface element. The direction of is normal to the surface element, pointing out of the enclosed volume. In Gauss's law, to what does refer? the net charge inside the closed surface the charge residing on insulators inside the closed surface all the charge in the physical system any charge inside the closed surface that is arranged symmetrically
2 2 of 11 9/7/2012 1:06 PM The major use of Gauss's law is to determine an electric field when the charge distribution, both inside and outside the Gaussian surface, is symmetric. Of course, the electric field can always be found by adding up (or integrating) the contributions of all the charge in the problem. In highly symmetric situations, however, Gauss's law is much simpler computationally than dealing with all such contributions, and it provides better physical insight, too. A Conducting Shell around a Conducting Rod An infinitely long conducting cylindrical rod with a positive charge per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of and radius, as shown in the figure., the radial component of the electric field between the rod and cylindrical shell as a function of the distance from the axis of the cylindrical rod? Express your answer in terms of,, and, the permittivity of free space. Hint 1. The implications of symmetry Because the cylinder and rod are cylindrically symmetric, the magnitude of the electric field cannot vary as a function of angle around the rod, nor as a function of longitudinal position along the rod (typically represented by the spatial variables and ). By symmetry, the magnitude of the electric field can only depend on the distance from the axis of the rod (the spatial variable ). Hint 2. Apply Gauss' law Gauss's law states that, where is the electric flux through a Gaussian surface, and is the total charge enclosed by the surface. Construct a cylindrical Gaussian surface with radius and length coaxial with the rod, with. Hint 3. Find the charge inside the Gaussian surface the total charge enclosed by the surface?
3 3 of 11 9/7/2012 1:06 PM Hint 4. Find the flux, the electric flux through the Gaussian surface? Express your answer in terms of the magnitude of the electric field and given variables., the surface charge density (charge per unit area) on the inner surface of the conducting shell? Hint 1. Apply Gauss's law The magnitude of the net force on charges within a conductor is always zero. This implies that the magnitude of the electric field within the conductor is zero. Think about a cylindrical Gaussian surface of length whose radius lies at the middle of the outer cylindrical shell. Since the electric field inside a conductor is zero and the Gaussian surface lies within the conductor, the electric flux across the Gaussian surface must be zero. What, then, must, the total charge inside this Gaussian surface, be? 0 Hint 2. Find the charge contribution from the surface, the total charge on the inner surface of the cylindrical shell that is contained within the Gaussian surface? Express your answer in terms of and. To obtain the charge density per unit area, divide within the Gaussian surface. by the area of the inner surface of the conducting shell that is contained Part C, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell
4 4 of 11 9/7/2012 1:06 PM has a total charge per unit length given by.) Hint 1. the charge on the cylindrical shell?, the total surface charge (the sum of charges on the inner and outer surfaces) of a portion of the shell of length? Since the charge on the inner surface of the cylinder is and the total charge on the cylinder is, it is now easy to obtain the charge on the outer surface of the cylinder. Then divide this result by the surface area of the portion of the cylinder that you took to obtain your result. Part D the radial component of the electric field,, outside the shell? Hint 1. How to approach the problem Apply Gauss's law as you did to find the field between the rod and the shell. Again, choose the Gaussian surface to be a cylinder, with length and radius, coaxial with the rod. This time, you need to take. Hint 2. Find the charge within the Gaussian surface, the total charge contained within the Gaussian surface? Now apply Gauss' law,, using for the enclosed charge. Hint 3. Find the flux in terms of the electric field, the electric flux through the Gaussian surface? Express your answer in terms of the magnitude of the electric field and given variables.
5 5 of 11 9/7/2012 1:06 PM Charged Insulating Spheres Two small insulating spheres with radius are separated by a large centertocenter distance of One sphere is negatively charged, with net charge 2.50, and the other sphere is positively charged, with net charge The charge is uniformly distributed within the volume of each sphere. the magnitude of the electric field midway between the spheres? Take the permittivity of free space to be Hint 1. How to approach the problem Draw a diagram of the system to keep track of the directions of the fields. Calculate the electric field at the point midway between the charged spheres separately for each sphere, using Gauss's law, and use vector addition to determine the net electric field. Hint 2. Using Gauss's law You need to construct two separate Gaussian surfaces, each of which will surround one of the charged spheres. These surfaces also need to contain the point midway between the spheres so that the electric field at that point can be found. Therefore, for convenience, you should use a spherical Gaussian surface with one of the charged spheres in the center, since that way the electric field will be uniform and perpendicular to the surface at all points, so that the flux will be given by. Also, be careful about the radii of the spherical surfaces. Hint 3. Calculate the field due to the negatively charged sphere Calculate, the magnitude of the electric field at the midway point due to the sphere with charge only. Take the permittivity of free space to be Hint 1. Using the flux to calculate the field Since the flux through the surface will be (due to Gauss's law), you can solve for the electric field using the equation for the surface area of the (Gaussian) sphere,, and the value of the enclosed charge Hint 4. Determine the direction of the electric field from the first sphere What will be the direction of the electric field due to the negatively charged sphere only?
6 6 of 11 9/7/2012 1:06 PM toward the center of the negatively charged sphere away from the center of the negatively charged sphere upward perpendicular to the line connecting the centers of the spheres downward perpendicular to the line connecting the centers of the spheres Note that the electric field will point toward a negatively charged sphere, just as it would point toward a negative point charge. Hint 5. Calculate the field due to the positively charged sphere Calculate, the magnitude of the electric field at the midway point due to the sphere of charge 3.95 only. Take the permittivity of free space to be Hint 1. Using the flux to calculate the field Since the flux through the surface will be (due to Gauss's law), you can solve for the electric field using the equation for the surface area of the (Gaussian) sphere,, and the value of the enclosed charge Hint 6. Determine the direction of the electric field from the positively charged sphere What will be the direction of the electric field due to the positively charged sphere only? toward the positively charged sphere away from the positively charged sphere upward perpendicular to the line connecting the centers of the spheres downward perpendicular to the line connecting the centers of the spheres Note that the electric field will point away from a positively charged sphere, just as it would point away from a positive point charge. Hint 7. Vector addition Keep in mind that you need to use vector addition in adding the electric fields from the two spheres. Also, keep in mind that the two fields point along the same line
7 7 of 11 9/7/2012 1:06 PM the direction of the electric field midway between the spheres? toward the positively charged sphere toward the negatively charged sphere upward perpendicular to the line connecting the centers of the spheres downward perpendicular to the line connecting the centers of the spheres Since the electric field will point toward a negative charge and away from a positive charge, the electric field from each sphere separately will point toward the negatively charged sphere, and so the total field will also point in that direction. Exercise A hollow, conducting sphere with an outer radius of and an inner radius of has a uniform surface charge density of A charge of is now introduced into the cavity inside the sphere. the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere Part C the electric flux through a spherical surface just inside the inner surface of the sphere? Exercise A point charge of is located in the center of a spherical cavity of radius 6.54 inside an insulating spherical charged solid. The charge density in the solid is Calculate the magnitude of the electric field inside the solid at a distance of 9.49 from the center of the cavity. Express your answer using two significant figures.
8 8 of 11 9/7/2012 1:06 PM Find the direction of the electric field inside the solid at a distance of 9.49 from the center of the cavity. The electric field points radially outward. The electric field points radially inward. The electric field is zero. Problem A cube has sides of length It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by Find the electric flux through each of the six cube faces, and. Enter your answers in ascending order separated by commas.,,,,, 0, , 0, 0, , 0 Find the total electric charge inside the cube Problem A conducting spherical shell with inner radius and outer radius has a positive point charge located at its center. The total charge on the shell is, and it is insulated from its surroundings.
9 9 of 11 9/7/2012 1:06 PM Derive the expression for the electric field magnitude in terms of the distance from the center for the region. Express your answer in terms of some or all of the variables,,, and appropriate constants. Also accepted: Derive the expression for the electric field magnitude in terms of the distance from the center for the region. Express your answer in terms of some or all of the variables,,, and appropriate constants. 0 Part C Derive the expression for the electric field magnitude in terms of the distance from the center for the region. Express your answer in terms of some or all of the variables,,, and appropriate constants. Also accepted: Part D the surface charge density on the inner surface of the conducting shell? Express your answer in terms of some or all of the variables,,, and appropriate constants. Part E
10 10 of 11 9/7/2012 1:06 PM the surface charge density on the outer surface of the conducting shell? Express your answer in terms of some or all of the variables,,, and appropriate constants. Problem A nonuniform, but spherically symmetric, distribution of charge has a charge density given as follows: for for where is a positive constant. Find the total charge contained in the charge distribution. Express your answer in terms of the variables,,, and appropriate constants. 0 Obtain an expression for the electric field in the region. Express your answer in terms of the variables,,, and appropriate constants. 0 Part C Obtain an expression for the electric field in the region. Express your answer in terms of the variables,,, and appropriate constants. Also accepted: Part D Find the value of at which the electric field is maximum. Express your answer in terms of the variables,,, and appropriate constants.
11 11 of 11 9/7/2012 1:06 PM Part E Find the value of that maximum field. Express your answer in terms of the variables,,, and appropriate constants. Also accepted: Copyright 2012 Pearson. All rights reserved. Legal Notice Privacy Policy Permissions Support
Chapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationHW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
More informationChapter 3. Gauss s Law
3 3 30 Chapter 3 Gauss s Law 3.1 Electric Flux... 32 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 34 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 39 Example
More informationThe Electric Field. Electric Charge, Electric Field and a Goofy Analogy
. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it
More informationCHAPTER 24 GAUSS S LAW
CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 440 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 440 4. From the direction of the lines of force (away from positive and toward
More informationExam 1 Practice Problems Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical
More informationProblem 1 (25 points)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular
More informationChapter 25: Capacitance
Chapter 25: Capacitance Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. Albert Einstein 25.1 Introduction Whenever
More informationChapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohiostate.edu/~humanic/  Chapter 18 Electric Forces and Electric Fields
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
More informationAP Physics C: Electricity and Magnetism 2011 Scoring Guidelines
AP Physics C: Electricity and Magnetism 11 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and
More informationExam 2 Practice Problems Part 1 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z
More informationPhysics 202, Lecture 3. The Electric Field
Physics 202, Lecture 3 Today s Topics Electric Field Quick Review Motion of Charged Particles in an Electric Field Gauss s Law (Ch. 24, Serway) Conductors in Electrostatic Equilibrium (Ch. 24) Homework
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged
More informationElectromagnetism  Lecture 2. Electric Fields
Electromagnetism  Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
More informationLecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form
Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationElectric Forces & Fields, Gauss s Law, Potential
This test covers Coulomb s Law, electric fields, Gauss s Law, electric potential energy, and electric potential, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice +q +2q
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More informationChapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24
Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces actionatadistance Instead of Q 1 exerting a force directly on Q at a distance,
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More information2 A Dielectric Sphere in a Uniform Electric Field
Dielectric Problems and Electric Susceptability Lecture 10 1 A Dielectric Filled Parallel Plate Capacitor Suppose an infinite, parallel plate capacitor with a dielectric of dielectric constant ǫ is inserted
More informationModule 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems
Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems Objectives In this lecture you will learn the following Define different coordinate systems like spherical polar and cylindrical coordinates
More information1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?
CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 33, with
More informationRutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
More informationpotential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 20060927, kl 16.0022.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationNotes on Elastic and Inelastic Collisions
Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationDOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREEDIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
More informationSURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
More informationDivergence and Curl. . Here we discuss some details of the divergence and curl. and the magnetic field B ( r,t)
Divergence and url Overview and Motivation: In the upcoming two lectures we will be discussing Maxwell's equations. These equations involve both the divergence and curl of two vector fields the electric
More informationPHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
More informationphysics 112N magnetic fields and forces
physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro magnetism! is there a connection between electricity
More information13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
More informationCHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS
CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding
More informationMagnetic Field & Right Hand Rule. Academic Resource Center
Magnetic Field & Right Hand Rule Academic Resource Center Magnetic Fields And Right Hand Rules By: Anthony Ruth Magnetic Fields vs Electric Fields Magnetic fields are similar to electric fields, but they
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationExam 1 Solutions. PHY2054 Fall 2014. Prof. Paul Avery Prof. Andrey Korytov Sep. 26, 2014
Exam 1 Solutions Prof. Paul Avery Prof. Andrey Korytov Sep. 26, 2014 1. Charges are arranged on an equilateral triangle of side 5 cm as shown in the diagram. Given that q 1 = 5 µc and q 2 = q 3 = 2 µc
More informationMultiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields
Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the
More informationUnit 04: Fundamentals of Solid Geometry  Shapes and Volumes
Unit 04: Fundamentals of Solid Geometry  Shapes and Volumes Introduction. Skills you will learn: a. Classify simple 3dimensional geometrical figures. b. Calculate surface areas of simple 3dimensional
More informationAP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.
Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = 4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?
More informationChapter 9 Circular Motion Dynamics
Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3
More informationChapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.
Chapter 23 Electric Potential 231 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is
More informationName Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
More informationELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
More informationFaraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...1010.1.1 Magnetic Flux...103 10.1. Lenz s Law...105 10. Motional EMF...107 10.3 Induced Electric Field...1010 10.4 Generators...101
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationTransformed E&M I homework. Divergence and Curl of B (Ampereʼs Law) (Griffiths Chapter 5)
Transformed E&M I homework Divergence and Curl of B (Ampereʼs Law) (Griffiths Chapter 5) Divergence and curl of B (Connections between E and B, Ampere s Law) Question 1. B of cylinder with hole Pollack
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationVector surface area Differentials in an OCS
Calculus and Coordinate systems EE 311  Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationElectric Fields in Dielectrics
Electric Fields in Dielectrics Any kind of matter is full of positive and negative electric charges. In a dielectric, these charges cannot move separately from each other through any macroscopic distance,
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationSolution. Problem. Solution. Problem. Solution
4. A 2g pingpong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their
More informationRotation. Moment of inertia of a rotating body: w I = r 2 dm
Rotation Moment of inertia of a rotating body: w I = r 2 dm Usually reasonably easy to calculate when Body has symmetries Rotation axis goes through Center of mass Exams: All moment of inertia will be
More informationReview Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
More information11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
More informationGauss Formulation of the gravitational forces
Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative
More informationShape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationǫ 0 = 8.85419 10 12 C 2 /N m 2,
Version 001 review unit chiu 58655 1 This printout should have 45 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. The long negatively charged
More informationDIVERGENCE AND CURL THEOREMS
This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationRUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman
Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster
More informationThis makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5
1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationStack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
More informationReview of Vector Analysis in Cartesian Coordinates
R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More information( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q =  4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
More informationFall 12 PHY 122 Homework Solutions #4
Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 1030 C.m at a point 4.1 x 109 m away if this point is (a)
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationTwo vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
More informationSection 16.7 Triple Integrals in Cylindrical Coordinates
Section 6.7 Triple Integrals in Cylindrical Coordinates Integrating Functions in Different Coordinate Systems In Section 6.4, we used the polar coordinate system to help integrate functions over circular
More informationSolved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB.
Permanent Magnet Introduction This example shows how to model the magnetic field surrounding a permanent magnet. It also computes the force with which it acts on a nearby iron rod. Thanks to the symmetry
More informationGrade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationAP Physics C: Electricity and Magnetism 2009 Scoring Guidelines
AP Physics C: Electricity and Magnetism 9 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity.
More informationChapter 6. Current and Resistance
6 6 60 Chapter 6 Current and Resistance 6.1 Electric Current... 62 6.1.1 Current Density... 62 6.2 Ohm s Law... 65 6.3 Summary... 68 6.4 Solved Problems... 69 6.4.1 Resistivity of a Cable... 69
More informationElectrostatic Fields: Coulomb s Law & the Electric Field Intensity
Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationFundamentals of Electromagnetic Fields and Waves: I
Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More information11. Sources of Magnetic Fields
11. Sources of Magnetic Fields S. G. Rajeev February 24, 2009 1 Magnetic Field Due to a Straight Wire We saw that electric currents produce magnetic fields. The simplest situation is an infinitely long,
More informationPhys222 Winter 2012 Quiz 4 Chapters 2931. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
More informationChapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297FA09Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationH.Calculating Normal Vectors
Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter
More informationON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE
i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear
More informationConceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
More informationELECTRICITY, MAGNETISM AND MODERN PHYSICS COURSE GUIDE NATIONAL OPEN UNIVERSITY OF NIGERIA NOUN
PHY 132: ELECTRICITY, MAGNETISM AND MODERN PHYSICS COURSE GUIDE NATIONAL OPEN UNIVERSITY OF NIGERIA 2 1.0 Introduction PHY132 electricity, magnetism and modern physics is a one semester 2 credits, foundation
More informationCoaxial Cable Feeder Influence on Yagi Antenna Dragoslav Dobričić, YU1AW dragan@antennex.com
Coaxial Cable Feeder Influence on Yagi Antenna Dragoslav Dobričić, YU1AW dragan@antennex.com Introduction o far, in several previous articles [1, 2, 3], we investigated how boom radius and its S distance
More informationThe potential (or voltage) will be introduced through the concept of a gradient. The gradient is another sort of 3dimensional derivative involving
The potential (or voltage) will be introduced through the concept of a gradient. The gradient is another sort of 3dimensional derivative involving the vector del except we don t take the dot product as
More informationChapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces  Magnetism  Magnetic Field  Magnetic Field Lines and Magnetic Flux  Motion of Charged Particles in a Magnetic Field  Applications of Motion of Charged
More information