CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS"

Transcription

1 CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, cm = m = 1. m. Change a volume of 5000 mm to cubic centimetres. 1cm = 10 mm or 1mm = 10 cm Hence, 5000 mm = mm = 5 cm. A metal cube has a surface area of 4 cm. Determine its volume. A cube had 6 sides. Area of each side = 4/6 = 4 cm Each side is a square hence the length of a side = 4 = cm Volume of cube = = 8 cm 4. A rectangular block of wood has dimensions of 40 mm by 1 mm by 8 mm. Determine (a) its volume in cubic millimetres and (b) its total surface area in square millimetres. (a) Volume of cuboid = l b h = = 840 mm (b) Surface area = (bh + hl + lb) = ( ) = ( ) = 896 = 179 mm , John Bird

2 5. Determine the capacity, in litres, of a fish tank measuring 90 cm by 60 cm by 1.8 m, given 1 litre = 1000 cm. Volume = ( ) cm Tank capacity = cm 1000 cm /litre = 97 litre 6. A rectangular block of metal has dimensions of 40 mm by 5 mm by 15 mm. Determine its volume in cm. Find also its mass if the metal has a density of 9 g/cm. Volume = length breadth width = = mm Mass = density volume = 9 g/cm 15cm = 15 g = cm = 15 cm 7. Determine the maximum capacity, in litres, of a fish tank measuring 50 cm by 40 cm by.5 m (1 litre = 1000 cm ). Volume = cm Tank capacity = cm 1000 cm /litre = 500 litre 8. Determine how many cubic metres of concrete are required for a 10 m long path, 150 mm wide and 80 mm deep. Width = 150 mm = 0.15 m and depth = 80 mm = m Hence, volume of path = length breadth width = = 1.44 m i.e. concrete required = 1.44 m , John Bird

3 9. A cylinder has a diameter 0 mm and height 50 mm. Calculate (a) its volume in cubic centimetres, correct to 1 decimal place, and (b) the total surface area in square centimetres, correct to 1 decimal place. Diameter = 0 mm = cm hence radius, r = / = 1.5 cm and height, h = 50 mm = 5 cm πrh = π = 11.5π = 5. cm, correct to 1 decimal place (a) Volume = ( ) (b) Total surface area = πrh + π r = ( π 1.5 5) + ( π 1.5 ) = 15π + 4.5π = 19.5π = 61. cm 10. Find (a) the volume and (b) the total surface area of a right-angled triangular prism of length 80 cm whose triangular end has a base of 1 cm and perpendicular height 5 cm. (a) Volume of right-angled triangular prism = 1 bhl = i.e. Volume = 400 cm (a) Total surface area = area of each end + area of three sides In triangle ABC, AC = AB + BC from which, AC = AB + BC = = 1 cm Hence, total surface area = 1 bh + (AC 80) + (BC 80) + (AB 80) , John Bird

4 i.e. total surface area = 460 cm = (1 5) + (1 80) + (1 80) + (5 80) = A steel ingot whose volume is m is rolled out into a plate which is 0 mm thick and 1.80 m wide. Calculate the length of the plate in metres. Volume of ingot = length breadth width i.e. = l from which, length = = 7.04 m 1. The volume of a cylinder is 75 cm. If its height is 9.0 cm, find its radius. Volume of cylinder, V = π rh i.e. 75 = π r (9.0) 75 from which, r = π 9.0 and radius, r = 75 π 9.0 = 1.6 cm 1. Calculate the volume of a metal tube whose outside diameter is 8 cm and whose inside diameter is 6 cm, if the length of the tube is 4 m. Outer diameter, D = 8 cm and inner diameter, d = 6 cm ( ) ( ) πd πd π 8 π 6 Area of cross-section of copper = = = = cm Hence, volume of metal tube = (cross-sectional area) length of pipe = = 8796 cm , John Bird

5 14. The volume of a cylinder is 400 cm. If its radius is 5.0 cm, find its height. Determine also its curved surface area. Volume of cylinder, V = π rh i.e. 400 = π (5.0) h from which, height, 400 h = π (5.0) = cm Curved surface area = πrh = ( π ) = 15.9 cm 15. A cylinder is cast from a rectangular piece of alloy 5 cm by 7 cm by 1 cm. If the length of the cylinder is to be 60 cm, find its diameter. Volume of rectangular piece of alloy = = 40 cm Volume of cylinder = π rh Hence, 40 = 40 7 π r (60) from which, r = π(60) = π and radius, r = 7 π = cm and diameter of cylinder, d = r = =.99 cm 16. Find the volume and the total surface area of a regular hexagonal bar of metal of length m if each side of the hexagon is 6 cm. A hexagon is shown below. In triangle 0BC, tan 0 = x from which, x = tan 0 = cm , John Bird

6 Hence, area of hexagon = = 9.5 cm and volume of hexagonal bar = = cm Surface area of bar = 6[ 0.06 ] + [ ] in metre units = m 17. A block of lead 1.5 m by 90 cm by 750 mm is hammered out to make a square sheet 15 mm thick. Determine the dimensions of the square sheet, correct to the nearest centimetre. Volume of block of lead = length breadth height = cm If length = breadth = x cm and height = 15/10 = 1.5 cm, then x ( 1.5) = from which, x = and x = = 81.6 cm = 8. m Hence, dimensions of square sheet are 8. m by 8. m 18. How long will it take a tap dripping at a rate of 800 mm /s to fill a three-litre can? litre = 000 cm = mm = 106mm Time to fill can = 10 mm 6 800mm /s = 750 s = = 6.5 minutes 19. A cylinder is cast from a rectangular piece of alloy 5.0 cm by 6.50 cm by 19. cm. If the height of the cylinder is to be 5.0 cm, determine its diameter, correct to the nearest centimetre. Volume of cylinder, V = π rh and volume of rectangular prism = cm i.e = π r (5.0) from which, r = π 5.0 and radius, 47 r = π 5.0 =.0 cm 014, John Bird

7 i.e. diameter = r =.0 = 4 cm 0. How much concrete is required for the construction of the path shown, if the path is 1 cm thick? 1 4 π Area of path = (8.5 ) + ( ) + (.1 ) + (.4 [ + 1.]) = = 4.0 m If thickness of path = 1 cm = 0.1 m then Concrete required = volume of path = = 4.08 m , John Bird

8 EXERCISE 15 Page If a cone has a diameter of 80 mm and a perpendicular height of 10 mm, calculate its volume in cm and its curved surface area. 1 1 = = mm = 01.1 cm Volume of cone = π r h π ( 40) ( 10) From diagram below, slant height, l = ( 1 4) + = cm Curved surface area = πrl = π(4)(1.649) = cm. A square pyramid has a perpendicular height of 4 cm. If a side of the base is.4 cm long find the volume and total surface area of the pyramid. A sketch of the pyramid is shown below = 7.68 cm Volume of pyramid = ( )( ) In the sketch, AB = 4 cm and BC =.4/ = 1. cm , John Bird

9 Length AC = ( 4 1.) + = cm 1 Hence, area of a side = (.4 )( ) = 5.01 cm Total surface area of pyramid = 4[ 5.01] + (.4) = 5.81 cm. A sphere has a diameter of 6 cm. Determine its volume and surface area. Volume of sphere = π π r = = 11.1 cm Surface are of sphere = 4πr = 4π = 11.1 cm 6 4. If the volume of a sphere is 566 cm, find its radius. 4 Volume of sphere = π r hence, 566 = 4 π r 566 from which, r = = π and radius, r = = 5.11 cm 5. A pyramid having a square base has a perpendicular height of 5 cm and a volume of 75 cm. Determine, in centimetres, the length of each side of the base. 1 1 If each side of base = x cm then volume of pyramid = A h= xh 1 i.e. 75 = (5) x and 75 x = = 9 5 from which, length of each side of base = 9 = cm 6. A cone has a base diameter of 16 mm and a perpendicular height of 40 mm. Find its volume correct to the nearest cubic millimetre , John Bird

10 π = π Volume of cone = rh ( 40) = 681 mm 7. Determine (a) the volume and (b) the surface area of a sphere of radius 40 mm. (a) Volume of sphere = ( ) (b) Surface are of sphere = ( ) 4 4 πr = π 40 = mm or cm 4πr = 4π 40 = mm or cm 8. The volume of a sphere is 5 cm. Determine its diameter. Volume of sphere = d π π 4 4 r = Hence, 5 = 4 d π from which, d 5 = 4π d and = 5 = 4.65 cm and diameter, d = 4.65 = 8.5 cm 4π 9. Given the radius of the Earth is 680 km, calculate, in engineering notation (a) its surface area in km and (b) its volume in km. 4πr = 4π 680 = km (a) Surface area of Earth = ( ) 4 4 πr = π 680 = km (b) Volume of earth = ( ) 10. An ingot whose volume is 1.5 m is to be made into ball bearings whose radii are 8.0 cm. How many bearings will be produced from the ingot, assuming 5% wastage? Volume of one ball bearing = ( ) Volume of x bearings = cm 4 4 πr = π 8 Let number of ball bearings = x , John Bird

11 Hence, [ x ] 10 = π ( ) from which, number of bearings, x = π 8 = A spherical chemical storage tank has an internal diameter of 5.6 m. Calculate the storage capacity of the tank, correct to the nearest cubic metre. If 1 litre = 1000 cm, determine the tank capacity in litres. Volume of storage tank = π π r = = = 9 m, correct to the nearest cubic metre Volume of tank = 9 106cm If 1 litre = 1000 cm, then capacity of storage tank = litres = litres , John Bird

12 EXERCISE 16 Page Find the total surface area of a hemisphere of diameter 50 mm. Total surface area = [ ] 1 π r + 4 π r = π r + π r = π r = 50 π = 5890 mm or cm. Find (a) the volume and (b) the total surface area of a hemisphere of diameter 6 cm. Volume of hemisphere = 1 (volume of sphere) = πr = π 6.0 = cm Total surface area = curved surface area + area of circle = 1 (surface area of sphere) + πr = 1 (4πr ) + πr = πr + πr = πr 6.0 = π = 84.8 cm. Determine the mass of a hemispherical copper container whose external and internal radii are 1 cm and 10 cm, assuming that 1 cm of copper weighs 8.9 g. Volume of hemisphere = π r = π[ ] 1 10 cm Mass of copper = volume density = [ ] π 1 10 cm 8.9 g/cm = 1570 g = 1.57 kg 4. A metal plumb bob comprises a hemisphere surmounted by a cone. If the diameter of the hemisphere and cone are each 4 cm and the total length is 5 cm, find its total volume. The plumb bob is shown sketched below , John Bird

13 1 1 Volume of bob = π rh+ π r = π ( ) ( 5 ) + π ( ) = 16 4π + π = 9. cm 5. A marquee is in the form of a cylinder surmounted by a cone. The total height is 6 m and the cylindrical portion has a height of.5 m, with a diameter of 15 m. Calculate the surface area of material needed to make the marquee, assuming 1% of the material is wasted in the process The marquee is shown sketched below. Surface area of material for marquee = πrl πrh Hence, surface area = π(7.5)(7.9057) + π(7.5)(.5) = = m + where l = ( 7.5.5) If 1% of material is wasted then amount required = = 9.4 m + = m 6. Determine (a) the volume and (b) the total surface area of the following solids: (i) a cone of radius 8.0 cm and perpendicular height 10 cm (ii) a sphere of diameter 7.0 cm (iii) a hemisphere of radius.0 cm , John Bird

14 (iv) a.5 cm by.5 cm square pyramid of perpendicular height 5.0 cm (v) a 4.0 cm by 6.0 cm rectangular pyramid of perpendicular height 1.0 cm (vi) a 4. cm by 4. cm square pyramid whose sloping edges are each 15.0 cm (vii) a pyramid having an octagonal base of side 5.0 cm and perpendicular height 0 cm (i) A sketch of the cone is shown below. 1 1 = = 670 cm (a) Volume of cone = π r h π ( 8.0) ( 10) (b) Total surface area = πr + πrl where l = ( ) = cm = π ( 8.0) + π ( 8.0)( ) = = 5 cm (ii) (a) Volume of sphere = π = 180 cm (b) Surface area = 7.0 4πr = 4π = 154 cm (iii) (a) Volume of hemisphere = ( ) πr = π.0 = 56.5 cm 1 (4 πr ) + πr = πr = π.0 = 84.8 cm (b) Surface area = ( ) (iv) A sketch of the square pyramid is shown below, where AB = 5.0 cm , John Bird

15 1 (a) Volume of pyramid = (.5 ) ( 5.0 ) = 10.4 cm (b) In the diagram, AC = ( AB BC ) ( ) Surface area = ( ) 1 + = + = = =.0 cm (v) A sketch of the rectangular pyramid is shown below = 96.0 cm (a) Volume of rectangular pyramid = ( )( ) (b) In the diagram, AC = ( 1.0.0) and AD = ( 1.0.0) + = 1.69 cm + = cm Hence, surface area = ( ) = = 146 cm (vi) The square pyramid is shown sketched below , John Bird

16 Diagonal on base = ( ) = cm hence, BC = = cm Hence, perpendicular height, h = ( ) = cm 1 (a) Volume of pyramid = ( 4. ) ( ) (b) AD = ( ) + = = 86.5 cm Hence, surface area = ( ) = = 14 cm (vii) A pyramid having an octagonal base is shown sketched below. One sector is shown in diagram (p) below, where from which, x =.5 tan.5 = cm.5 tan.5 = x 1 Hence, area of whole base = = cm 1 (a) Volume of pyramid = ( )( 0 ) = 805 cm (p) (q) (b) From diagram (q) above, y = ( ) + = cm , John Bird

17 Total surface area = = = 59 cm 7. A metal sphere weighing 4 kg is melted down and recast into a solid cone of base radius 8.0 cm. If the density of the metal is 8000 kg/m determine (a) the diameter of the metal sphere and (b) the perpendicular height of the cone, assuming that 15% of the metal is lost in the process. mass 4 kg Volume of sphere = = = 0.00m = cm = 000 cm density 8000 kg/m 4 (a) Volume of sphere = π r i.e. 000 = 4 π r and radius, r = 000 4π = cm Hence, the diameter of the sphere, d = r = = 17.9 cm (b) Volume of cone = = 550 from which, perpendicular height of cone, h = 1 1 cm = πrh = π ( 8.0) ( 8.0) h 550 = 8.0 cm π 8. Find the volume of a regular hexagonal pyramid if the perpendicular height is 16.0 cm and the side of base is.0 cm. The hexagonal base is shown sketched below. From the diagram, tan 0 = 1.5 h from which, h = 1.5 tan 0 =.598 cm , John Bird

18 Hence, area of hexagonal base = =.87 cm 1 and volume of hexagonal pyramid = (.87 )( 16.0 ) = 15 cm 9. A buoy consists of a hemisphere surmounted by a cone. The diameter of the cone and hemisphere is.5 m and the slant height of the cone is 4.0 m. Determine the volume and surface area of the buoy. The buoy is shown in the sketch below. Height of cone, h = ( ) =.80 m 1 1 Volume of buoy = π r + π rh= π ( 1.5) + π ( 1.5) (.80) = = 10. m πrl πr = π π 1.5 Surface area = ( ) ( )( ) ( ) = 5π +.15π = 8.15π = 5.5 m 10. A petrol container is in the form of a central cylindrical portion 5.0 m long with a hemispherical section surmounted on each end. If the diameters of the hemisphere and cylinder are both 1. m determine the capacity of the tank in litres (1 litre = 1000 cm ). The petrol container is shown sketched below , John Bird

19 4 + = + Volume of container = π r π rh π ( 0.6) π ( 0.6) ( 5.0) = 0.88π + 1.8π = m = cm and tank capacity = cm cm /litre = 6560 litres 11. The diagram below shows a metal rod section. Determine its volume and total surface area ( ) = ( ) Volume of rod = πrh l b w π ( ) ( ) 1 1 = 50π +500 = cm Surface area = ( π rh) + π r + (.50.0) + (.5 100) + (.0 100) = π(1.0)(100) + π( 1.0) = 107 cm , John Bird

20 1. Find the volume (in cm ) of the die-casting shown below. The dimensions are in millimetres. 1 π Volume = ( 0 50) = π = mm = cm = 0.7 cm 1. The cross-section of part of a circular ventilation shaft is shown below, ends AB and CD being open. Calculate (a) the volume of the air, correct to the nearest litre, contained in the part of the system shown, neglecting the sheet metal thickness, (given 1 litre = 1000 cm ), (b) the cross-sectional area of the sheet metal used to make the system, in square metres, and (c) the cost of the sheet metal if the material costs per square metre, assuming that 5% extra metal is required due to wastage , John Bird

21 (a) In cm, volume of air = π ( 00) + π + π ( 150) + π ( 150) = π π π π = π cm = π cm 1000 cm /litre = 1458 litres, correct to the nearest litre (b) In m, cross-sectional area of the sheet metal 1 4 = π ( 0.5)( ) + 4π ( 0.5 ) + π ( 0.5)( 1.5) + π ( 0.4)( 1.5) + π ( ) = π π π + 1.π π =.11π = m = 9.77 m correct to significant figures (c) Sheet metal required = m Cost of sheet metal = = , John Bird

22 EXERCISE 17 Page The radii of the faces of a frustum of a cone are.0 cm and 4.0 cm and the thickness of the frustum is 5.0 cm. Determine its volume and total surface area. A sketch of a side view of the frustum is shown below. 1 h R Rr r Volume of frustum = π ( + + ) = = 147 cm = π ( 5.0)( 4.0 (4.0)(.0).0 ) π ( 5.0)( 8.0) From the diagram below, slant length, l = ( ) = 9 Total surface area = ( ) πl R+ r + πr + πr = π ( 9 )( ) + π (.0) + π ( 4.0) =.1π + 4π + 16π = 164 cm. A frustum of a pyramid has square ends, the squares having sides 9.0 cm and 5.0 cm, respectively. Calculate the volume and total surface area of the frustum if the perpendicular distance between its ends is 8.0 cm. A side view of the frustum of the pyramid is shown below. By similar triangles: CG BG BH AH = from which, height, CG = ( ) (.5) BH 8.0 BG = = 10.0 cm AH , John Bird

23 Height of complete pyramid = = 18.0 cm 1 Volume of large pyramid = ( 9.0 ) ( 18.0 ) = 486 cm 1 Volume of small triangle cut off = ( 5.0 ) ( 10.0 ) Hence, volume of frustum = = 40 cm A cross-section of the frustum is shown below. = 8. cm BC = ( 8 ) + = 8.46 cm = cm Area of four trapeziums = ( )( ) Total surface area of frustum = = 7 cm. A cooling tower is in the form of a frustum of a cone. The base has a diameter of.0 m, the top has a diameter of 14.0 m and the vertical height is 4.0 m. Calculate the volume of the tower and the curved surface area. A sketch of the cooling tower is shown below , John Bird

24 1 h R Rr r Volume of frustum = π ( + + ) 1 π + + = π = m = ( 4.0)( 16.0 (16.0)(7.0) 7.0 ) 8 ( 417) ( ) Slant length, l = ( AB BC ) ( ) + = = 5.6 m Curved surface area = l R r ( )( ) π ( + ) = π = π = 185 m 4. A loudspeaker diaphragm is in the form of a frustum of a cone. If the end diameters are 8.0 cm and 6.00 cm and the vertical distance between the ends is 0.0 cm, find the area of material needed to cover the curved surface of the speaker. A sketch of the loudspeaker diaphragm is shown below. ( ) Slant length, l = ( AC AB ) ( ) + = = 1.95cm Curved surface area = πl (R + r) = π(1.95)( ) = 1707 cm , John Bird

25 5. A rectangular prism of metal having dimensions 4. cm by 7. cm by 1.4 cm is melted down and recast into a frustum of a square pyramid, 10% of the metal being lost in the process. If the ends of the frustum are squares of side cm and 8 cm respectively, find the thickness of the frustum. Volume of frustum of pyramid = 90% of volume of rectangular prism = 0.9( ) = cm. A cross-section of the frustum of the square pyramid is shown below (not to scale). By similar triangles: CG BG BH AH BH h BG = AH.5 = 0.6 h = from which, height, CG = ( ) ( 1.5) = 4.1h cm Volume of large pyramid = ( ) ( h h) h = 1.8 h cm Volume of small triangle cut off = ( ) ( ) Hence, = 4.1h 1.8h =.h Thus, thickness of frustum, h = = cm 6. Determine the volume and total surface area of a bucket consisting of an inverted frustum of a cone, of slant height 6.0 cm and end diameters 55.0 cm and 5.0 cm. A sketch of the bucket is shown below , John Bird

26 Thickness of frustum, h = ( 6.0 ( ) ) 1 h R Rr r Volume of frustum = π ( + + ) Total surface area = ( ) = 4.58 cm 1 π + + = cm correct to 4 = ( 4.58)( 7.5 (7.5)(17.5) 17.5 ) πl R+ r + π r π π 17.5 = ( )( ) ( ) = 160π π = 196.5π = 6051 cm significant figures 7. A cylindrical tank of diameter.0 m and perpendicular height.0 m is to be replaced by a tank of the same capacity but in the form of a frustum of a cone. If the diameters of the ends of the frustum are 1.0 m and.0 m, respectively, determine the vertical height required. Volume of cylinder = rh ( ) ( ) π = π = π m A sketch of the frustum of a cone is shown below , John Bird

27 1 h R Rr r Volume of frustum = π = π ( + + ) 1 1 = π ( h)( (1.0)(0.5) ) = π h( 1.75) from which, thickness of frustum = vertical height, h = π 9 = = 5.14 m 1 π 1.75 ( 1.75) , John Bird

28 EXERCISE 18 Page Determine the volume and surface area of a frustum of a sphere of diameter cm, if the radii of the ends of the frustum are 14.0 cm and.0 cm and the height of the frustum is 10.0 cm. π h h r r 6 Volume of frustum of sphere = ( ) = π ( 10.0) ( ( 14.0 ) + (.0 ) ) 6 = 1105 cm = cm correct to 4 significant figures Surface area of frustum = πrh = π ( ) = 150 cm. Determine the volume (in cm ) and the surface area (in cm ) of a frustum of a sphere if the diameter of the ends are 80.0 mm and 10.0 mm and the thickness is 0.0 mm. The frustum is shown shaded in the cross-section sketch below (in cm units). π h h r r 6 Volume of frustum of sphere = ( ) = ( ) π in cm units π = ( ) + + = 59. cm Surface area of frustum = πrh From the above diagram, r = 6 + OP (1) , John Bird

29 r = 4 + OQ Now OQ = + OP Hence, ( ) Equating equations (1) and () gives: r 6 OP = OP () + = 4 + (.0 + OP) i.e. 6 + OP = ( OP) + OP Thus, 6 = 5 + 6(OP) from which, OP = = 6 6 From equation (1), r 11 = and radius, r = = 6.74 cm Surface area of frustum = πrh = π(6.74)(.0) = 118. cm. A sphere has a radius of 6.50 cm. Determine its volume and surface area. A frustum of the sphere is formed by two parallel planes, one through the diameter and the other at a distance h from the diameter. If the curved surface area of the frustum is to be 1 5 of the surface area of the sphere, find the height h and the volume of the frustum. 4 4 πr = π 6.50 = 1150 cm Volume of sphere = ( ) 4πr = 4π 6.50 = 51 cm Surface area = ( ) The frustum is shown shaded in the sketch below , John Bird

30 1 Curved surface area = πrh = ( 51 ) cm 5 in this case 1 i.e. π(6.50)h = ( 51 ) 5 from which, height, h = 1 ( 51 ) 5 π 6.50 ( ) =.60 cm r = = cm From the diagram, 1 ( ) π h h r r 6 Volume of frustum of sphere = ( ) = π (.60 ) (.60 + ( 6.50 ) + ( ) ) 6 = 6.7 cm 4. A sphere has a diameter of.0 mm. Calculate the volume (in cm ) of the frustum of the sphere contained between two parallel planes distances 1.0 mm and mm from the centre and on opposite sides of it. A cross-section of the frustum is shown in the sketch below. From the diagram, 1 ( ) r = = mm and ( ) r = = mm π h h r r 6 Volume of frustum of sphere = ( ) , John Bird

31 = π (.0) (.0 + ( ) + ( ) ) 6 = 1487 mm = cm 5. A spherical storage tank is filled with liquid to a depth of 0.0 cm. If the inner diameter of the vessel is 45.0 cm, determine the number of litres of liquid in the container (1 litre = 1000 cm ). A cross-section of the storage tank is shown sketched below. Volume of water = π r + volume of frustum From the diagram, 1 ( ) r = = 1.1 cm π h h r r 6 Volume of frustum of sphere = ( ) = π ( 7.5 ) ( (.50 ) + ( 1.1 ) ) 6 = cm Hence, total volume of water = (.50) π = 5 41 cm Number of litres of water = 5 41cm 1000cm /litre = 5.4 litres , John Bird

32 EXERCISE 19 Page Use the prismoidal rule to find the volume of a frustum of a sphere contained between two parallel planes on opposite sides of the centre, each of radius 7.0 cm and each 4.0 cm from the centre. The frustum of the sphere is shown sketched in cross-section below. Radius, r = ( ) + = 8.06 cm x A A A 6 Using the prismoidal rule, volume of frustum = [ ] π π π = ( 7.0) + 4 ( 8.06) + ( 7.0) = 1500 cm. Determine the volume of a cone of perpendicular height 16.0 cm and base diameter 10.0 cm by using the prismoidal rule. x A A A 6 Using the prismoidal rule: Volume, V = [ ] Area, 10.0 A 1 = πr1 = π = 5π Area, A 5.0 = πr = π = 6.5π Area, ( ) A = πr = π 0 = 0 and x = 16.0 cm , John Bird

33 x 16.0 A A A π π 6 6 Hence, volume of cylinder, V = [ ] = [ 5 + 4(6.5 ) + 0] = π = cm. A bucket is in the form of a frustum of a cone. The diameter of the base is 8.0 cm and the diameter of the top is 4.0 cm. If the length is.0 cm, determine the capacity of the bucket (in litres) using the prismoidal rule (1 litre = 1000 cm ). The bucket is shown in the sketch below. The radius of the midpoint is = 17.5 cm x A A A 6 Using the prismoidal rule, volume of frustum = [ ].0 6 = π ( 1.0) + 4π ( 17.5) + π ( 14.0) = 1 00 cm Hence, capacity of bucket = 1 00cm 1000cm /litre = 1.0 litres 4. Determine the capacity of a water reservoir, in litres, the top being a 0.0 m by 1.0 m rectangle, the bottom being a 0.0 m by 8.0 m rectangle and the depth being 5.0 m (1 litre = 1000 cm ). The water reservoir is shown sketched below , John Bird

34 A mid-section will have dimensions of = 5 m by = 10 m x A A A 6 Using the prismoidal rule, volume of frustum = [ ] = ( 0 1) + 4( 5 10) + ( 0 8) = m = cm Hence, capacity of water reservoir = cm cm /litre = litre , John Bird

35 EXERCISE 10 Page The diameter of two spherical bearings are in the ratio :5. What is the ratio of their volumes? Diameters are in the ratio :5 Hence, ratio of their volumes = :5 i.e. 8:15. An engineering component has a mass of 400 g. If each of its dimensions are reduced by 0%, determine its new mass. New mass = ( 0.7) 400 = = 17. g , John Bird

MENSURATION. Definition

MENSURATION. Definition MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters

More information

VOLUME AND SURFACE AREAS OF SOLIDS

VOLUME AND SURFACE AREAS OF SOLIDS VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b

More information

SURFACE AREAS AND VOLUMES

SURFACE AREAS AND VOLUMES CHAPTER 1 SURFACE AREAS AND VOLUMES (A) Main Concepts and Results Cuboid whose length l, breadth b and height h (a) Volume of cuboid lbh (b) Total surface area of cuboid 2 ( lb + bh + hl ) (c) Lateral

More information

SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Solid Shapes Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SOLID SHAPES Version: 2.1 Date: 10-11-2015 Mathematics Revision Guides Solid

More information

9 Area, Perimeter and Volume

9 Area, Perimeter and Volume 9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right

More information

GCSE Exam Questions on Volume Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice.

GCSE Exam Questions on Volume Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice. Question 1. (AQA June 2003 Intermediate Paper 2 Calculator OK) A large carton contains 4 litres of orange juice. Cylindrical glasses of height 10 cm and radius 3 cm are to be filled from the carton. How

More information

ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC

ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC WEEK Calculator paper Each set of questions is followed by solutions so you can check & mark your own work CONTENTS TOPIC

More information

Unit 04: Fundamentals of Solid Geometry - Shapes and Volumes

Unit 04: Fundamentals of Solid Geometry - Shapes and Volumes Unit 04: Fundamentals of Solid Geometry - Shapes and Volumes Introduction. Skills you will learn: a. Classify simple 3-dimensional geometrical figures. b. Calculate surface areas of simple 3-dimensional

More information

Chapter 16. Mensuration of Cylinder

Chapter 16. Mensuration of Cylinder 335 Chapter 16 16.1 Cylinder: A solid surface generated by a line moving parallel to a fixed line, while its end describes a closed figure in a plane is called a cylinder. A cylinder is the limiting case

More information

B = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3

B = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3 45 Volume Surface area measures the area of the two-dimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space

More information

Right Prisms Let s find the surface area of the right prism given in Figure 44.1. Figure 44.1

Right Prisms Let s find the surface area of the right prism given in Figure 44.1. Figure 44.1 44 Surface Area The surface area of a space figure is the total area of all the faces of the figure. In this section, we discuss the surface areas of some of the space figures introduced in Section 41.

More information

The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- Area = 1 2 D x d CIRCLE.

The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- Area = 1 2 D x d CIRCLE. Revision - Areas Chapter 8 Volumes The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- SQUARE RECTANGE RHOMBUS KITE B dd d D D Area = 2 Area = x B

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Chapter 15 Mensuration of Solid

Chapter 15 Mensuration of Solid 3 Chapter 15 15.1 Solid: It is a body occupying a portion of three-dimensional space and therefore bounded by a closed surface which may be curved (e.g., sphere), curved and planer (e.g., cylinder) or

More information

GCSE Revision Notes Mathematics. Volume and Cylinders

GCSE Revision Notes Mathematics. Volume and Cylinders GCSE Revision Notes Mathematics Volume and Cylinders irevise.com 2014. All revision notes have been produced by mockness ltd for irevise.com. Email: info@irevise.com Copyrighted material. All rights reserved;

More information

Exercise 11.1. Q.1. A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area?

Exercise 11.1. Q.1. A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area? 11 MENSURATION Exercise 11.1 Q.1. A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area? (a) Side = 60 m (Given) Perimeter of

More information

LESSON SUMMARY. Measuring Shapes

LESSON SUMMARY. Measuring Shapes LESSON SUMMARY CXC CSEC MATHEMATICS UNIT SIX: Measurement Lesson 11 Measuring Shapes Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volume 1 (Some helpful exercises and page numbers are given

More information

In Problems #1 - #4, find the surface area and volume of each prism.

In Problems #1 - #4, find the surface area and volume of each prism. Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

More information

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up 10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres 10.4 Day 1 Warm-up 1. Which identifies the figure? A rectangular pyramid B rectangular prism C cube D square pyramid 3. A polyhedron

More information

CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area CONNECT: Volume, Surface Area 1. VOLUMES OF SOLIDS A solid is a three-dimensional (3D) object, that is, it has length, width and height. One of these dimensions is sometimes called thickness or depth.

More information

Chapter 19. Mensuration of Sphere

Chapter 19. Mensuration of Sphere 8 Chapter 19 19.1 Sphere: A sphere is a solid bounded by a closed surface every point of which is equidistant from a fixed point called the centre. Most familiar examples of a sphere are baseball, tennis

More information

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18

More information

SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

More information

Area is a measure of how much space is occupied by a figure. 1cm 1cm

Area is a measure of how much space is occupied by a figure. 1cm 1cm Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number

More information

Wednesday 15 January 2014 Morning Time: 2 hours

Wednesday 15 January 2014 Morning Time: 2 hours Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number

More information

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources: Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard- Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students

More information

CHAPTER 27 AREAS OF COMMON SHAPES

CHAPTER 27 AREAS OF COMMON SHAPES EXERCISE 113 Page 65 CHAPTER 7 AREAS OF COMMON SHAPES 1. Find the angles p and q in the diagram below: p = 180 75 = 105 (interior opposite angles of a parallelogram are equal) q = 180 105 0 = 35. Find

More information

Height. Right Prism. Dates, assignments, and quizzes subject to change without advance notice.

Height. Right Prism. Dates, assignments, and quizzes subject to change without advance notice. Name: Period GL UNIT 11: SOLIDS I can define, identify and illustrate the following terms: Face Isometric View Net Edge Polyhedron Volume Vertex Cylinder Hemisphere Cone Cross section Height Pyramid Prism

More information

Name: Date: Geometry Honors Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry Honors Solid Geometry. Name: Teacher: Pd: Name: Date: Geometry Honors 2013-2014 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-6 HW: Pgs: 7-10 DAY 2: SWBAT: Calculate the Volume

More information

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder. TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

More information

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference 1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

More information

Volume of Prisms, Cones, Pyramids & Spheres (H)

Volume of Prisms, Cones, Pyramids & Spheres (H) Volume of Prisms, Cones, Pyramids & Spheres (H) A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas. Name: Total Marks: 1. A cylinder is made of

More information

Perfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through

Perfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet cost-efficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters

More information

10-4 Surface Area of Prisms and Cylinders

10-4 Surface Area of Prisms and Cylinders : Finding Lateral Areas and Surface Areas of Prisms 2. Find the lateral area and surface area of the right rectangular prism. : Finding Lateral Areas and Surface Areas of Right Cylinders 3. Find the lateral

More information

Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

More information

CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area CONNECT: Volume, Surface Area 2. SURFACE AREAS OF SOLIDS If you need to know more about plane shapes, areas, perimeters, solids or volumes of solids, please refer to CONNECT: Areas, Perimeters 1. AREAS

More information

Length, perimeter and area 3.1. Example

Length, perimeter and area 3.1. Example 3.1 Length, perimeter and area Kno and use the names and abbreviations for units of length and area Be able to measure and make a sensible estimate of length and area Find out and use the formula for the

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

Imperial Measures of Length

Imperial Measures of Length SI system of measures: Imperial Measures of Length is an abbreviation for a system of units based on powers of 10; the fundamental unit: of length is the ; of mass is the ; and of time is the. Imperial

More information

16 Circles and Cylinders

16 Circles and Cylinders 16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

More information

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min. Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles

More information

Solids. Objective A: Volume of a Solids

Solids. Objective A: Volume of a Solids Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

More information

Geometry Notes VOLUME AND SURFACE AREA

Geometry Notes VOLUME AND SURFACE AREA Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate

More information

Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Shapes Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Mensuration. The shapes covered are 2-dimensional square circle sector 3-dimensional cube cylinder sphere

Mensuration. The shapes covered are 2-dimensional square circle sector 3-dimensional cube cylinder sphere Mensuration This a mixed selection of worksheets on a standard mathematical topic. A glance at each will be sufficient to determine its purpose and usefulness in any given situation. These notes are intended

More information

DIFFERENTIATION OPTIMIZATION PROBLEMS

DIFFERENTIATION OPTIMIZATION PROBLEMS DIFFERENTIATION OPTIMIZATION PROBLEMS Question 1 (***) 4cm 64cm figure 1 figure An open bo is to be made out of a rectangular piece of card measuring 64 cm by 4 cm. Figure 1 shows how a square of side

More information

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem. Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.

More information

General Certificate of Secondary Education January 2014. Mathematics Unit T3 (With calculator) Higher Tier [GMT31] FRIDAY 10 JANUARY, 9.15am 11.

General Certificate of Secondary Education January 2014. Mathematics Unit T3 (With calculator) Higher Tier [GMT31] FRIDAY 10 JANUARY, 9.15am 11. Centre Number 71 Candidate Number General Certificate of Secondary Education January 2014 Mathematics Unit T3 (With calculator) Higher Tier [GMT31] MV18 FRIDAY 10 JANUARY, 9.15am 11.15 am TIME 2 hours,

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

More information

ME 111: Engineering Drawing

ME 111: Engineering Drawing ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian

More information

By the end of this set of exercises, you should be able to:

By the end of this set of exercises, you should be able to: BASIC GEOMETRIC PROPERTIES By the end of this set of exercises, you should be able to: find the area of a simple composite shape find the volume of a cube or a cuboid find the area and circumference of

More information

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty Dyffryn School Ysgol Y Dyffryn Mathematics Faculty Formulae and Facts Booklet Higher Tier Number Facts Sum This means add. Difference This means take away. Product This means multiply. Share This means

More information

1 cm 3. 1 cm. 1 cubic centimetre. height or Volume = area of cross-section length length

1 cm 3. 1 cm. 1 cubic centimetre. height or Volume = area of cross-section length length Volume Many things are made in the shape of a cuboid, such as drink cartons and cereal boxes. This activity is about finding the volumes of cuboids. Information sheet The volume of an object is the amount

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?

1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack? Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is

More information

Finding Volume of Rectangular Prisms

Finding Volume of Rectangular Prisms MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.

More information

Maximum / Minimum Problems

Maximum / Minimum Problems 171 CHAPTER 6 Maximum / Minimum Problems Methods for solving practical maximum or minimum problems will be examined by examples. Example Question: The material for the square base of a rectangular box

More information

Similar shapes. 33.1 Similar triangles CHAPTER. Example 1

Similar shapes. 33.1 Similar triangles CHAPTER. Example 1 imilar shapes 33 HTR 33.1 imilar triangles Triangle and triangle have the same shape but not the same size. They are called similar triangles. The angles in triangle are the same as the angles in triangle,

More information

Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:

Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples: Solid Geometry Solid Geometry is the geometry of three-dimensional space, the kind of space we live in. Three Dimensions It is called three-dimensional or 3D because there are three dimensions: width,

More information

Term Definition Example Dimension Size, distance The dimensions of the plate were given in metres. amount an object can hold

Term Definition Example Dimension Size, distance The dimensions of the plate were given in metres. amount an object can hold Term Definition Example Dimension Size, distance The dimensions of the plate were given in metres. Capacity Volume - the amount an object can hold The capacity of an icecream container is 2 litres. Mass

More information

25.5 m Upper bound. maximum error 0.5 m

25.5 m Upper bound. maximum error 0.5 m Errors When something is measured, the measurement is subject to uncertainty. This uncertainty is called error even though it does not mean that a mistake has been made. The size of the error depends on

More information

5. Surface Area Practice Chapter Test

5. Surface Area Practice Chapter Test ID: A Date: / / Name: Block ID: 5. Surface Area Practice Chapter Test Multiple Choice Identify the choice that best completes the statement or answers the question. Choose the best answer. 1. Which combination

More information

The Area is the width times the height: Area = w h

The Area is the width times the height: Area = w h Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what

More information

Unit 1 Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 1 Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Unit 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Convert 8 yd. to inches. a. 24 in. b. 288 in. c. 44 in. d. 96 in. 2. Convert 114 in. to yards,

More information

CIRCUMFERENCE AND AREA OF A CIRCLE

CIRCUMFERENCE AND AREA OF A CIRCLE CIRCUMFERENCE AND AREA OF A CIRCLE 1. AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take = 3.14) 2. In the given

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

17.1 Cross Sections and Solids of Rotation

17.1 Cross Sections and Solids of Rotation Name Class Date 17.1 Cross Sections and Solids of Rotation Essential Question: What tools can you use to visualize solid figures accurately? Explore G.10.A Identify the shapes of two-dimensional cross-sections

More information

12-4 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h

12-4 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h The volume is 108 cm 3. The volume V of a prism is V = Bh, where B is the area of a base and h the

More information

Grade 7/8 Math Circles Winter D Geometry

Grade 7/8 Math Circles Winter D Geometry 1 University of Waterloo Faculty of Mathematics Grade 7/8 Math Circles Winter 2013 3D Geometry Introductory Problem Mary s mom bought a box of 60 cookies for Mary to bring to school. Mary decides to bring

More information

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

More information

Perimeter and Area. Chapter 11 11.1 INTRODUCTION 11.2 SQUARES AND RECTANGLES TRY THESE

Perimeter and Area. Chapter 11 11.1 INTRODUCTION 11.2 SQUARES AND RECTANGLES TRY THESE PERIMETER AND AREA 205 Perimeter and Area Chapter 11 11.1 INTRODUCTION In Class VI, you have already learnt perimeters of plane figures and areas of squares and rectangles. Perimeter is the distance around

More information

12-1 Representations of Three-Dimensional Figures

12-1 Representations of Three-Dimensional Figures Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

More information

3D shapes quiz. Level: A. 1. A 3-D shape can also be called... A) A flat shape B) A solid shape C) A polygon. 2. Vertices are also called...

3D shapes quiz. Level: A. 1. A 3-D shape can also be called... A) A flat shape B) A solid shape C) A polygon. 2. Vertices are also called... Level: A 1. A 3-D shape can also be called... A) A flat shape B) A solid shape C) A polygon 2. Vertices are also called... A) Edges B) Corners C) Faces D) Sides 3. A solid object has six faces which are

More information

WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards - 16 1/2 feet

WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards - 16 1/2 feet WEIGHTS AND MEASURES Linear Measure 1 Foot12 inches 1 Yard 3 feet - 36 inches 1 Rod 5 1/2 yards - 16 1/2 feet 1 Furlong 40 rods - 220 yards - 660 feet 1 Mile 8 furlongs - 320 rods - 1,760 yards 5,280 feet

More information

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ = AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

More information

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

More information

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

More information

UNIT 10: 3-D SHAPES. AREAS AND VOLUMES

UNIT 10: 3-D SHAPES. AREAS AND VOLUMES UNIT 10: 3-D SHAPES. AREAS AND VOLUMES Polyhedrons: Polyhedrons are geometric solids whose faces are formed by polygons. The components you can fine: Faces, Edges, Vertices, Dihedron Angle. Regular polyhedrons:

More information

2nd Semester Geometry Final Exam Review

2nd Semester Geometry Final Exam Review Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular

More information

CHAPTER 28 THE CIRCLE AND ITS PROPERTIES

CHAPTER 28 THE CIRCLE AND ITS PROPERTIES CHAPTER 8 THE CIRCLE AND ITS PROPERTIES EXERCISE 118 Page 77 1. Calculate the length of the circumference of a circle of radius 7. cm. Circumference, c = r = (7.) = 45.4 cm. If the diameter of a circle

More information

Shape, Space and Measure

Shape, Space and Measure Name: Shape, Space and Measure Prep for Paper 2 Including Pythagoras Trigonometry: SOHCAHTOA Sine Rule Cosine Rule Area using 1-2 ab sin C Transforming Trig Graphs 3D Pythag-Trig Plans and Elevations Area

More information

1. The Stockholm Globe Arena is the largest hemispherical building in the world.

1. The Stockholm Globe Arena is the largest hemispherical building in the world. WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID & CYLINDER EXAM QUESTIONS 1. The Stockholm Globe Arena is the largest hemispherical building in the world. The radius of the building is 110 m.

More information

A Resource for Free-standing Mathematics Qualifications

A Resource for Free-standing Mathematics Qualifications When something is measured, the measurement is subject to error. The size of the error depends on the sensitivity of the measuring instrument and how carefully it is used. Often when measurements are given

More information

12 Surface Area and Volume

12 Surface Area and Volume 12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

More information

Practice: Space Figures and Cross Sections Geometry 11-1

Practice: Space Figures and Cross Sections Geometry 11-1 Practice: Space Figures and Cross Sections Geometry 11-1 Name: Date: Period: Polyhedron * 3D figure whose surfaces are * each polygon is a. * an is a segment where two faces intersect. * a is a point where

More information

Calculate the circumference of a circle with radius 5 cm. Calculate the area of a circle with diameter 20 cm.

Calculate the circumference of a circle with radius 5 cm. Calculate the area of a circle with diameter 20 cm. RERTIES F CIRCLE Revision. The terms Diameter, Radius, Circumference, rea of a circle should be revised along with the revision of circumference and area. Some straightforward examples should be gone over

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Name Date Class. Lateral and Surface Area of a Right Prism. The lateral area of a right prism with base perimeter P and height h is L = Ph.

Name Date Class. Lateral and Surface Area of a Right Prism. The lateral area of a right prism with base perimeter P and height h is L = Ph. Name Date Class LESSON 10-4 Reteach Surface Area of Prisms and Cylinders The lateral area of a prism is the sum of the areas of all the lateral faces. A lateral face is not a base. The surface area is

More information

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important These students are setting up a tent. How do the students know how to set up the tent? How is the shape of the tent created? How could students find the amount of material needed to make the tent? Why

More information

DEVELOPMENT OF SURFACES

DEVELOPMENT OF SURFACES VLPMNT F SURFS In industrial world, an engineer is frequently confronted with problems where the development of surfaces of an object has to be made to help him to go ahead with the design and manufacturing

More information

Integrated Algebra: Geometry

Integrated Algebra: Geometry Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

1. Determine how much paper Ramiro and Danielle need to make one of each style and size of shade.

1. Determine how much paper Ramiro and Danielle need to make one of each style and size of shade. Surface Area - Blue Problems Making Lampshades In Exercise 1-7, use the following information. Ramiro and Danielle are making lampshades using wire and different colors of heavy-weight tissue paper. They

More information

Pizza! Pizza! Assessment

Pizza! Pizza! Assessment Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the

More information

The small increase in x is. and the corresponding increase in y is. Therefore

The small increase in x is. and the corresponding increase in y is. Therefore Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

More information

Yimin Math Centre. Year 6 Problem Solving Part 2. 2.1 Measurements... 1. 2.2 Practical Exam Questions... 8. 2.3 Quiz... 10. Page: 10 11 12 Total

Yimin Math Centre. Year 6 Problem Solving Part 2. 2.1 Measurements... 1. 2.2 Practical Exam Questions... 8. 2.3 Quiz... 10. Page: 10 11 12 Total Year 6 Problem Solving Part 2 Student Name: Grade: Date: Score: Table of Contents 2 Problem Solving Part 2 1 2.1 Measurements....................................... 1 2.2 Practical Exam Questions.................................

More information

There are good hints and notes in the answers to the following, but struggle first before peeking at those!

There are good hints and notes in the answers to the following, but struggle first before peeking at those! Integration Worksheet - Using the Definite Integral Show all work on your paper as described in class. Video links are included throughout for instruction on how to do the various types of problems. Important:

More information