Chapter 7: Polarization


 Joella Lane
 2 years ago
 Views:
Transcription
1 Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces on Dielectrics 2
2 Introduction Conductors: contain a great amount of free charge Dielectrics: all charges are attached to specific atoms or molecules Examples: wood, plastic, stone... Then How does a dielectric substance respond to an external electrostatic field? Charges attached to molecules or atoms undergo microscopic displacements 3 Induced Dipoles An atom has a positively charged core (the nucleus) and a negatively charged electron cloud surrounding it The nucleus is pushed in the direction of the field and the electrons the opposite way: The atom gets polarized Induced dipole moment: Polarizability If the electric field is too strong this relationship can become nonlinear and the atom can even be ionized 4
3 Alignment of Polar Molecules Some molecules have permanent dipole moments that are not due to the action of an external electric field Example: water molecule Polar Molecules This polar molecules tends to rotate to line up its dipole moment parallel to the external electric field 5 Polarization Dielectrics with neutral atoms or nonpolar molecules: A dipole moment parallel to the field is induced in each atom or molecule by the applied electric field Dielectrics with polar molecules: The external electric field exerts a torque on each molecule that tends to line it up along the field direction This will not be a complete alignment due to the effect of random thermal motion In both cases we obtain a polarized dielectric: a lot of little dipoles aligned with the external field 6
4 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces on Dielectrics 7 Polarization Vector We are going to study the field due to a piece of polarized material We will forget for a moment about the cause of the polarization Each molecule has a dipole moment: From a macroscopic point of view we define the polarization vector: Dipole moment per unit volume 8
5 Electric Field Due to a Polarized Material Let's suppose that we know the polarization vector. Can we calculate the the electric field created by the polarized material? Idea: the total field can be obtained as a superposition of the fields of all the tiny dipoles inside the material Potential due to a dipole at the origin: If the dipole is located at an arbitrary point 9 Electric Field Due to a Polarized Material Dipole moment due to a volume element : Potential created by this volume element: Integrating over the volume of the polarized material: 10
6 Electric Field Due to a Polarized Material This potential can be expressed in a different way By using: We can write down the integrand as: 11 Electric Field Due to a Polarized Material And we arrive to: By applying the Divergence Theorem: : Volume of the polarized material : Surface boundary of the polarized material 12
7 Polarization Charges Potential created by a volume and a surface charge densities: By analogy we van define: Surface density of polarization charges Volume density of polarization charges 13 Polarization Charges We can calculate the electric field produced by the polarized material by finding the polarization charges and calculating the field that they produce We get to a problem of electrostatics (chapter 3) We must know the polarization vector to apply this technique Questions about polarization charges: Are they actual charges or just a mathematical tool? If they are true charges, How does polarization lead to such accumulation of charge in a neutral material? 14
8 Physical Meaning of the Polarization Charges Uniformly polarized material: The head of a dipole cancels the tail of its neighbor But at the ends are two layers of charges left over: 15 Physical Meaning of the Polarization Charges Piece of material with nonuniform polarization There is not complete compensation between adjacent positive and negative layers net bound charge within the material Polarization charges are real accumulations of charge 16
9 Total Polarization Charge The total charge can be calculated by summing the surface and volume polarization charges: Divergence Theorem There is no total polarization charge in a polarized material (unless free charge has been deposited) 17 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces on Dielectrics 18
10 The Electric Displacement Vector We have already calculated the field crated by a polarized material: polarization charges The total electric field is that produced by both the polarization charges and the free charges. This field obeys the Gauss's Law: with: Electric displacement vector 19 The Electric Displacement Vector Gauss's Law can be written in terms of the electric displacement vector: Differential form Integral form This is an auxiliary field: it can not be measured Units: C/m2 (same as Its scalar sources are only the free charges Boundary condition: ) 20
11 Vector Sources of the Electric Displacement Vector A vector field is determined by its divergence (scalar sources) and its curl (vector sources) From the definition: (Electrostatics) We get to: The curl of the polarization vector is the vector source of the electric displacement vector 21 Usefulness of the Electric Displacement Vector The parallel between and is subtle: The electric displacement vector can NOT be obtained in the same way as the electric field but forgetting about the polarization charges However for highly symmetric situations we usually have: and then the electric displacement vector can be calculated in terms of the free charge from the Gauss's Law: 22
12 Example Parallelplate capacitor filled with a dielectric slab Plane symmetry By applying Gauss's Law: 23 Example Infinite straight line with a uniform line charge λ surrounded by a dielectric cylinder can be expressed in terms of the free charges: If we knew we could calculate by using: BUT USUALLY: we need to know the functional form of this relationship (constitutive equation) 24
13 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces on Dielectrics 25 Constitutive Laws A dielectric is usually polarized due to an external electric field For many substances the polarization is proportional to the field: : electric susceptibility (dimensionless) In vacuum: is the total electric field (due to free and polarization charges), not the externally applied electric field Substances verifying this constitutive equation are referred to as linear dielectrics 26
14 Linear Dielectrics Homogeneous: its susceptibility is independent of position Isotropic: its susceptibility is a scalar magnitude (in instead of a tensor) Linear: polarization is proportional to the field This is true as long as the field is not too strong There exit substances not obeying this law: Ferroelectric materials: the polarization depends on the history of the particular chunk of material Electrets: materials which are able to hold a permanent electric polarization in absence of an external field 27 Linear Dielectrics Relationship between the electric displacement and the electric field: We define: Permittivity of the material: Relative permittivity: Therefore: ;(F/m) and: 28
15 Dielectric Constants for Some Common Substances Material Air Glass 410 Paper 24 Wood Porcelain 68 Rubber Ethyl Alcohol 28.4 sodium chloride 6.1 Sea water 72 Distilled water Example Parallelplate capacitor filled with a linear dielectric We have already obtained: The capacitance is increased by a factor of 30
16 Example Parallelplate capacitor: polarization charges In general, for linear dielectrics: 31 Capacitor filled with Insulating Material For a given free charge, the potential difference is smaller when the capacitor is filled with a dielectric material: Because the electric field between the plates is partially shielded by the polarization charges and hence its magnitude is smaller than in the vacuum case For a given difference of potential, the accumulated free charge is larger when the capacitor is filled with a dielectric material: Because an extra amount of free charge is needed to counteract the effect of the polarization charges in order to attain the same electric field between the plates 32
17 Example Parallel plate capacitor partially filled with a dielectric Applying Gauss's Law: Capacitance of two capacitors connected in series 33 Example Parallelplate capacitor partially filled with a dielectric In both regions must be verified that: Capacitance of two capacitors connected in parallel 34
18 Example Conducting sphere carrying a charge q surrounded by a dielectric sphere Symmetry: Gauss's Law: 35 Example Conducting sphere carrying a charge q surrounded by a dielectric sphere: polarization charges Inside the material: (linear dielectric) Exercise: check that the total polarization charge is zero 36
19 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces on Dielectrics 37 Energy in Dielectric Systems We already know: This equation give us the work that it takes to bring all the charges from infinity to their final positions When dealing with dielectric systems it is more convenient to use this formula: This equation give us the work that it takes to bring the free charges from infinity to their final positions Both formulas are correct, but they represent different things 38
20 Energy Stored in a ParallelPlate Capacitor For a parallelplate capacitor filled with a dielectric: We have calculated: Therefore: 39 Forces on Dielectrics The force exerted on the dielectric material in a direction can be calculated by using the principle of virtual work: Example: dielectric slab partially inserted between the plates of a parallelplate capacitor: 40
21 Summary (I) Polarization is the response of dielectric materials to external electric fields: The dipole moments of the molecules of the dielectric tends to line up in the direction of the electric field. The polarization vector describes the polarization of the material from a macroscopic point of view. Polarization charges account for the electric field created by the polarized material. The electric displacement vector is an auxiliary vector field whose scalar sources are the free charges. 41 Summary (II) In highly symmetric distributions the electric displacement vector can be calculated as a function of the free charges by using Gauss's Law. To calculate the total electric field we also need a constitutive equation of the medium, which gives us the relationship between the polarization vector and the electric field. For linear media the polarization vector is proportional to the electric field. To calculate the energy of dielectric systems we have introduced an alternative formula of the energy that does not include the work required to bring the polarization charges from infinity. 42
Chapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationCoefficient of Potential and Capacitance
Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that
More informationCapacitors. February 5, 2014 Physics for Scientists & Engineers 2, Chapter 24 1
Capacitors February 5, 2014 Physics for Scientists & Engineers 2, Chapter 24 1 Review! The electric potential energy stored in a capacitor is given by! The field energy density stored in a parallel plate
More informationElectric Fields in Dielectrics
Electric Fields in Dielectrics Any kind of matter is full of positive and negative electric charges. In a dielectric, these charges cannot move separately from each other through any macroscopic distance,
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energystoring devices
More information* Dielectrics * Polar and Nonpolar Molecules * Polarization P * Polarization Charge Density. PPT No. 10
* Dielectrics * Polar and Nonpolar Molecules * Polarization P * Polarization Charge Density PPT No. 10 Introduction A medium plays a significant role in determining the response of an electric field. The
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationChapter 18 Electric Forces and Electric Fields. Key Concepts:
Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent
More informationELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects
ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?
More informationChapter 5. Magnetostatics and Electromagnetic Induction
Chapter 5. Magnetostatics and Electromagnetic Induction 5.1 Magnetic Field of Steady Currents The Lorentz force law The magnetic force in a charge q, moving with velocity v in a magnetic field B in a magnetic
More informationphysics 111N electric potential and capacitance
physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationChapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohiostate.edu/~humanic/  Chapter 18 Electric Forces and Electric Fields
More informationGauss's Law. Gauss's Law in 3, 2, and 1 Dimension
[ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationElectromagnetism  Lecture 2. Electric Fields
Electromagnetism  Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
More informationFall 12 PHY 122 Homework Solutions #4
Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 1030 C.m at a point 4.1 x 109 m away if this point is (a)
More information2 A Dielectric Sphere in a Uniform Electric Field
Dielectric Problems and Electric Susceptability Lecture 10 1 A Dielectric Filled Parallel Plate Capacitor Suppose an infinite, parallel plate capacitor with a dielectric of dielectric constant ǫ is inserted
More informationDEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
More informationAP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.
Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = 4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?
More informationElectric Forces and Fields. Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles
Electric Forces and Fields Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles 1 Friction causes these effects Pollen sticks to bees Dust sticks to TV Static cling of clothes
More information"  angle between l and a R
Magnetostatic Fields According to Coulomb s law, any distribution of stationary charge produces a static electric field (electrostatic field). The analogous equation to Coulomb s law for electric fields
More informationChapter 7: Dielectrics
7.1 Introduction to Dielectrics A dielectric is an insulator or nonconductor of electricity. Its effects are defined in terms of the ratio of the capacitance of a capacitor with a dielectric between the
More information* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.
* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying
More informationFall 97 Test 1, P. 2
2102 Fall 97 Test 1 Fall 97 Test 1, P. 2 Fall 97 Test 1, P. 3 Fall 97 Test 1, P. 4 Fall 97 Test 1, P. 5 5. (10 points) A spherical rubber balloon has a charge uniformly distributed over is surface. The
More informationElectromagnetism  Lecture 5. Capacitors & Electrostatic Energy
Electromagnetism  Lecture 5 Capacitors & Electrostatic Energy Examples of Capacitors Calculations of Capacitance Electrostatic Energy Introduction of Dielectrics General Result for Electrostatic Energy
More informationChapter 25: Capacitance
Chapter 25: Capacitance Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. Albert Einstein 25.1 Introduction Whenever
More information21.1 Coulomb s Law  Electric Charge  Conductors and Insulators  Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved
INTRODUCTION We will understand how electric and magnetic fields affect charged particles Lorentz Force Law: we will learn to describe how electric and magnetic fields are produced by charged particles
More informationLesson 6 Capacitors and Capacitance Lawrence B. Rees 2007. You may make a single copy of this document for personal use without written permission.
Lesson 6 apacitors and apacitance Lawrence B. Rees 7. You may make a single copy of this document for personal use without written permission. 6. Introduction In 745 Pieter van Musschenbroek, while trying
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 9 Chapter 24 sec. 35 Fall 2012 Semester Matthew Jones Thursday s Clicker Question To double the capacitance of a parallel plate capacitor, you should: (a) Double
More informationPhysics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
More informationFebruary 6. Physics 272. Spring 2014 Prof. Philip von Doetinchem
Physics 272 February 6 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  216 Summary Charges
More informationHW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
More informationPHYS2020: General Physics II Course Lecture Notes Section II
PHYS2020: General Physics II Course Lecture Notes Section II Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationCapacitance and Ferroelectrics
Ram Seshadri MRL 2031, x6129 seshadri@mrl.ucsb.edu; http://www.mrl.ucsb.edu/ seshadri/teach.html Capacitance and Ferroelectrics A voltage V applied across a capacitor of caacitance C allows a quantity
More informationExam 2 Practice Problems Part 1 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z
More informationThe Electric Field. Electric Charge, Electric Field and a Goofy Analogy
. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it
More informationHow to transform, with a capacitor, thermal energy into usable work.
How to transform, with a capacitor, thermal energy into usable work. E. N. Miranda 1 CONICET CCT Mendoza 55 Mendoza, Argentina and Facultad de Ingeniería Universidad de Mendoza 55 Mendoza, Argentina Abstract:
More informationPSS 27.2 The Electric Field of a Continuous Distribution of Charge
Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight ProblemSolving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.
More informationGravitational Fields: Review
Electric Fields Review of gravitational fields Electric field vector Electric fields for various charge configurations Field strengths for point charges and uniform fields Work done by fields & change
More informationELECTROSTATIC POTENTIAL AND CAPACITANCE
Chapter Two ELECTROSTATIC POTENTIAL AND CAPACITANCE.1 INTRODUCTION In Chapters 6 and 8 (Class XI), the notion of potential energy was introduced. When an external force does work in taking a body from
More informationChapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationNote: be careful not confuse the conductivity σ with the surface charge σ, or resistivity ρ with volume charge ρ.
SECTION 7 Electrodynamics This section (based on Chapter 7 of Griffiths) covers effects where there is a time dependence of the electric and magnetic fields, leading to Maxwell s equations. The topics
More information4/16/ Bertrand
Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 1019 Coulombs. Charge distribution
More informationKirchhoff's Rules and Applying Them
[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationChapter 3. Gauss s Law
3 3 30 Chapter 3 Gauss s Law 3.1 Electric Flux... 32 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 34 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 39 Example
More informationElectromagnetic Waves
Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from timevarying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic
More informationJanuary 30. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 January 30 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  140 Summary General
More informationElectrostatic Fields: Coulomb s Law & the Electric Field Intensity
Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University
More informationEE301 Lesson 14 Reading: 10.110.4, 10.1110.12, 11.111.4 and 11.1111.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
More informationElasticity Theory Basics
G22.3033002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
More informationElectromagnetic Induction
Electromagnetic Induction Lecture 29: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Mutual Inductance In the last lecture, we enunciated the Faraday s law according to
More informationProblem Solving 4: Capacitance, Stored Energy, Capacitors in Parallel and Series, Dielectrics
Problem Solving 4: Capacitance, Stored Energy, Capacitors in Parallel and Series, Dielectrics Section Table Names Hand in one copy per group at the end of the Friday Problem Solving Session. OBJECTIVES
More informationDielectric Definition
RADIO FREQUENCY DIELECTRIC MEASUREMENT Dielectric Definition Electric field interaction with an atom under the classical dielectric model In the classical approach to the dielectric model a material is
More informationChapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24
Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces actionatadistance Instead of Q 1 exerting a force directly on Q at a distance,
More informationProblem 4.48 Solution:
Problem 4.48 With reference to Fig. 419, find E 1 if E 2 = ˆx3 ŷ2+ẑ2 (V/m), ε 1 = 2ε 0, ε 2 = 18ε 0, and the boundary has a surface charge density ρ s = 3.54 10 11 (C/m 2 ). What angle does E 2 make with
More information* Magnetic Scalar Potential * Magnetic Vector Potential. PPT No. 19
* Magnetic Scalar Potential * Magnetic Vector Potential PPT No. 19 Magnetic Potentials The Magnetic Potential is a method of representing the Magnetic field by using a quantity called Potential instead
More informationElectro Magnetic Fields
Electro Magnetic Fields Faheem Ahmed Khan, Assoc Prof. EEE Department, Ghousia College of Engineering, Ramanagaram EEE, GCE,Ramanagaram Page 1 of 50 Coulomb s Law and electric field intensity Experimental
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationUniversity Physics 227N/232N Current and Ohm s Law, Resistors, Circuits, and Kirchoff Lab this Friday, Feb 28 So NO QUIZ this Friday!
University Physics 227N/232N Current and Ohm s Law, Resistors, Circuits, and Kirchoff Lab this Friday, Feb 28 So NO QUIZ this Friday! Dr. Todd Satogata (ODU/Jefferson Lab) and Fred Miller satogata@jlab.org
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More informationCHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS
CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding
More informationPhysics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 16 9/7/2012 1:10 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
More informationChapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles
Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar
More informationChapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces  Magnetism  Magnetic Field  Magnetic Field Lines and Magnetic Flux  Motion of Charged Particles in a Magnetic Field  Applications of Motion of Charged
More informationpotential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 20060927, kl 16.0022.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
More informationA2 Physics  Electric Fields Q&A Revision Sheet
Give the equation relating to the force between point charges in a vacuum If 'F' (the force) is negative what does that mean? If 'F' (the force) is positive what does that mean? State Coulomb's Law F is
More informationMagnetostatics II. Lecture 24: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay
Magnetostatics II Lecture 4: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetic field due to a solenoid and a toroid A solenoid is essentially a long current loop
More informationQ24.1 The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b
Q24.1 The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to 2Q, while keeping the conductors in the same positions.
More informationP HYSICS 301: I NTERMEDIATE E LECTROMAGNETISM
P HYSICS 301: I NTERMEDIATE E LECTROMAGNETISM 1. Short Answer 30 points total FALL 2010, A SSESSMENT #3 (F INAL ) None of the problems in this section should require an involved calculation or a complicated
More informationSeveral important material properties are determined on the type and characteristic interatomic/interionic/intermolecular bonds:
Interatomic and intermolecular forces. What will be covered? 1. Binding energy: basic concepts 2. Ionic bonding. 3. Chemical bonding. a. Primary bonds. b. Secondary bonds. Why do we need to know this material?
More informationPHYS2212 LAB Coulomb s Law and the Force between Charged Plates
PHYS2212 LAB Coulomb s Law and the Force between Charged Plates Objectives To investigate the electrostatic force between charged metal plates and determine the electric permittivity of free space, ε
More informationMagnetism, Radiation, and Relativity
Magnetism, Radiation, and Relativity Supplementary notes for a calculusbased introductory physics course Daniel V. Schroeder Weber State University http://physics.weber.edu/schroeder/ dschroeder@cc.weber.edu
More informationAP R Physics C Electricity and Magnetism Syllabus
AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a twocourse sequence. It is offered in the
More informationPhysics 505 Fall 2007 Homework Assignment #2 Solutions. Textbook problems: Ch. 2: 2.2, 2.8, 2.10, 2.11
Physics 55 Fall 27 Homework Assignment #2 Solutions Textbook problems: Ch. 2: 2.2, 2.8, 2., 2. 2.2 Using the method of images, discuss the problem of a point charge q inside a hollow, grounded, conducting
More informationChapter 17: Electric Potential
hapter 17: Electric Potential Electric Potential Energy Electric Potential How are the Efield and Electric Potential related? Motion of Point harges in an Efield apacitors Dielectrics 1 Electric Potential
More informationHW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor
More informationSQA Advanced Higher Physics Unit 2: Electrical Phenomena
SCHOLAR Study Guide SQA Advanced Higher Physics Unit 2: Electrical Phenomena Andrew Tookey HeriotWatt University Campbell White Tynecastle High School HeriotWatt University Edinburgh EH14 4AS, United
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationMagnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
More informationPH2025D Final Comprehensive Exam (August 10, 2007)
NAME SCORE PH2025D Final Comprehensive Exam (August 0, 2007) You may not open the textbook nor notebook. A letter size information may be used. A calculator may be used. However, mathematics or physics
More information1 of 8 2/25/2010 5:32 PM
Chapter 26 Homework Due: 8:00am on Monday, February 22, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View] Charging a Conducting
More informationElectric Field Mapping Lab 3. Precautions
HB 092507 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, Uprobe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading
More informationINTERMOLECULAR FORCES
INTERMOLECULAR FORCES Intermolecular forces forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular  forces of chemical bonds within a molecule
More informationGauss s Law for Gravity
Gauss s Law for Gravity D.G. impson, Ph.D. Department of Physical ciences and Engineering Prince George s Community College December 6, 2006 Newton s Law of Gravity Newton s law of gravity gives the force
More informationRotational Motion. Description of the motion. is the relation between ω and the speed at which the body travels along the circular path.
Rotational Motion We are now going to study one of the most common types of motion, that of a body constrained to move on a circular path. Description of the motion Let s first consider only the description
More informationCurrent, Resistance and DC Circuits
E1  Current and Current Density Chapter E Current, Resistance and DC Circuits Blinn College  Physics 2426  Terry Honan Basic Definitions If Q is the charge that passes through some surface, usually
More informationCapacitance. IV. Capacitance. 1a. Leyden Jar. Battery of Leyden Jars. A. The Electric Condenser. B. Dielectrics. C. Energy in Electric Field
IV. apacitance apacitance A. The Electric ondenser B. Dielectrics Revised: Feb5. Energy in Electric Field Sections.79 and 3.8 in book A. The Electric ondenser 3. History of the apacitor 4 ) History of
More informationElectrical Energy, Potential and Capacitance. AP Physics B
Electrical Energy, Potential and Capacitance AP Physics B Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to separate two opposite charges, work
More informationPhysics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd
Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle
More informationFall 12 PHY 122 Homework Solutions #8
Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i  6.0j)10 4 m/s in a magnetic field B= (0.80i + 0.60j)T. Determine the magnitude and direction of the
More informationHydrogen Bonds The electrostatic nature of hydrogen bonds
Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein ahelices and bsheets were predicted based largely
More information2C Intermolecular forces, structure and properties:
Electronegativity and polarity Polar and nonpolar bonds: 1) NonPolar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationDIVERGENCE AND CURL THEOREMS
This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also
More informationExam No. 1 Solutions
Exam No. 1 Solutions I. (20 pts) Three positive charges q 1 = +2 μc, q 2 = +1 μc, and q 3 = +1 μc are arranged at the corners of an equilateral triangle of side 2 m as shown in the diagram. Calculate:
More information1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
More information