Statistics 100A Homework 8 Solutions


 Nathaniel Bishop
 2 years ago
 Views:
Transcription
1 Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the onehalf of the value that appears on the die. Explain her expected winnings. First, this problem is poorly worded. If the coin lands heads, then she wins twice the value on the die, otherwise she wins the value that appears on the die. Let X represent the number of pips that show on the die. Let Y be the result of the toss of the fair coin, such that Y if the coin lands heads, and Y otherwise. Then, { X, Y E(XY ), Y Each value of Y occurs with probability. So, E(XY ) (X) + ( ( ) X [ ]) + ( [ ]) 6 5. The county hospital is located at the center of a square whose sides are 3 miles wide. If an accident occurs within this square, then the hospital sends out an ambulance. The road network is rectangular so the travel distance from the hospital, whose coordinates are (,), to the point (x, y) is x + y. If an accident occurs at a point that is uniformly distributed in the square, find the expected travel distance of the ambulance. First, let Z X + Y for simplicity. We want to find E(Z). Note that 3 < X < 3 and 3 < Y < 3 since the sides of the square have length 3. Thus, X < 3 and Y < 3. E(Z) E ( X + Y ) E X + E Y x ( 3 x 3 dx + 3 )dx y 3 dy y 3 ( 3 )dy
2 6. A fair die is rolled times. Calculate the expected sum of the rolls. This is a sum X of independent random variables X i. E(X) E ( i i i E(X i ) 6 i ( ) 6 35 X i ) Suppose that A and B each randomly, and independently, choose 3 of objects. Find the expected number of objects (a) chosen by both A and B. Let X be the number of objects that are selected by both A and B. To further simplify the problem we use indicator variables X i. Let X i if object i is selected by both A and B, and X i otherwise, where i. Then, E(X) E ( ) X i E(X i ) i Now we must find E(X i ). We know that X i only takes on one of two values, X i or X i. So, for the case of a sum of independent random indicator variables, E(X i ) P (X i ). Each person can choose 3 of the items. There are 3 ways to choose the item of interest, since a person can draw 3 objects. Since person A and B draw independently, Then, P (X i ) i ( ) 3 ( ) 3 ( ) 3 E(X) E(X i ).9 i i
3 (b) not chosen by either A or B. The principle is similar to part (a). Let X i if object i is not chosen by A and is not chosen by B. P (X i ) ( 7, ) because the probability that an arbitrary person does not choose object i is 7 and person A and person B draw independently. Then, ( ) 7 ( ) 7 E(X) E(X i ) 4.9 i (c) Chosen by exactly one of A or B i In this case, either person A draws object i and person B does not, or person B draws object i and person A does not. Again, let X i if exactly one of A or B draws object i, X i otherwise. The person that eventually draws object i had probability 3 of of drawing the object and the person that does not draw object i had probability 7 not drawing object i. But there are two ways to arrange this situation. A can draw the object, and B does not, or B draws the object and A does not. Thus, and E(X i ) P (X i ) 3 7 ( E(X) 3 7 ) A total of n balls, numbered through n, are put into n urns, also numbered through n in such a way that ball i is equally likely to go into any of the urns,,..., i. Find (a) the expected number of urns that are empty. Let X be the number of empty urns. Define an indicator variable X i if urn i is empty, X i otherwise. We must find E(X i ) P (X i ). The ith urn remains empty as the first i balls are deposited into the other urns. On the ith drop, urn i must remain empty. Since a ball can land in any of the i urns with equal probability, the probability that the ith ball will not land in urn i is i. To remain empty, the urn must not receive a ball on the i + st drop etc. so the probability that the i + st ball will not land in urn i, is i+. So, ( E(X i ) ) ( ) ( ) (... ) i i + i + n ( ) ( ) ( ) i i n... i i + n i n 3
4 So, E(X) n E(X i ) i n i n i n i n i n j n n j n n(n ) (b) the probability that none of the urns is empty. For all of the urns to have at least one ball in them, the nth ball must be dropped into the nth urn, which has probability n. The n st ball must be placed in the n st urn which has probability n and so on. So, the probability that none of the urns will be empty is n n n... n! 7. A deck of n cards, numbered through n, is thoroughly shuffled so that all possible n! orderings can be assumed to be equally likely. Suppose you are to make n guesses sequentially, where the ith one is a guess of the card in position i. Let N denote the number of correct guesses. (a) If you are not given any information about your earlier guesses show that, for any strategy, E(N). Proof. Let N i be an indicator variable such that N i if the ith guess is correct. The probability that the guess is correct is simply n. Then, E(N) n E(N i ) i n P (N i ) i n i n n n (b) Suppose that after each guess you are shown the card that was in the position in question. What do you think is the best strategy? Show that under this strategy E(N) n + n n dx log n x Once the card is shown, and assuming the person is not a complete idiot, the player has n cards remaining to guess from. Therefore, the best strategy (or is it just common sense?) is to not guess any cards that have already been shown. 4
5 Proof. After a card is shown, there is one less card to guess from given our elegant strategy, so the denominator in the probability dereases by one at each guess. So, E(N) n i E(N i ) n + n + n which is a discrete sum. For large n, the sum can be approximated as an integral. n dx log n x (c) Suppose that you are told after each guess whether you are right or wrong. In this case it can be shown that the strategy that maximizes E(N) is one which keeps on guessing the same card until you are told you are correct and then changes to a new card. For this strategy show that E(N) +! + 3! n! e Proof. Let N i be an indicator variable such that N i if the guess about card i is eventually correct. This occurs only if of cards through i, the first card is card, the second card is card and so on, and the last card is card i. There is only one possible way this arrangement can occur, and the total number of arrangements of cards is n!. Therefore, E(N) n E(N i ) i n j j! Note that this is the power series representation of e.. For a group of people, compute (a) the expected number of days of the year that are birthdays of exactly 3 people. Let X be the number of days of the year that are birthdays for exactly 3 people. Let X i if day i is a birthday for 3 people. This is a binomial problem with n and p ( 365) 3. Then, E(X i ) P (X i ) ( 3 ) ( ) 3 ( ) Recall that i represents a day of the year, so in the following calculation, we sum i to i ( E(X) E(X i ) i ) ( 365 ) 3 ( 364 )
6 (b) the expected number of distinct birthdays. You may be tempted to think of this problem as the number of people that have different birthdays, but that is incorrect. Let X be the number of distinct birthdays; that is, the number of days of the year that are occupied by a birthday. Let X i if someone has a birthday on day i. We use the complement. We find the probability that all people have different birthdays and subtract from. Then, 365 E(X) E(X i ) i ( ) [ E(X i ) 365 ( ) ] 38. The random variables X and Y have a joint density function given by f(x, y) Compute Cov (X, Y ). { e x x By definition, Cov (X, Y ) E(XY ) E(X)E(Y ). x <, y < x otherwise f X (x) x e x x dy e x E(X) x xe x dx let u x, dv e x so du dx, v e x E(Y ) y e x x dxdy y x ye x x y e x x xe x dx x dx dydx take t x then dt dx. t e t dt 4 Γ() 4 6
7 Finally, E(XY ) x x xy e x x dydx ye x dydx y e x x dx x e x dx let t x then dt dx. ( ) t e t dt 8 Γ(3) So at last, 4 Cov (X, Y ) E(XY ) E(X)E(Y ) The joint density function of X and Y is given by f(x, y) y e y+ x y Find E(X), E(Y ) and show that Cov (X, Y ). Proof. By definition, Cov (X, Y ) E(XY ) E(X)E(Y ) This problem involves a trick, and we must solve E(Y ) first. f Y (y) e y y y e e y [ e x y e y y+ x y dx e x y dx ] 7
8 Then, E(Y ) ye y dy Using E(Y ), we can find E(X). Using properties of conditional expectation, E(X) E(E(X Y )) We can find the distribution of X Y by taking the joint density function and treating y as a constant. To make it clearer, let y c, some constant. Then, f X Y (x y) c e c x c c e c e c x which looks exponential with parameter λ c. random variable is λ. But, λ c Y, so The expected value of an exponential E(X) E(E(X Y )) E (Y ) Now we use another property of conditional expectation to find E(XY ). E(XY ) E(E(XY Y )) E(Y E(X Y )) but E(X Y ) Y, so E(XY ) E(Y E(X Y )) E ( Y ). We know that the momentgenerating function of Y is M Y (t) λ λ t To find the second moment, take the second derivative and set t. M Y (t) λ (λ t) because E(Y ) λ so λ. So, E(XY ). Then, E(Y ) M Y () λ Cov (X, Y ) E(XY ) E(X)E(Y ) 8
9 45. If X, X, X 3, X 4 are (pairwise) uncorrelated random variables each having mean and variance, compute the correlations of Recall that pairwise uncorrelated means that any pair of these variables are uncorrelated. (a) X + X and X + X 3. By definition, Corr (X + X, X + X 3) Cov (X + X, X + X3) σ X +X σ X +X 3 Cov (X, X ) + Cov (X, X 3) + Cov (X, X ) + Cov (X, X 3) p Var (X) + Var (X ) Cov (X, X p ) Var (X ) + Var (X 3) Cov (X, X 3) Cov (X i, X j) for i j due to pairwise uncorrelatedness. Cov (X, X ) p Var (X) + Var (X p ) Var (X ) + Var (X 3) Cov (X i, X i) Var (X i) Var (X ) p Var (X) + Var (X p ) Var (X ) + Var (X 3) (b) X + X and X 3 + X 4. Corr (X + X, X 3 + X 4) Cov (X + X, X3 + X4) σ X +X σ X3 +X 4 Cov (X, X 3) + Cov (X, X 4) + Cov (X, X 3) + Cov (X, X 4) p Var (X) + Var (X ) Cov (X, X p ) Var (X 3) + Var (X 4) Cov (X 3, X 4) Cov (X i, X j) for i j due to pairwise uncorrelatedness. 9
10 Part. Suppose that the random variable X is described by the pdf f X (x) 5x 6, x >. What is the highest moment of X that exists? First, there was a bad typo in this problem that may have confused students. There should not be a y in the problem. Everything is in terms of x. Second, the key to solving this problem is to not use the momentgenerating function because we end up with an integral that cannot easily be solved. Instead, we compute the moments using E(X r ). We integrate over x >. E(X r ) x r 5x 6 dx 5 x r 6 dx [ ] x r 5 5 r 5 [ ] We want to find the largest value of r such that 5 x r 5 r 5 exists. First, r 5 because then the quantity is undetermined. Now consider the numerator. If r > 5, then we have divergence. If r < 5, we get a negative exponent for x and it may as well be in the denominator, which will make the whole quantity go to as x. Thus, r < 5, so the fourth moment, E(X 4 ) is the largest moment that exists.. Two chips are drawn at random without replacement from a box that contains five chips numbered through 5. If the sum of chips drawn is even, the random variable X equals 5; if the sum of chips drawn is odd, X 3. First, let s define Y, which is the sum of the two chips X and X. Y X + X. Then, X { 5, Y even 3, Y odd (a) Find the momentgenerating function (mgf) for X. Since E(X) n i x ip (X i x i ), we need to find the probabilities P (X 5) and P (X 3). The easiest way to find these is to just enumerate all of the possible drawings. P (X 3) 3 5 P (X 5) 8 5 Then, M X (t) E ( e tx) e 3t ( ) e 5t ( ) 5
11 (b) Use the mgf to find the first and second noncentral moments. To find the first moment, E(X), take the derivative of the momentgenerating function and evaluate at t. M X(t) 9 5 e 3t + e 5t M X() Thus, E(X) 5. So, E ( X ) 5.4. (c) Find the expected value and variance of X. M X(t) 7 5 e 3t + e 5t M X() The expected value is just the first moment from part (a). E(X) 5. Var (X) E ( X ) E(X) where E ( X ) is the second moment from part (a). 3. Let X have pdf Var (X) 5.4 ( ) x x f X (x) x x elsewhere (a) Find the momentgenerating function (mgf) M X (t) for X. E ( e tx) xe tx dx + xe tx dx + ( x)e tx dx e tx dx xe tx dx take u x, dv e tx so du dx, v t etx.... ( t e t )
12 (b) Use mgf to find the first and second noncentral moments. This part is anticlimactic. We note that the M X (t) has a singularity at t. If we take the first and second derivatives, we are still going to have that obnoxious singularity. The first and second moments do not exist. (c) Find the expected value and variance of X. Since the first and second moments of X do not exist, we have to compute E(X) and Var (X) using the definition. Var (X) E(X ) E(X) E(X) x3 3 x dx + + (x x3 3 x( x)dx ) E(X ) x The variance is then x 3 dx + [ + 3 x3 x4 4 x ( x)dx ] Var (X) E(X ) E(X) Find the moment generating function (mgf) for X, if X Uniform(a, b). Since X U(a, b), we know that f X (x) b a, a x b. E ( e tx) b a e tx b a dx b e tx dx b a a [ e tx ] b t(b a) a etb e ta t(b a)
13 5. Find the momentgenerating function for X, if X is a Bernoulli random variable with the pdf f X (x) { p x ( p) x x, x otherwise Use the mgf to find the expected value and variance of X. Note that X can only take on one of two possible values. So, E ( e tx) e t p ( p) + e t p( p) p + pe t M X (t) + p ( e t ) E(X) M X() pe p Var (X) E(X ) E(X) M X() p p p p( p) 6. Find the momentgenerating function for X, if X is a Poisson random variable with the pdf f X (x) λx x! e λ. M X (t) E ( e tx) e tx λ λx e x! x tx λ λx e x! x e λ λ + e t λ t λ λ λ + e! +... ( λe e λ t ) x x! x which resembles the power series for e y where y λe t. e λ e λet e λ(et ) 3
14 7. Find the momentgenerating function for Z, if Z is a standard normal random variable with the pdf f Z (z) π e z Use your result to find the momentgenerating function for a normally distributed random variable X N(µ, σ). This problem is very tricky, and it is a classic example of how to work with the normal distribution in advanced statistics. If you continue in Statistics, or ever take Bayesian Statistics, you will encounter working with the normal distribution in this way. The goal is to make the computation of M Z (t) look like the original normal distribution. By definition, M Z (t) E ( e tz) π e tz z dz which is simple enough so far. In the next step, I factor out the negative sign in the exponential because the normal distribution has that pesky negative sign in front of the quadratic. π e z dz tz This integral would be a nightmare to integrate because of the quadratic in the exponent, and it does not have the form of the normal distribution. To remedy this, we complete the square. z tz (z t) t I can now break up that exponential and factor part of it out of the integral. π «e (z t) t Believe it or not, we can integrate this! Recall that dz e t π e (z t) dz π e u So take u z t, then du dz and we have e u du π e t π e u e t du π π e t Thus, M Z (t) e t. 4
15 Recall that Z X µ σ so, X Zσ + µ. To find the momentgenerating function of X, we use the hint. M X (t) M Zσ+µ (t) e µt M Z (σt) e µt e (σt) (σt) µt+ e If you continue with Statistics, you will see that derivations involving the normal distribution always follow a similar recipe: ) factor out a negative sign, ) complete the square in the exponent, 3) compare to the standard normal distribution to get to the result. 8. Let X and Y be independent random variables, and let α and β be scalars. Find an expression for the mgf of Z αx + βy in terms of mgfs of X and Y. We just use the definition of moment generating function and use independence. M Z (t) E ( e tz) (e t(αx+βy)) E E (e tαx e tβy) E ( e tαx) E (e tβy) by independence. M X (αt)m Y (βt) 9. Use the mgf to show that if X follows the exponential distribution, cx (c > ) does also. To show that two random variables follow the same distribution, show that the momentgenerating functions are equal. Proof. From a previous problem, we know that M X (t) λ λ t. M cx (t) E ( e ctx) λ λ e ctx cλx dx e xc(t λ) d(cx) cλ c(t λ) λ t λ ( ) [e cx(t λ)] e ctx λe cλx dx λ λ t λ t λ Therefore, since M X (t) M cx (t), cx Exp(λ). [e cx(λ t)] 5
16 . Show that (a) If X i follows a binomial distribution with n i trials and probability of success p i p where i,,..., n and the X i are independent then n i X i follows a binomial distribution. The probability of success p is the same for all i. Proof. We know that the moment generating function for a Bernoulli random variable Y i is M Yi (t) p + pe t. We also know that a binomial random variable is just a sum of Bernoulli random variables, Y Y Y ni. Then by the properties of momentgenerating functions, So analogously, M Y (t) M Y +...+Y ni (t) M Y (t)... M Yni (t) M Xi (t) E ( e tx i ) ( p + pe t ) n i All of the x i s are independent, then similarly, M P n i X i n M Xi (t) i ( p + pe t ) n... ( p + pe t ) nn ( p + pe t ) n +...+n n ( p + pe t ) P n i n i Therefore, n i X i is binomial with parameters N n i n i and p. (b) Referring to part a, show that if p i are unequal, the sum n i X i does not follow a binomial distribution. Now the probability of success is not the same for each i. Replace p in the previous problem with p i. Proof. M P n i X i n M Xi (t) i ( p + p e t ) n... ( p n + p n e t ) nn which is the best we can do, and does not resemble the binomial. Since we do not have a constant probability of success p for all i, the sum is not a binomial random variable. 6
Statistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationStatistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
More informationFor a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (19031987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationUNIT I: RANDOM VARIABLES PART A TWO MARKS
UNIT I: RANDOM VARIABLES PART A TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1x) 0
More informationDepartment of Mathematics, Indian Institute of Technology, Kharagpur Assignment 23, Probability and Statistics, March 2015. Due:March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 3, Probability and Statistics, March 05. Due:March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
More informationP (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )
Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =
More informationLecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
More information( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net Email: krzysio@krzysio.net Posted September 21,
More informationFinal Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
More informationPractice problems for Homework 11  Point Estimation
Practice problems for Homework 11  Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
More informationMath 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
More informationProbability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More informationSection 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
More informatione.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
More informationChapters 5. Multivariate Probability Distributions
Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are
More informationMath/Stats 342: Solutions to Homework
Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability
More informationDefinition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2.
Chapter 6 Brownian Motion 6. Normal Distribution Definition 6... A r.v. X has a normal distribution with mean µ and variance σ, where µ R, and σ > 0, if its density is fx = πσ e x µ σ. The previous definition
More informationLecture Notes 1. Brief Review of Basic Probability
Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters 3 are a review. I will assume you have read and understood Chapters 3. Here is a very
More informationFeb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
More informationISyE 6761 Fall 2012 Homework #2 Solutions
1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3
More informationErrata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More informationECE302 Spring 2006 HW7 Solutions March 11, 2006 1
ECE32 Spring 26 HW7 Solutions March, 26 Solutions to HW7 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where
More information( ) is proportional to ( 10 + x)!2. Calculate the
PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers
More informationMTH135/STA104: Probability
MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More informationDISCRETE RANDOM VARIABLES
DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced
More informationMathematical Expectation
Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the
More information( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17
4.6 I company that manufactures and bottles of apple juice uses a machine that automatically fills 6 ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the bottles
More informationCovariance and Correlation. Consider the joint probability distribution f XY (x, y).
Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 2: Section 52 Covariance and Correlation Consider the joint probability distribution f XY (x, y). Is there a relationship between X and Y? If so, what kind?
More informationThe Exponential Distribution
21 The Exponential Distribution From DiscreteTime to ContinuousTime: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
More informationChapter 4. Multivariate Distributions
1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab
More informationAggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477  Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman  BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
More informationExercises with solutions (1)
Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal
More information3 Multiple Discrete Random Variables
3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
More informationRANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable
More informationINSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More information6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:309:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:39:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
More informationStatistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
More informationJoint Probability Distributions and Random Samples (Devore Chapter Five)
Joint Probability Distributions and Random Samples (Devore Chapter Five) 101634501 Probability and Statistics for Engineers Winter 20102011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete
More informationWorked examples Multiple Random Variables
Worked eamples Multiple Random Variables Eample Let X and Y be random variables that take on values from the set,, } (a) Find a joint probability mass assignment for which X and Y are independent, and
More information6. Jointly Distributed Random Variables
6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.
More informationSF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
More informationMATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 20092016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
More informationSums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationWhat is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
More informationBinomial random variables
Binomial and Poisson Random Variables Solutions STATUB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationMath 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
More informationMT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...
MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 20042012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions
Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More informationWHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
More informationMULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
More informationHomework 4  KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4  KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 21 Since there can be anywhere from 0 to 4 aces, the
More information1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
More informationExamination 110 Probability and Statistics Examination
Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiplechoice test questions. The test is a threehour examination
More informationMaximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationThe problems of first TA class of Math144
The problems of first TA class of Math144 T eaching Assistant : Liu Zhi Date : F riday, F eb 2, 27 Q1. According to the journal Chemical Engineering, an important property of a fiber is its water absorbency.
More informationUniversity of California, Berkeley, Statistics 134: Concepts of Probability
University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 211 Exam 2 solutions 1. A fair twentysided die has its faces labeled 1, 2, 3,..., 2. The die is rolled
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationPrinciple of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
More informationSTAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case
STAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case Pengyuan (Penelope) Wang June 20, 2011 Joint density function of continuous Random Variable When X and Y are two continuous
More informationSection 53 Binomial Probability Distributions
Section 53 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
More information4. Joint Distributions of Two Random Variables
4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint
More informationSummary of Probability
Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible
More informationWorked examples Basic Concepts of Probability Theory
Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one
More informationRecursive Estimation
Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x
More informationSection 6.1 Joint Distribution Functions
Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function
More informationProbability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chisquared distributions, normal approx'n to the binomial Uniform [,1] random
More informationSecond Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationMaster s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
More informationLecture 13: Martingales
Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More informationStatistics 100A Homework 4 Solutions
Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation
More information2. Discrete random variables
2. Discrete random variables Statistics and probability: 21 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
More informationBinomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STATUB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
More informationThe sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability
CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces
More informationGenerating Functions
Chapter 10 Generating Functions 10.1 Generating Functions for Discrete Distributions So far we have considered in detail only the two most important attributes of a random variable, namely, the mean and
More information1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
More informationTopic 4: Multivariate random variables. Multiple random variables
Topic 4: Multivariate random variables Joint, marginal, and conditional pmf Joint, marginal, and conditional pdf and cdf Independence Expectation, covariance, correlation Conditional expectation Two jointly
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More information2 Binomial, Poisson, Normal Distribution
2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability
More informationHypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easytoread notes
More informationProblem sets for BUEC 333 Part 1: Probability and Statistics
Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are backofchapter exercises from
More information6 PROBABILITY GENERATING FUNCTIONS
6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned
More informationSF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance
More informationExponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationSTAT 830 Convergence in Distribution
STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31
More information