# Chapter 6 Circular Motion

Size: px
Start display at page:

## Transcription

1 Chapter 6 Circular Motion 6.1 Introduction Cylindrical Coordinate System Unit Vectors Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example 6.1 Area Element of Disk Circular Motion: Velocity and Angular Velocity Geometric Derivation of the Velocity for Circular Motion Circular Motion: Tangential and Radial Acceleration Period and Frequency for Uniform Circular Motion Geometric Interpretation for Radial Acceleration for Uniform Circular Motion... 12

2 Chapter 6 Circular Motion And the seasons they go round and round And the painted ponies go up and down We're captive on the carousel of time We can't return we can only look Behind from where we came And go round and round and round In the circle game Introduction Joni Mitchell Special cases often dominate our study of physics, and circular motion is certainly no exception. We see circular motion in many instances in the world; a bicycle rider on a circular track, a ball spun around by a string, and the rotation of a spinning wheel are just a few examples. Various planetary models described the motion of planets in circles before any understanding of gravitation. The motion of the moon around the earth is nearly circular. The motions of the planets around the sun are nearly circular. Our sun moves in nearly a circular orbit about the center of our galaxy, 50,000 light years from a massive black hole at the center of the galaxy. We shall describe the kinematics of circular motion, the position, velocity, and acceleration, as a special case of two-dimensional motion. We will see that unlike linear motion, where velocity and acceleration are directed along the line of motion, in circular motion the direction of velocity is always tangent to the circle. This means that as the object moves in a circle, the direction of the velocity is always changing. When we examine this motion, we shall see that the direction of change of the velocity is towards the center of the circle. This means that there is a non-zero component of the acceleration directed radially inward, which is called the centripetal acceleration. If our object is increasing its speed or slowing down, there is also a non-zero tangential acceleration in the direction of motion. But when the object is moving at a constant speed in a circle then only the centripetal acceleration is non-zero. In all of these instances, when an object is constrained to move in a circle, there must exist a force F acting on the object directed towards the center. In 1666, twenty years before Newton published his Principia, he realized that the moon is always falling towards the center of the earth; otherwise, by the First Law, it would continue in some linear trajectory rather than follow a circular orbit. Therefore there must be a centripetal force, a radial force pointing inward, producing this centripetal acceleration. 1 Joni Mitchell, The Circle Game, Siquomb Publishing Company. 6-1

3 Because Newton s Second Law F = ma is a vector equality, it can be applied to the radial direction to yield F r = ma r. (6.1.1) 6.2 Cylindrical Coordinate System We first choose an origin and an axis we call the z -axis with unit vector ˆk pointing in the increasing z-direction. The level surface of points such that z = z P define a plane. We shall choose coordinates for a point P in the plane z = z P as follows. One coordinate, r, measures the distance from the z -axis to the point P. The coordinate r ranges in value from 0 r. In Figure 6.1 we draw a few surfaces that have constant values of r. These `level surfaces are circles. Figure 6.1 level surfaces for the coordinate r Our second coordinate measures an angular distance along the circle. We need to choose some reference point to define the angle coordinate. We choose a reference ray, a horizontal ray starting from the origin and extending to + along the horizontal direction to the right. (In a typical Cartesian coordinate system, our reference ray is the positive x-direction). We define the angle coordinate for the point P as follows. We draw a ray from the origin to the point P. We define the angle θ as the angle in the counterclockwise direction between our horizontal reference ray and the ray from the origin to the point P, (Figure 6.2). All the other points that lie on a ray from the origin to infinity passing through P have the same value as θ. For any arbitrary point, our angle coordinate θ can take on values from 0 θ < 2π. In Figure 6.3 we depict other `level surfaces, which are lines in the plane for the angle coordinate. The coordinates (r,θ) in the plane z = z P are called polar coordinates. 6-2

4 Figure 6.2 the angle coordinate Figure 6.3 Level surfaces for the angle coordinate Unit Vectors We choose two unit vectors in the plane at the point P as follows. We choose ˆr to point in the direction of increasing r, radially away from the z-axis. We choose ˆθ to point in the direction of increasing θ. This unit vector points in the counterclockwise direction, tangent to the circle. Our complete coordinate system is shown in Figure 6.4. This coordinate system is called a cylindrical coordinate system. Essentially we have chosen two directions, radial and tangential in the plane and a perpendicular direction to the plane. If we are given polar coordinates (r,θ) of a point in the plane, the Cartesian coordinates (x, y) can be determined from the coordinate transformations x = r cosθ, (6.2.1) y = r sinθ. (6.2.2) Figure 6.4 Cylindrical coordinates Figure 6.5 Unit vectors at two different points in polar coordinates. 6-3

5 Conversely, if we are given the Cartesian coordinates (x, y), the polar coordinates (r,θ) can be determined from the coordinate transformations r = +(x 2 + y 2 ) 1 2, (6.2.3) θ = tan 1 ( y / x). (6.2.4) Note that r 0 so we always need to take the positive square root. Note also that tanθ = tan(θ + π ). Suppose that 0 θ π / 2, then x 0 and y 0. Then the point ( x, y) will correspond to the angle θ + π. The unit vectors also are related by the coordinate transformations Similarly ˆr = cosθ î + sinθ ĵ, (6.2.5) ˆθ = sinθ î + cosθ ĵ. (6.2.6) î = cosθ ˆr sinθ ˆθ, (6.2.7) ĵ = sinθ ˆr + cosθ ˆθ. (6.2.8) One crucial difference between polar coordinates and Cartesian coordinates involves the choice of unit vectors. Suppose we consider a different point S in the plane. The unit vectors in Cartesian coordinates ( ˆ i, ˆ S j S ) at the point S have the same magnitude and point in the same direction as the unit vectors ( ˆ i, ˆ P j P ) at P. Any two vectors that are equal in magnitude and point in the same direction are equal; therefore ˆi = ˆi, ˆj = ˆj. (6.2.9) S P S P A Cartesian coordinate system is the unique coordinate system in which the set of unit vectors at different points in space are equal. In polar coordinates, the unit vectors at two different points are not equal because they point in different directions. We show this in Figure Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates Consider a small infinitesimal displacement d s between two points P 1 and P2 (Figure 6.6). This vector can be decomposed into d s = dr ˆr + rdθ ˆθ + dz ˆk. (6.2.10) Consider an infinitesimal area element on the surface of a cylinder of radius r (Figure 6.7). The area of this element has magnitude 6-4

6 da = rdθdz. (6.2.11) Area elements are actually vectors where the direction of the vector da points perpendicular to the plane defined by the area. Since there is a choice of direction, we shall choose the area vector to always point outwards from a closed surface. So for the surface of the cylinder, the infinitesimal area vector is d A = rdθdz ˆr. (6.2.12) Figure 6.6 Displacement vector d s between two points Figure 6.7 Area element for a cylinder: normal vector ˆr Example 6.1 Area Element of Disk Consider an infinitesimal area element on the surface of a disc (Figure 6.8) in the xy - plane. Figure 6.8 Area element for a disc: normal ˆk Figure 6.9 Volume element 6-5

7 Solution: The area element is given by the vector da = rdθdr An infinitesimal volume element (Figure 6.9) is given by kˆ. (6.2.13) dv = rdθ dr dz. (6.2.14) The motion of objects moving in circles motivates the use of the cylindrical coordinate system. This is ideal, as the mathematical description of this motion makes use of the radial symmetry of the motion. Consider the central radial point and a vertical axis passing perpendicular to the plane of motion passing through that central point. Then any rotation about this vertical axis leaves circles invariant (unchanged), making this system ideal for use for analysis of circular motion exploiting of the radial symmetry of the motion. 6.3 Circular Motion: Velocity and Angular Velocity We can now begin our description of circular motion. In Figure 6.10 we sketch the position vector r ( t) of the object moving in a circular orbit of radius r. At time t, the particle is located at the point P with coordinates (r,θ(t)) and position vector given by r(t) = r ˆr(t). (6.3.1) Figure 6.11 Unit vectors Figure 6.10 A circular orbit. At the point P, consider two sets of unit vectors ( ˆr(t), ˆθ(t) ) and ( î, ĵ). In Figure 6.11 we see that a vector decomposition expression for ˆr(t) and ˆθ(t) in terms of î and ĵ is given by ˆr(t) = cosθ(t) î + sinθ(t) ĵ, (6.3.2) 6-6

8 We can write the position vector as ˆθ(t) = sinθ(t) î + cosθ(t) ĵ. (6.3.3) The velocity is then r(t) = r ˆr(t) = r(cosθ(t) î + sinθ(t) ĵ). (6.3.4) v(t) = d r(t) = r d dθ(t) (cosθ(t) î + sinθ(t) ĵ) = r( sinθ(t) î + cosθ(t) dθ(t) ĵ), (6.3.5) where we used the chain rule to calculate that We now rewrite Eq. (6.3.5) as d dθ(t) cosθ(t) = sinθ(t), (6.3.6) d dθ(t) sinθ(t) = cosθ(t). (6.3.7) v(t) = r dθ(t) ( sinθ(t)î + cosθ(t) ĵ). (6.3.8) Finally we substitute Eq. (6.3.3) into Eq. (6.3.8) and obtain an expression for the velocity of a particle in a circular orbit v(t) = r dθ(t) ˆθ(t). (6.3.9) We denote the rate of change of angle with respect to time by the Greek letter ω, ω dθ, (6.3.10) which can be positive (counterclockwise rotation in Figure 6.10), zero (no rotation), or negative (clockwise rotation in Figure 6.10). This is often called the angular speed but it is actually the z -component of a vector called the angular velocity vector. ω = dθ ˆk = ω ˆk. (6.3.11) The SI units of angular velocity are [rad s 1 ]. Thus the velocity vector for circular motion is given by v(t) = rω ˆθ(t) v θ ˆθ(t), (6.3.12) 6-7

9 where the ˆθ -component of the velocity is given by We shall call v θ the tangential component of the velocity. v θ = r dθ. (6.3.13) Geometric Derivation of the Velocity for Circular Motion Consider a particle undergoing circular motion. At time t, the position of the particle is r(t). During the time interval Δt, the particle moves to the position r(t + Δt) with a displacement Δ r. Figure 6.12 Displacement vector for circular motion The magnitude of the displacement, Δr, is represented by the length of the horizontal vector Δr joining the heads of the displacement vectors in Figure 6.12 and is given by Δ r = 2r sin(δθ / 2). (6.3.14) When the angle Δ θ is small, we can approximate sin( Δθ / 2) Δ θ / 2. (6.3.15) This is called the small angle approximation, where the angle Δ θ (and hence Δ θ / 2 ) is measured in radians. This fact follows from an infinite power series expansion for the sine function given by 3 5 Δθ Δθ 1 Δθ 1 Δθ sin = +. (6.3.16) 2 2 3! 2 5! 2 When the angle Δ θ / 2 is small, only the first term in the infinite series contributes, as successive terms in the expansion become much smaller. For example, when Δ θ / 2 = π / , corresponding to 6 o 3 4, ( Δθ / 2) / 3! ; this term in the power series is three orders of magnitude smaller than the first and can be safely ignored for small angles. 6-8

10 Using the small angle approximation, the magnitude of the displacement is Δ r r Δθ. (6.3.17) This result should not be too surprising since in the limit as Δθ approaches zero, the length of the chord approaches the arc length r Δθ. The magnitude of the velocity, v v, is then seen to be proportional to the rate of change of the magnitude of the angle with respect to time, v v = lim Δt 0 Δ r Δt r Δθ = lim Δt 0 Δt Δθ = r lim Δt 0 Δt = r dθ = r ω. (6.3.18) The direction of the velocity can be determined by considering that in the limit as Δt 0 (note that Δθ 0 ), the direction of the displacement Δ r approaches the direction of the tangent to the circle at the position of the particle at time t (Figure 6.13). Figure 6.13 Direction of the displacement approaches the direction of the tangent line Thus, in the limit Δt 0, Δ r r, and so the direction of the velocity v(t) at time t is perpendicular to the position vector r(t) and tangent to the circular orbit in the + ˆθ - direction for the case shown in Figure Circular Motion: Tangential and Radial Acceleration When the motion of an object is described in polar coordinates, the acceleration has two components, the tangential component a θ, and the radial component, a r. We can write the acceleration vector as a = a r ˆr(t) + a θ ˆθ(t). (6.4.1) 6-9

11 Keep in mind that as the object moves in a circle, the unit vectors ˆr(t) and ˆθ(t) change direction and hence are not constant in time. We will begin by calculating the tangential component of the acceleration for circular motion. Suppose that the tangential velocity v θ = rω is changing in magnitude due to the presence of some tangential force, where ω is the z -component of the angular velocity; we shall now consider that ω(t) is changing in time, (the magnitude of the velocity is changing in time). Recall that in polar coordinates the velocity vector Eq. (6.3.12) can be written as v(t) = rω ˆθ(t). (6.4.2) We now use the product rule to determine the acceleration. a(t) = d v(t) = r dω(t) ˆθ(t) + rω(t) d ˆθ(t). (6.4.3) Recall from Eq. (6.3.3) that ˆθ(t) = sinθ(t)î + cosθ(t) ĵ. So we can rewrite Eq. (6.4.3) as a(t) = r dω(t) ˆθ(t) + rω(t) d ( sinθ(t)î + cosθ(t) ĵ). (6.4.4) We again use the chain rule (Eqs. (6.3.6) and (6.3.7)) and find that a(t) = r dω(t) ˆθ(t) + rω(t) cosθ(t) dθ(t) î sinθ(t) dθ(t) ĵ. (6.4.5) Recall that ω dθ /, and from Eq. (6.3.2), ˆr(t) = cosθ(t) î + sinθ(t) ĵ, therefore the acceleration becomes a(t) = r dω(t) ˆθ(t) rω 2 (t) ˆr(t). (6.4.6) We denote the rate of change of ω with respect to time by the Greek letter α, α dω, (6.4.7) which can be positive, zero, or negative. This is often called the angular acceleration but it is actually the z -component of a vector called the angular acceleration vector. α = dω ˆk = d 2 θ ˆk α ˆk. (6.4.8)

12 The SI units of angular acceleration are [rad s 2 ]. The tangential component of the acceleration is then The radial component of the acceleration is given by a θ = rα. (6.4.9) a r = rω 2 < 0. (6.4.10) Because a r < 0, that radial vector component a r (t) = rω 2 ˆr(t) is always directed towards the center of the circular orbit. 6.5 Period and Frequency for Uniform Circular Motion If the object is constrained to move in a circle and the total tangential force acting on the total object is zero, F θ = 0. By Newton s Second Law, the tangential acceleration is zero, a θ = 0. (6.5.1) This means that the magnitude of the velocity (the speed) remains constant. This motion is known as uniform circular motion. The acceleration is then given by only the acceleration radial component vector a r (t) = rω 2 (t) ˆr(t) uniform circular motion. (6.5.2) Since the speed v = r ω is constant, the amount of time that the object takes to complete one circular orbit of radius r is also constant. This time interval, T, is called the period. In one period the object travels a distance s = vt equal to the circumference, s = 2πr ; thus s = 2πr = vt. (6.5.3) The period T is then given by T = 2πr v = 2πr r ω = 2π ω. (6.5.4) The frequency f is defined to be the reciprocal of the period, f = 1 T = ω 2π. (6.5.5) 6-11

13 The SI unit of frequency is the inverse second, which is defined as the hertz, s [Hz] 1. The magnitude of the radial component of the acceleration can be expressed in several equivalent forms since both the magnitudes of the velocity and angular velocity are related by v = r ω. Thus we have several alternative forms for the magnitude of the centripetal acceleration. The first is that in Equation (6.6.3). The second is in terms of the radius and the angular velocity, a r = rω 2. (6.5.6) The third form expresses the magnitude of the centripetal acceleration in terms of the speed and radius, a r = v2 r. (6.5.7) Recall that the magnitude of the angular velocity is related to the frequency by ω = 2π f, so we have a fourth alternate expression for the magnitude of the centripetal acceleration in terms of the radius and frequency, a r = 4π 2 r f 2. (6.5.8) A fifth form commonly encountered uses the fact that the frequency and period are related by f = 1/ T = ω / 2π. Thus we have the fourth expression for the centripetal acceleration in terms of radius and period, a r = 4π 2 r T 2. (6.5.9) Other forms, such as 4π 2 r 2 f / T or 2πrω f, while valid, are uncommon. Often we decide which expression to use based on information that describes the orbit. A convenient measure might be the orbit s radius. We may also independently know the period, or the frequency, or the angular velocity, or the speed. If we know one, we can calculate the other three but it is important to understand the meaning of each quantity Geometric Interpretation for Radial Acceleration for Uniform Circular Motion An object traveling in a circular orbit is always accelerating towards the center. Any radial inward acceleration is called centripetal acceleration. Recall that the direction of the velocity is always tangent to the circle. Therefore the direction of the velocity is 6-12

14 constantly changing because the object is moving in a circle, as can be seen in Figure Because the velocity changes direction, the object has a nonzero acceleration. Figure 6.14 Direction of the velocity for circular motion. Figure 6.15 Change in velocity vector. 6-13

15 The calculation of the magnitude and direction of the acceleration is very similar to the calculation for the magnitude and direction of the velocity for circular motion, but the change in velocity vector, Δv, is more complicated to visualize. The change in velocity Δ v = v( t + Δt) v( t) is depicted in Figure The velocity vectors have been given a common point for the tails, so that the change in velocity, Δv, can be visualized. The length Δv of the vertical vector can be calculated in exactly the same way as the displacement Δr. The magnitude of the change in velocity is We can use the small angle approximation ( θ ) magnitude of the change of velocity, The magnitude of the radial acceleration is given by Δ v = 2vsin( Δθ / 2). (6.6.1) sin Δ / 2 Δ θ / 2 to approximate the Δv v Δθ. (6.6.2) a r = lim Δt 0 Δ v Δt v Δθ = lim Δt 0 Δt Δθ = v lim Δt 0 Δt = v dθ = v ω. (6.6.3) The direction of the radial acceleration is determined by the same method as the direction of the velocity; in the limit Δθ 0, Δv v, and so the direction of the acceleration radial component vector a r (t) at time t is perpendicular to position vector v ( t) and directed inward, in the rˆ -direction. 6-14

### Review B: Coordinate Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

### Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

### Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

### Lecture L5 - Other Coordinate Systems

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

### Review A: Vector Analysis

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

### Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

### Area and Arc Length in Polar Coordinates

Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly

### Exam 2 Practice Problems Part 2 Solutions

Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

### Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### The Two-Body Problem

The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

### 3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### Lecture L6 - Intrinsic Coordinates

S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

### Isaac Newton s (1642-1727) Laws of Motion

Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

### PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### Math 1302, Week 3 Polar coordinates and orbital motion

Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the

### Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

### Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

### Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Binary Stars. Kepler s Laws of Orbital Motion

Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.

### Chapter 22: Electric Flux and Gauss s Law

22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

### Copyright 2011 Casa Software Ltd. www.casaxps.com

Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

### Fields. 1.1 Action at a Distance versus Field Theory

Chapter 1 Fields 1.1 Action at a Distance versus Field Theory...1-1. Scalar Fields...1-3 Example 1.1: Half-Frozen /Half-Baked Planet...1-5 1..1 Representations of a Scalar Field...1-5 1.3 Vector Fields...1-7

### Exam 1 Practice Problems Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

### SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### Orbital Mechanics. Angular Momentum

Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

### 11. Describing Angular or Circular Motion

11. Describing Angular or Circular Motion Introduction Examples of angular motion occur frequently. Examples include the rotation of a bicycle tire, a merry-go-round, a toy top, a food processor, a laboratory

### Let s first see how precession works in quantitative detail. The system is illustrated below: ...

lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Lecture L17 - Orbit Transfers and Interplanetary Trajectories

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

### Chapter 7 Newton s Laws of Motion

Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Chapter 15 Collision Theory

Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

### 10 Polar Coordinates, Parametric Equations

Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### D Alembert s principle and applications

Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### 2 Session Two - Complex Numbers and Vectors

PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

### AP Physics - Vector Algrebra Tutorial

AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form

### SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE

SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines

### KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

### Vectors and Scalars. AP Physics B

Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### Differentiation of vectors

Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### Oscillations. Vern Lindberg. June 10, 2010

Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

### Rotational Motion: Moment of Inertia

Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

### Introduction to Magnetic Fields

Chapter 8 Introduction to Magnetic Fields 8.1 Introduction...8-2 8.2 The Definition of a Magnetic Field...8-3 8.3 Magnetic Force on a Current-Carrying Wire...8-4 Example 8.1: Magnetic Force on a Semi-Circular

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

### Physics 160 Biomechanics. Angular Kinematics

Physics 160 Biomechanics Angular Kinematics Questions to think about Why do batters slide their hands up the handle of the bat to lay down a bunt but not to drive the ball? Why might an athletic trainer

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

### Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

### Coriolis acceleration

Alpha Omega Engineering, Inc. 872 Toro Street, San Luis Obispo, CA 93401 (805) 541 8608 (home office), (805) 441 3995 (cell) Coriolis acceleration by Frank Owen, PhD, P.E., www.aoengr.com All rights reserved

### Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

### Midterm Exam 1 October 2, 2012

Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Hand Held Centripetal Force Kit

Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.

### ( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force