Annex B. Limit Load Solutions (Based on SINTAP and R6)

Size: px
Start display at page:

Download "Annex B. Limit Load Solutions (Based on SINTAP and R6)"

Transcription

1 (0 y 006) ITET K7 Annx iit od olutions (sd on ITAP nd 6) iit od iit od...-. oncltu...-. Intoduction lt plts lt plt ith though-thicknss l lt plt ith suc l lt plt ith long suc l lt plt ith ddd l lt plt ith long ddd l lt plt ith dg l lt plt ith doul dg l...-. Cuvd shlls phs Pips o cylinds Though-thicknss ccks in cylind ointd xilly Intnl suc l in cylind ointd xilly ong intnl suc l in cylind ointd xilly Extnl suc l in cylind ointd xilly ong xtnl suc l in cylind ointd xilly Pips o cylinds ith cicuntil ls Though-thicknss l in cylind ointd cicuntilly Intnl suc l in cylind ointd cicuntilly ong intnl suc l in cylind ointd cicuntilly Extnl suc l in cylind ointd cicuntilly ong xtnl suc l in cylind ointd cicuntilly ound s nd olts Eddd ls in ound s Cntlly ddd xil llipticl dcts olid ound ; cntlly ddd xtndd dct Tuul joints T- nd Y-Joints ith xil lod T- nd Y-Joints ith in-pln nd out-o-pln nding K-Joints ith xil lods K-Joints ith in-pln nd out-o-pln nding X- nd DT-Joints ith xil lod X- nd DT-Joints ith in-pln nd out-o-pln nding til istch Cck in th cnt lin o th ld til Cck in th intc tn ld tl nd s plt Cck in th intc o i-til joint Cck in th cnt lin o th ld til Cck in th intc tn ld tl nd s plt Cck in th intc o i-til joint Cck in th cnt lin o th ld til Cck in th intc tn ld tl nd s plt Cck in th intc o i-til joint Cck in th cnt lin o th ld tl Cck in th intc tn ld tl nd s plt...-8 ITET 006 All ights svd -

2 ITET K7 Annx.9. Cck in th intc o i-til joint Cck in th cnt lin o th ld tl Cck in th intc tn ld tl nd s pip Cck in th intc o i-til joint i-til (cld) cnt though thicknss cckd plt und tnsion Cnt cckd i-ly (cld) plt ith pi ld ITET 006 All ights svd

3 (0 y 006) ITET K7. oncltu c D E H p p i, o ci, co P P c P hl l lngth o though-thicknss l, l hight o suc l o hl hight o ddd l spcin thicknss, sction thicknss in pln o l hl l lngth o suc o ddd ls dit Young s odulus pplid nol lod nol yild liit lod yild liit lod o istchd ldnts yild liit lod o s til spcin hight pip o spcin lngth nolisd liit ont nolisd liit nol lod nolisd liit pssu nolisd liit coind pssu nd tnsion lod ( o n???) istch tio coss ldnt givn y W / pplid in nd out o pln onts o tuul joints ully plstic onts o cckd tuul joints clcultd o in nd out o pln lods pplid nding ont liit nding ont pplid xisytic though ll nding ont p unit ngl o coss sction liit xisytic though ll nding ont p unit ngl o coss sction pplid xil lod on tuul joint collps lod o cckd tuul joint yild liit pssu p Applid pssu P iit pssu ITET 006 All ights svd -

4 ITET K7 Annx i o W u t inn dius out dius n dius Yild stss istch lo stss o ldnt yild o poo stngth o ld tl yild o poo stngth o s tl cto to llo o th psnc o xil nd ont lods in th chod. stngth cto hich vis ith th joint nd lod typ thicknss o stuctul sction t Ectiv plt o cylind thicknss o dining locl liit lod W Plt idth o hl plt idth W Ectiv hl plt idth o hl cylind lngth o dining locl liit lod δ σ σ σ n, σ n, ν ϑ cck opning displcnt n stss nding stss n coponnt o collps stss nding coponnt o collps stss od tio o coind tnsion nd nding Poisson s tio cck ngl; 90 i ppndicul to th suc,,,θ,ϕ,,ξ,ζ dinsionlss cck siz - ITET 006 All ights svd

5 (0 y 006) ITET K7. Intoduction In clssicl solid chnics th liit lod is dind s th xiu lod coponnt o lstic-idlly plstic til is l to ithstnd, ov this liit lignt yilding cos unliitd. In contst to this dinition, l tils stin hdn ith th consqunc tht th pplid lod y incs yond th vlu givn y th non-hdning liit lod. otis stin hdning is oughly tkn into ccount y plcing th yild stngth o th til y n quivlnt yild stngth clld lo stngth (usully th n o yild stngth nd ultit tnsil stngth) in th liit lod qution. In ITET nlysis th plstic liit lod ks th lod t hich th plstic zon spds coss th hol lignt hd o th cck. o uthos p th t yild lod instd o liit lod in od to distinguish it o th high plstic collps lod hich is chd hn th lignt hs copltly stin hdnd nd th coponnt ils und stss contolld loding. Th stition o liit lod o givn cck/coponnt goty is citicl input to itnss-o-svic ssssnt. This Annx o th Volu III o th ITET copils th K-solutions nd liit lod solutions long oth ndd inotion to conduct nlysis. Cophnsiv st o liit lod solutions coplid to sv s n ccut nd us-indly dt. Th sults o th 790, ITAP nd 6 soucs usd to gnt this Annx. ITET 006 All ights svd -5

6

7 (0 y 006) ITET K7 ITET 006 All ights svd -7 nding stsss s unctions o onts tuctu typ nding stss, σ ith 6 noncltu nding stss, σ ith ITAP noncltu oction Pln Wt 6 d 6 tnsil stss t ll suc (W is plt idth) Pip ith intnl cicuntil dct (xisytic nd) A t 6 ( ) ( ) t 6 t A A 6 A tnsil stss t inn ll suc Pip ith xtnl cicuntil dct (xisytic nd) t 6 ( ) ( ) t 6 t 6 tnsil stss t out ll suc Pip ith intnl o xtnl cicuntil dct (cntilv nd) ( ) ( ) ) t t( t π ) ( π pk tnsil stss t out ll suc

8 ITET K7 Annx olid ound ith cntlly ddd cicul dct (xisytic nd) - 9 tnsil stss t cnt o olid ound ith xtnl cicuntil dct (xisytic nd) - 96 tnsil stss t suc o olid ound (cntilv nd) - π pk tnsil stss t suc o -8 ITET 006 All ights svd

9 (0 y 006) ITET K7. lt plts.. lt plt ith though-thicknss l 6 Applicl clus(s): (.) olution:, W, W γ Pln stss Tsc, pln stss iss nd pln stin Tsc solutions: o 0 < (.) Pln stin iss solution: ( ) o 0 < γ (.) Vlidity liits: Th plt should lg in copison to th lngth o th cck so tht dg cts do not inlunc th sults. iliogphy: [.] A G ill, vi o liit lods o stuctus contining dcts, Int J Ps Vs Piping, 97-7 (988). ITET 006 All ights svd -9

10 ITET K7 Annx -0 ITET 006 All ights svd.. lt plt ith suc l 6 Plts und coind tnsion (pin-lodd) nd nding: Applicl clus(s): glol solution (.), (.), (.5), (.6), (.7), (.8) locl solution (.9), (.0), (.), (.), (.), (.) olution: Dinition: W, W, σ σ 6,, W c, c Glol solution: ( ) > 0 0 o o d d d d (.) ( ) > 0 0 o o d d d d (.) h ( ) ( ) d (.5)

11 (0 y 006) ITET K7 ITET 006 All ights svd - ( ) ( ) d (.6) 0 (.7) o pu tnsion ( 0) nd pu nding ( ) o 0 o 0 (.8) Extndd suc ccks (st ): quivlnt to th solution oly in IV..8.. Though-ll ccks (st ) ocl solution (W c nd ): ( ) ( ) ( ) ( ) > 0 0 o o d d d d (.9) ( ) ( ) ( ) ( ) > 0 0 o o d d d d (.0) h ( ) d (.) ( ) ( ) d (.) ( ) 0 (.) o pu tnsion ( 0) nd pu nding ( )

12 ITET K7 Annx o 0 0 (.) o Vlidity liits: o locl cs th solutions liitd to < iliogphy: [.] [.] Y i, J-intgl nd liit lod nlysis o si-llipticl suc ccks in plts und nding, Int J Ps Vs Piping 8, - (00). Y i, A glol liit lod solution o plts ith si-llipticl suc ccks und coind tnsion nd nding, AE/JE Pssu Vssls nd Piping Connc, n Digo, July , PVP-Vol. 75, 5- (00). - ITET 006 All ights svd

13 (0 y 006) ITET K7.. lt plt ith long suc l Plts und coind tnsion (pin-lodd) nd nding 6 Applicl clus(s): (.5), (.6) olution:, W σ,, 6 σ W t-sction collps solution (pln stss Tsc): ( ) ( ) ( ) o < (.5) ( ) ( ) ( ) o < (.6) o th cs o pu tnsion ( 0) qn. (.5) pplis nd o th cs o pu nding ( ) qn.(.6) pplis. Vlidity liits: (Th solution is liitd to / 0.8. Also, th plt should lg in th tnsvs diction to th cck so tht dg cts do not inlunc th sults.) iliogphy: [.] A A Willoughy nd T G Dvy, Plstic collps in pt-ll ls in plts, AT TP 00, Aicn ocity o Tsting nd tils, Phildlphi, UA, (989). ITET 006 All ights svd -

14 ITET K7 Annx.. lt plt ith ddd l Dcts in plts und coind tnsion (pin-lodd) nd nding 6 Applicl clus(s): IV..6. olution:, W σ c,,,, W 6 σ W p k, c o syticlly ddd ccks, k 0. Glol solution: Extndd ddd ccks st uc ccks st 0.5 k Though-ll ccks st k 0 nd 0.5 c o in(, ) ( ) ( ) c (.7) c o < [ ( ) k] [ ( ) k] c c o in(, ) ( ) ( ) c (.8) c o < [ ( ) k] [ ( ) k] c h - ITET 006 All ights svd

15 (0 y 006) ITET K7 ITET 006 All ights svd -5 ( ) 8 k c (.9) ( ) k c (.0) ( )( ) ( ) ( ) k k k k (.) ( ) ( ) o pu nding 0 o pu tnsion k k k (.) k (.) ocl solution (d c nd t ): ( ) ( ) < o, in o c k k c c c (.) ( ) ( ) < o, in o c k k c c c (.5) h 8 k c (.6) k c (.7)

16 ITET K7 Annx k k k k (.8) k k ( ) k ( ) ( ) o pu tnsion 0 o pu nding (.9) k (.0) Glol solution (pin-lodd): Equtions (IV..6.-) nd (IV..6.-) to (IV..6.-7) (st 0). (IV..6.-) o ddd xtndd dcts, st nd. ocl solutions (pin-lodd): o ddd xtndd dcts, st nd. () W c, nd W/ > W : Equtions (IV..6.-) nd (IV..6.-) to (IV..6.-7) (st 0). (IV..6.-) () d c k, t ( k) nd W/ > d : k k ( ) (.) Glol solution (ixd-gip tnsion): Equtions (IV..6.-) nd (IV..6.-) to (IV..6.-7) (st 0 nd k 0 s liit lod vlu dos not dpnd on cck position in th coss sction). o ddd xtndd dcts, st nd. ocl solution (ixd-gip tnsion): o W c, nd W/ > W : o ddd xtndd dcts, st nd. ( ) (.) Glol solution (nding): Equtions (IV..6.-) to (IV..6.-7) (st ) (IV..6.-) -6 ITET 006 All ights svd

17 (0 y 006) ITET K7 o ddd xtndd dcts, st nd. ocl solutions (nding): o ddd xtndd dcts, st nd. () W c, nd W/ > W : Equtions (IV..6.-) to (IV..6.-7) (st ) (IV..6.-) () d c k ( k), t ( k) nd W/ > d : k k ( k) (.) Vlidity liits: Glol solutions nt-sction collps solution vlid o > k 0 nd k. ocl solutions vlid o > k 0, k nd < iliogphy: [.5] [.6] A J Ct, A liy o liit lods o ACTUE-TWO, ucl Elctic pot TD/ID/EP/09 (99). Y i nd P J uddn, iit lod solutions o plts ith ddd ccks und coind tnsion nd nding, Int J Ps Vs Piping 8, (00) ITET 006 All ights svd -7

18 ITET K7 Annx..5 lt plt ith long ddd l 6. hn cw/ st nd st Applicl clus(s): olution: Vlidity liits: iliogphy: -8 ITET 006 All ights svd

19 (0 y 006) ITET K7..6 lt plt ith dg l 6 Applicl clus(s): Copct tnsion spcin (CT) ; Pln tss & tin (iss & Tsc) (.) - (.7) Th-point-nding spcin (TP); Pln tin (iss & Tsc) (.8), (.9) ingl dg cckd plt und tnsion (ECP); Pln tss & tin (iss & Tsc) (.0) - (.5) ingl dg cckd plt und nding (EC); Pln tss & tin (iss & Tsc) (.6) - (.9) olution: Copct tnsion spcin (CT) ; Pln tss & tin (iss & Tsc), W, W γ Pln stss Tsc solution: ( ) o 0 < (.) Pln stss iss solution: ( γ )( γ ) ( γ ) o 0 < (.5) Pln stin Tsc solution: o (.6) (.70 ) o 0.09 < < Pln stin iss solution: ( ) γ o (.7) γ [ (.70 )] o 0.09 < < Th-point-nding spcin (TP); Pln tin (iss & Tsc) ITET 006 All ights svd -9

20 ITET K7 Annx, W, W γ is th lodd lngth o th spcin : uppot distnc Pln stin Tsc solution: (...9 )( ).( ) o (.8) o 0.8 < < Pln stin iss solution: (...9 )( ) γ ( ) γ o (.9). o 0.8 < < ingl dg cckd plt und tnsion (ECP); Pln tss & tin (iss & Tsc), W, W γ, γ pin-lodd: Pln stss Tsc solution: ( ) o 0 < (.0) Pln stss iss solution:. o (.).70 ( 0.79 ( )) ( ) ( 0.79 ( )) o 0.55 < < Pln stin Tsc solution: [. ] γ o (.).70γ ( 0.79 ( )) ( ) ( 0.79 ( )) o 0.55 < < Pln stin iss solution: [. ] γ o n (.).70γ ( 0.79 ( )) ( ) ( 0.79 ( )) o 0.55 < < ixd gip: Pln stss Tsc nd iss, nd pln stin Tsc solutions: o 0 < (.) -0 ITET 006 All ights svd

21 (0 y 006) ITET K7 Pln stin iss solution: ( ) o 0 < γ (.5) ingl dg cckd plt und nding (EC); Pln tss & tin (iss & Tsc), W, W γ Pln stss Tsc solution: ( ) o 0 < (.6) Pln stss iss solution: ( )( ).07( ) o (.7) o 0.5 < < Pln stin Tsc solution: ( )( ).606( ) o (.8) o 0.95 < < Pln stin iss solution: ( )( ) γ ( ) γ o (.9).606 o 0.95 < < Vlidity liits: iliogphy: [.7] A G ill, vi o liit lods o stuctus contining dcts, Int J Ps Vs Piping, 97-7 (988) [.8] A J Ct, A liy o liit lods o ACTUE-TWO, ucl Elctic pot TD/ID/EP/09 (99). ITET 006 All ights svd -

22 ITET K7 Annx..7 lt plt ith doul dg l..7. init idth plt Plt und tnsion (DECP) 6 Applicl clus(s): (.50) - (.5) olution:, W, W γ Pln stss Tsc solution: o 0 < (.50) Pln stss iss solution: ( )( 0. 5 ) γ ( ) o (.5) o 0.86 < < Pln stin Tsc solution: ( ) ln ( ) o (.5).57( ) o 0.88 < < Pln stin iss solution: γ ( ) ln ( ) o (.5).57γ ( ) o 0.88 < < Vlidity liits: - ITET 006 All ights svd

23 (0 y 006) ITET K7 nc(s): [.9] A G ill, vi o liit lods o stuctus contining dcts, Int J Ps Vs Piping, 97-7 (988). ITET 006 All ights svd -

24 ITET K7 Annx. Cuvd shlls.. phs... Though-thicknss l in sph n stss 6 Applicl clus(s): (.5) olution: t, θ P θ 8 cos θ (.5) Vlidity liits: iliogphy: [.0] udkin nd T E Tylo, ctu in sphicl vssls, J ch Engng cinc, (969) - ITET 006 All ights svd

25 (0 y 006) ITET K7.5 Pips o cylinds.5. Though-thicknss ccks in cylind ointd xilly n stss 6 Applicl clus(s): (.55) olution: t, φ t P.05 φ (.55) Vlidity liits: Th cylind should long in copison to th lngth o th cck so tht dg cts do not inlunc th sults. iliogphy: [.] A G ill, vi o liit lods o stuctus contining dcts, Int J Ps Vs Piping, 97-7 (988). [.] J Kin, W A xy, J Ei nd A Duy, ilu stss lvls o ls in pssuisd cylinds, AT TP 56, Aicn ocity o Tsting nd tils, Phildlphi, UA, 6-8 (97). ITET 006 All ights svd -5

26 ITET K7 Annx.5. Intnl suc l in cylind ointd xilly Pssu-Excluding o Including Cck cs; Glol & ocl Collps 6 Applicl clus(s): (.56) - (.60) olution:, t t, φ c () Glol solutions: (i) Without dct-c pssu: P g ln (.56) h g.05 (.57) φ (ii) With dct-c pssu: P g ln (.58) () ocl solutions: (i) Without dct-c pssu (d c s ( - ) nd t ): -6 ITET 006 All ights svd

27 (0 y 006) ITET K7 ITET 006 All ights svd -7 ( ) ( ) ln ln s c c s P (.59) h ln g c s (ii) With dct-c pssu (d c s ( - ) nd t ): ( ) ( ) ln ln s c c s P (.60) h ln ln g c s Vlidity liits: iliogphy: [.] A G ill, vi o liit lods o stuctus contining dcts, Int J Ps Vs Piping, 97-7 (988). [.] A J Ct, A liy o liit lods o ACTUE-TWO, ucl Elctic pot TD/ID/EP/09 (99).

28 ITET K7 Annx.5. ong intnl suc l in cylind ointd xilly Pssu-Excluding o Including Cck cs 6 Applicl clus(s): (.6), (.6) olution:, t t Without dct c pssu: P ln (.6) With dct c pssu: P ln (.6) Vlidity liits: iliogphy: [.5] A J Ct, A liy o liit lods o ACTUE-TWO, ucl Elctic pot TD/ID/EP/09 (99). -8 ITET 006 All ights svd

29 (0 y 006) ITET K7 ITET 006 All ights svd Extnl suc l in cylind ointd xilly n nd nding stss 6 Applicl clus(s): (.6) - (.68) olution: n, σ, n, σ, σ σ 6, t, t c, W c t o n xtndd xil xtnl suc cck ocl solutions (W t c nd t t): ( ) ( ) ( ) ( ) > 0 0 o o d d d d (.6) ( ) ( ) ( ) ( ) > 0 0 o o d d d d (.6) h

30 ITET K7 Annx d (.65) ( ) [ ( )] ( ) d (.66) ( ) 0 (.67) o pu tnsion ( 0) nd pu nding ( ) o 0 0 (.68) o Vlidity liits: Th solutions liitd to iliogphy: [.6] I W Goodll nd G A Wst, Thoticl dtintion o nc stss o ptilly pntting ls in plts, Int J Ps Vs Piping 78, (00). [.7] Y i, J-intgl nd liit lod nlysis o si-llipticl suc ccks in plts und nding, Int J Ps Vs Piping 8, - (00). [.8] Y i, A glol liit lod solution o plts ith si-llipticl suc ccks und coind tnsion nd nding, AE/JE Pssu Vssls nd Piping Connc, n Digo, July , PVP-Vol. 75, 5- (00). -0 ITET 006 All ights svd

31 (0 y 006) ITET K7.5.5 ong xtnl suc l in cylind ointd xilly n nd nding stss 6 Applicl clus(s): IV.9. ith k VI t in th ist pts o qns. (.6) & (.6) nd qn. (.65) to otin th solution o n xtndd xil xtnl suc cck in cylind und n nd nding stsss. olution: Vlidity liits: iliogphy: [.9] I W Goodll nd G A Wst, Thoticl dtintion o nc stss o ptilly pntting ls in plts, Int J Ps Vs Piping 78, (00). [.0] Y i, J-intgl nd liit lod nlysis o si-llipticl suc ccks in plts und nding, Int J Ps Vs Piping 8, - (00). [.] Y i, A glol liit lod solution o plts ith si-llipticl suc ccks und coind tnsion nd nding, AE/JE Pssu Vssls nd Piping Connc, n Digo, July , PVP-Vol. 75, 5- (00). ITET 006 All ights svd -

32 ITET K7 Annx.6 Pips o cylinds ith cicuntil ls.6. Though-thicknss l in cylind ointd cicuntilly n nd nding stss, glol nd locl solution 6 Applicl clus(s): Thick-lld cylinds und coind tnsion nd nding: (.77) Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: (.7) o though-ll dcts, olution: Thick-lld cylinds und coind tnsion nd nding, π t t,,, θ, t π Glol solutions: Whol cck insid th tnsil stss zon (θ π): θ π π ( ) sin ( ) sinθ c c 6 Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: - ITET 006 All ights svd

33 (0 y 006) ITET K7 ITET 006 All ights svd -, t π, t, t c θ p t P t P t p p π χ ( ) p p p χ (.69) ( ) p p π π (.70) χ χ p p (.7) χ χ p p (.7) Glol solutions: Whol cck insid th tnsil stss zon (θ π) p π θ π (.7) ( ) [ ] sin sinθ (.7) Vlidity liits: iliogphy: [.] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). [.] Y i nd P J uddn, iit lod solutions o thin-lld cylinds ith cicuntil ccks und coind intnl pssu, xil tnsion nd nding, J tin Anlysis 9, (00).

34 ITET K7 Annx.6. Intnl suc l in cylind ointd cicuntilly 6 Applicl clus(s): Thick-lld cylinds und coind tnsion nd nding: (.75) - (.8) Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: (.85) - (.9) olution: Thick-lld cylinds und coind tnsion nd nding:, π t, t, t t c, θ t (.75) π o though-ll dcts, nd o ully cicuntil dcts, θ π. Glol solutions: Whol cck insid th tnsil stss zon (θ π): π θ π (, ) (.76) ( ) sin c (, ) sinθ (.77) Pt o th cck insid th copssion zon (θ > π): - ITET 006 All ights svd

35 (0 y 006) ITET K7 ITET 006 All ights svd -5 ( ) [ ] ( ) π θ π,, (.78) ( ) ( ) ( ) ( ) θ sin, sin, d d (.79) In qns. (.76) to (.79) (.80) (.8) c (.8) ( ) ( ) d 6 (.8) (.8) Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: t, t, t π, t c θ nd o ully cicuntil dct θ π p t P t P t p p π χ ( ) p p p χ ( ) p p π π (.85)

36 ITET K7 Annx -6 ITET 006 All ights svd χ χ p p (.86) χ χ p p (.87) Glol solutions: Whol cck insid th tnsil stss zon (θ π) p π θ π (.88) ( ) [ ] θ sin sin (.89) Pt o th cck insid th copssion zon (θ > π) ( )( ) ( ) p π θ π (.90) ( )( ) [ ] θ sin sin (.9) Vlidity liits: This is nt-sction collps solution. Whn θ > π, cck closu is ignod. o th css o coind pssu nd nding, this solution y usd y convting th pssu into n quivlnt xil lod. Hov, o vy shllo dcts, this ttnt y ovstit th liit lod s th pssu inducd hoop stss s ignod in th divtion o this solution. iliogphy: Thick-lld cylinds und coind tnsion nd nding: [.] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: [.5] Y i nd P J uddn, iit lod solutions o thin-lld cylinds ith cicuntil ccks und coind intnl pssu, xil tnsion nd nding, J tin Anlysis 9, (00).

37 (0 y 006) ITET K7.6. ong intnl suc l in cylind ointd cicuntilly 6 Applicl clus(s): Thick-lld cylinds und coind tnsion nd nding: IV.8. ith k III o ully cicuntil dct θ π Thick Pip und intnl pssu: IV.8. Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: IV.8. ith k III o ully cicuntil dct θ π Thin-lld Cylind und xil lod: IV.8.5 olution: Thick-lld cylinds und coind tnsion nd nding: t,,, π t t t, θ π (.9) π Glol solutions: [ (, )] (, ) (.9) π ( ) [ (, ) sin ] d (.9) In qns. (IV..8.-) to (IV..8.-5) ITET 006 All ights svd -7

38 ITET K7 Annx -8 ITET 006 All ights svd (.95) (.96) c (.97) ( ) ( ) d 6 (.98) (.99) Thick Pip und intnl pssu: t, t With dct c pssu: ln P (.00) i > othis ln P (.0) Without dct c pssu (sld dct): ( )( ) ln P (.0)

39 (0 y 006) ITET K7 ITET 006 All ights svd -9 i ( )( ) ln ln > othis ln P (.0) Thin-lld Cylind: t π, t ( ) ( ) > o o Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: t, t, t π, π θ p t P t P t p p π χ ( ) p p p χ ( ) p p π π (.0) χ χ p p (.05)

40 ITET K7 Annx p p (.06) χ χ Glol solutions: p ( ( ) ) ( )( ) π (.07) [( )( ) sin ] (.08) Thin-lld Cylind und xil lod:, π t t ( ) o (.09) ( ) o > Vlidity liits: iliogphy: Thick-lld cylinds und coind tnsion nd nding: [.6] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thick Pip und intnl pssu: [.7] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thin-lld cylinds und coind tnsion nd nding ith intnl pssu [.8] Y i nd P J uddn, iit lod solutions o thin-lld cylinds ith cicuntil ccks und coind intnl pssu, xil tnsion nd nding, J tin Anlysis 9, (00). Thin-lld Cylind und xil lod: [.9] A Ainsoth, Plstic collps lod o thin-lld cylind und xil lod ith ully cicuntil cck, ucl Elctic Engining Advic ot EPD/GE/EA/0085/98 (998). -0 ITET 006 All ights svd

41 (0 y 006) ITET K7.6. Extnl suc l in cylind ointd cicuntilly 6 Applicl clus(s): Thick-lld cylinds und coind tnsion nd nding: IV.8. Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: IV.8. olution: Thick-lld cylinds und coind tnsion nd nding: π t,, t, t t c, θ t (.0) π o though-ll dcts, nd o ully cicuntil dcts, θ π. Glol solutions: Whol cck insid th tnsil stss zon (θ π): π θ π (, ) (.) ( ) sin c (, ) sinθ (.) Pt o th cck insid th copssion zon (θ > π): ITET 006 All ights svd -

42 ITET K7 Annx - ITET 006 All ights svd ( ) [ ] ( ) π θ π,, (.) ( ) ( ) ( ) ( ) θ sin, sin, d d (.) In qns. (IV..8.-) to (IV..8.-5) (.5) (.6) c (.7) ( ) ( ) d 6 (.8) (.9) Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: t, t, t π, t c θ p t P t P t p p π χ ( ) p p p χ ( ) p p π π (.0) χ χ p p (.)

43 (0 y 006) ITET K7 ITET 006 All ights svd - χ χ p p (.) Glol solutions: Whol cck insid th tnsil stss zon (θ π) p π θ π (.) ( ) [ ] θ sin sin (.) Pt o th cck insid th copssion zon (θ > π) ( )( ) ( ) p π θ π (.5) ( )( ) [ ] θ sin sin (.6) Vlidity liits: iliogphy: Thick-lld cylinds und coind tnsion nd nding: [.0] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: [.] Y i nd P J uddn, iit lod solutions o thin-lld cylinds ith cicuntil ccks und coind intnl pssu, xil tnsion nd nding, J tin Anlysis 9, (00).

44 ITET K7 Annx.6.5 ong xtnl suc l in cylind ointd cicuntilly 6 Applicl clus(s): Thick-lld cylinds und coind tnsion nd nding: IV.8. ith k III o ully cicuntil dct θ π Thick Pip und intnl pssu: IV.8. Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: IV.8. ith k III o ully cicuntil dct θ π Thin-lld Cylind und xil lod: IV.8.5 olution: Thick-lld cylinds und coind tnsion nd nding: t,,, π t t t, θ π (.7) π Glol solutions: [ (, )] (, ) (.8) π ( ) [ (, ) sin ] d (.9) In qns. (IV..8.-) to (IV..8.-5) - ITET 006 All ights svd

45 (0 y 006) ITET K7 ITET 006 All ights svd -5 (.0) (.) c (.) ( ) ( ) d 6 (.) (.) Thick Pip und intnl pssu: t, t ln P (.5) i > othis ln P (.6) Thin-lld cylinds und coind tnsion nd nding ith intnl pssu: t, t, t π, π θ p t P t P t

46 ITET K7 Annx -6 ITET 006 All ights svd p p π χ ( ) p p p χ ( ) p p π π (.7) χ χ p p (.8) χ χ p p (.9) Glol solutions: ( )( ) ( ) ( ) p π (.0) ( )( ) [ ] sin (.) Thin-lld Cylind: t π, t ( ) ( ) > o o (.) Vlidity liits:

47 (0 y 006) ITET K7 nc(s): Thick-lld cylinds und coind tnsion nd nding: [.] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thick Pip und intnl pssu: [.] Jons nd J Eshly, iit solutions o cicuntilly cckd cylinds und intnl pssu nd coind tnsion nd nding, ucl Elctic pot TD/ID/EP/00 (990). Thin-lld cylinds und coind tnsion nd nding ith intnl pssu [.] Y i nd P J uddn, iit lod solutions o thin-lld cylinds ith cicuntil ccks und coind intnl pssu, xil tnsion nd nding, J tin Anlysis 9, (00). Thin-lld Cylind und xil lod: [.5] A Ainsoth, Plstic collps lod o thin-lld cylind und xil lod ith ully cicuntil cck, ucl Elctic Engining Advic ot EPD/GE/EA/0085/98 (998). ITET 006 All ights svd -7

48 ITET K7 Annx.7 ound s nd olts.7. Eddd ls in ound s ITAP Applicl clus(s): p. AII olution: Though ll nding o ininit xisytic ody Eddd Dct; Though Wll nding 8 ( ) σ n,, 9 σ n, (.) t uc Dct; Though Wll nding 8 ( ) σ n,, 96 σ n, (.) t Vlidity liits: iliogphy: [.6] A. J. Ct, A iy o iit ods o ACTUE.TWO, ucl Elctic pot TD/ID/EP/09, (99). -8 ITET 006 All ights svd

49 (0 y 006) ITET K7.7. Cntlly ddd xil llipticl dcts ITAP Applicl clus(s): p. AII. 8-9 olution: Tnsion; Glol & ocl Collps Glol Collps c W (.5) W ( W c) ocl Collps c W (.6) W ( W c) Vlidity liits: iliogphy: [.7] A. J. Ct, A iy o iit ods o ACTUE.TWO, ucl Elctic pot TD/ID/EP/09, (99). ITET 006 All ights svd -9

50 ITET K7 Annx.7. olid ound ; cntlly ddd xtndd dct ITAP Applicl clus(s): p. AII. olution: dil Tnsion W (.7) W Vlidity liits: iliogphy: [.8] A. J. Ct, A iy o iit ods o ACTUE.TWO, ucl Elctic pot TD/ID/EP/09, (99). -50 ITET 006 All ights svd

51 (0 y 006) ITET K7.8 Tuul joints.8. T- nd Y-Joints ith xil lod ITAP Applicl clus(s): p. AIII. - Dsciption: T- nd Y-Joints oding: Axil chtic: iit lod olution: Th chctistic stngth o ldd tuul joint sujctd to unidictionl loding y divd s ollos: h T K P c u (.8) sinθ P C chctistic stngth o c xil lod chctistic yild stss o th chod t th joint (o 0.7 tis th chctistic tnsil stngth i lss). I chctistic vlus not vill spciid iniu vlus y sustitutd. sinθ K (.9) is cto to llo o th psnc o xil nd ont lods in th chod. is dind s: ITET 006 All ights svd -5

52 ITET K7 Annx U γ o xt conditions U γ o opting conditions h 0.00 o c xil lod 0.05 o c in-pln ont lod 0.0 o c out-o-pln ont lod nd (.P D) U 0 i o (.50) 0.7D T ith ll ocs (P, i, 0 ) in th unction U lting to th clcultd pplid lods in th chod. ot tht U dins th chod utilistion cto. y st to.0 i th olloing condition is stisid: chod xil tnsion oc th chod. ( ) 0. 5 i o ith ll ocs lting to th clcultd pplid lods in 0.D u is stngth cto hich vis ith th joint nd lod typ: ( ) u 0 u ( ) 8 (o Axil Copssion) (o Axil Tnsion) (.5) is th gotic odii dind s ollos.0 o o >0.6 iliogphy: ( 0.8 ) [.9] Osho Instlltions: Guidnc on Dsign, Constuction nd Ctiiction, outh Edition, UK Hlth & ty Excutiv, ondon (990). -5 ITET 006 All ights svd

53 (0 y 006) ITET K7.8. T- nd Y-Joints ith in-pln nd out-o-pln nding ITAP Applicl clus(s): p. AIII. - Dsciption: T- nd Y-Joints oding: In-pln nd out-o-pln nding chtic: iit lod olution: Th chctistic stngth o ldd tuul joint sujctd to unidictionl loding y divd s ollos: h T d co u (.5) sinθ ci ci chctistic stngth o c in-pln ont lod co chctistic stngth o c out-o-pln ont lod chctistic yild stss o th chod t th joint (o 0.7 tis th chctistic tnsil stngth i lss). I chctistic vlus not vill spciid iniu vlus y sustitutd. is cto to llo o th psnc o xil nd ont lods in th chod. is dind s: ITET 006 All ights svd -5

54 ITET K7 Annx U γ o xt conditions U γ o opting conditions h 0.00 o c xil lod 0.05 o c in-pln ont lod 0.0 o c out-o-pln ont lod nd (.P D) U 0 i o (.5) 0.7D T ith ll ocs (P, i, o) in th unction U lting to th clcultd pplid lods in th chod. ot tht U dins th chod utilistion cto. y st to.0 i th olloing condition is stisid: chod xil tnsion oc th chod. ( ) 0. 5 i o ith ll ocs lting to th clcultd pplid lods in 0.D u is stngth cto hich vis ith th joint nd lod typ: 0.5 5γ sinθ (o In-Pln nding) u (.6 ) (o Out-o Pln nding) (.5) u 7 is th gotic odii dind s ollos.0 o o >0.6 iliogphy: ( 0.8 ) [.0] Osho Instlltions: Guidnc on Dsign, Constuction nd Ctiiction, outh Edition, UK Hlth & ty Excutiv, ondon (990). -5 ITET 006 All ights svd

55 (0 y 006) ITET K7.8. K-Joints ith xil lods ITAP Applicl clus(s): p. AIII. 5-6 Dsciption: K-Joints oding: Axil chtic: iit lod olution: Th chctistic stngth o ldd tuul joint sujctd to unidictionl loding y divd s ollos: h T K P c u (.55) sinθ P c chctistic stngth o c xil lod chctistic yild stss o th chod t th joint (o 0.7 tis th chctistic tnsil stngth i lss). I chctistic vlus not vill spciid iniu vlus y sustitutd. sinθ K (.56) is cto to llo o th psnc o xil nd ont lods in th chod. is dind s: ITET 006 All ights svd -55

56 ITET K7 Annx U γ o xt conditions U γ o opting conditions h 0.00 o c xil lod 0.05 o c in-pln ont lod 0.0 o c out-o-pln ont lod nd (.P D) U 0 i o (.57) 0.7D T ith ll ocs (P, i, o) in th unction U lting to th clcultd pplid lods in th chod. ot tht U dins th chod utilistion cto. y st to.0 i th olloing condition is stisid: chod xil tnsion oc th chod. ( ) 0. 5 i o ith ll ocs lting to th clcultd pplid lods in 0.D u is stngth cto hich vis ith th joint nd lod typ: ( ) g u 0 (o Axil Copssion) u ( 8 ) g (o Axil Tnsion) (.58) is th gotic odii dind s ollos.0 o o >0.6 ( 0.8 ) 0.5 g.7 0.9ζ ut should not tkn s lss thn.0. iliogphy: [.] Osho Instlltions: Guidnc on Dsign, Constuction nd Ctiiction, outh Edition, UK Hlth & ty Excutiv, ondon (990). -56 ITET 006 All ights svd

57 (0 y 006) ITET K7.8. K-Joints ith in-pln nd out-o-pln nding ITAP Applicl clus(s): p. AIII. 7-8 Dsciption: K-Joints oding: In-pln nd out-o-pln nding chtic: iit lod olution: Th chctistic stngth o ldd tuul joint sujctd to unidictionl loding y divd s ollos: h T d co u (.59) sinθ ci ci chctistic stngth o c in-pln ont lod co chctistic stngth o c out-o-pln ont lod chctistic yild stss o th chod t th joint (o 0.7 tis th chctistic tnsil stngth i lss). I chctistic vlus not vill spciid iniu vlus y sustitutd. is cto to llo o th psnc o xil nd ont lods in th chod. is dind s: ITET 006 All ights svd -57

58 ITET K7 Annx U γ o xt conditions U γ o opting conditions h 0.00 o c xil lod 0.05 o c in-pln ont lod 0.0 o c out-o-pln ont lod nd (.P D) U 0 i o (.60) 0.7D T ith ll ocs (P, i, o) in th unction U lting to th clcultd pplid lods in th chod. ot tht U dins th chod utilistion cto. y st to.0 i th olloing condition is stisid: chod xil tnsion oc th chod. ( ) 0. 5 i o ith ll ocs lting to th clcultd pplid lods in 0.D u is stngth cto hich vis ith th joint nd lod typ: 0.5 5γ sinθ (o In-Pln nding) u (.6 ) (o Out-o Pln nding) (.6) u 7 is th gotic odii dind s ollos.0 o o >0.6 iliogphy: ( 0.8 ) [.] Osho Instlltions: Guidnc on Dsign, Constuction nd Ctiiction, outh Edition, UK Hlth & ty Excutiv, ondon (990). -58 ITET 006 All ights svd

59 (0 y 006) ITET K7.8.5 X- nd DT-Joints ith xil lod ITAP Applicl clus(s): p. AIII. 9-0 Dsciption: X- nd DT-Joints oding: Axil chtic: iit lod olution: Th chctistic stngth o ldd tuul joint sujctd to unidictionl loding y divd s ollos: h T K P c u (.6) sinθ P c chctistic stngth o c xil lod chctistic yild stss o th chod t th joint (o 0.7 tis th chctistic tnsil stngth i lss). I chctistic vlus not vill spciid iniu vlus y sustitutd. sinθ K (.6) ITET 006 All ights svd -59

60 ITET K7 Annx is cto to llo o th psnc o xil nd ont lods in th chod. is dind s: U γ o xt conditions U γ o opting conditions h 0.00 o c xil lod 0.05 o c in-pln ont lod 0.0 o c out-o-pln ont lod nd (.P D) U 0 i o (.6) 0.7D T ith ll ocs (P, i, o) in th unction U lting to th clcultd pplid lods in th chod. ot tht U dins th chod utilistion cto. y st to.0 i th olloing condition is stisid: chod xil tnsion oc th chod. 0.D ( ) 0. 5 u is stngth cto hich vis ith th joint nd lod typ: (.5 ) u (o Axil Copssion) ( 7 ) i o ith ll ocs lting to th clcultd pplid lods in u 7 (o Axil Tnsion) (.65) is th gotic odii dind s ollos.0 o o >0.6 iliogphy: ( 0.8 ) [.] Osho Instlltions: Guidnc on Dsign, Constuction nd Ctiiction, outh Edition, UK Hlth & ty Excutiv, ondon (990). -60 ITET 006 All ights svd

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations:

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations: 49 Instuction: Solving Eponntil Equtions without Logithms This lctu uss fou-stp pocss to solv ponntil qutions: Isolt th bs. Wit both sids of th qution s ponntil pssions with lik bss. St th ponnts qul to

More information

AC Circuits Three-Phase Circuits

AC Circuits Three-Phase Circuits AC Circuits Thr-Phs Circuits Contnts Wht is Thr-Phs Circuit? Blnc Thr-Phs oltgs Blnc Thr-Phs Connction Powr in Blncd Systm Unblncd Thr-Phs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml

More information

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE Scintific Jounal of Impact Facto(SJIF): 3.34 Intnational Jounal of Advanc Engining and sach Dvlopmnt Volum,Issu, Fbuay -05 HEAT TANSFE ANALYSIS OF LNG TANSFE LINE J.D. Jani -ISSN(O): 348-4470 p-issn(p):

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

fun www.sausalitos.de

fun www.sausalitos.de O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Tank Level GPRS/GSM Wireless Monitoring System Solutions

Tank Level GPRS/GSM Wireless Monitoring System Solutions Tank Lvl GPRS/GSM Wilss Monitoing Systm Solutions HOLYKELL TECHNOLOGY CO.LTD May,2014 Ⅰ. Solution Rquimnts 1. Intoduction Th solution is mainly including: wilss data tansciv tminal, lvl snso and PC sv

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Lecture 27. Rectangular Metal Waveguides

Lecture 27. Rectangular Metal Waveguides Lctu 7 Rctgul Mtl Wvguids I this lctu u will l: Rctgul tl wvguids T d TM guidd ds i ctgul tl wvguids C 303 Fll 006 Fh R Cll Uivsit Plll Plt Mtl Wvguids d 1 T Mds: Dispsi lti: ( ) si { 1,, d d d 1 TM Mds:

More information

Oakland Accelerated College Experience 2014-2015

Oakland Accelerated College Experience 2014-2015 Oklnd Accld Cllg Exinc 2014-2015 Oklnd ACE Sdn Alicin nd Inin Ls N Fis N Middl n iniil H Addss Ci Zi Cd Bs Eil Addss Bs Phn Nb Cll Alniv Nb Cll Cll H Cll H D Bih (/dd/) Ening Gd s 09/2014 Ovll Cliv GPA/4.0

More information

A n d r e w S P o m e r a n tz, M D

A n d r e w S P o m e r a n tz, M D T e le h e a lth in V A : B r in g in g h e a lth c a r e to th e u n d e r s e r v e d in c lin ic a n d h o m e A n d r e w S P o m e r a n tz, M D N a tio n a l M e n ta l H e a lth D ir e c to r f

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Handout 3. Free Electron Gas in 2D and 1D

Handout 3. Free Electron Gas in 2D and 1D Handout 3 F lcton Gas in D and D In this lctu ou will lan: F lcton gas in two dinsions and in on dinsion Dnsit o Stats in -spac and in ng in low dinsions C 47 Sping 9 Fahan Rana Conll Univsit lcton Gass

More information

Quality and Pricing for Outsourcing Service: Optimal Contract Design

Quality and Pricing for Outsourcing Service: Optimal Contract Design Qulity nd Pricing for Outsourcing Srvic: Optiml Contrct Dsign Smr K. Mukhopdhyy Univrsity of Wisconsin-Milwuk Co-uthor: Xiowi Zhu, Wst Chstr Univrsity of PA Third nnul confrnc, POMS Collg of Srvic Oprtions

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

VEHICLE PLANAR DYNAMICS BICYCLE MODEL

VEHICLE PLANAR DYNAMICS BICYCLE MODEL Auptions -Do, VEHE PANA DYNAMS BYE MODE o tel, (esued o instntneous cente o ottion O) o Yw, (wt Globl Ais) ongitudinl elocit is ued to be constnt. Sll slip ngles, i.e. ties opete in the line egion. No

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Cruisin with Carina Motorcycle and Car Tour Guide

Cruisin with Carina Motorcycle and Car Tour Guide Ifi Tchlgy Slui Wh Swdih hpiliy V, ully. Cuii wih Ci Mcycl d C Tu Guid Ikp: Ci Th 290 Ru 100 W Dv, V 05356 800-745-3615 802-464-2474 L h g ll! Th d i ck, c, i d l x. My 17h, 18h, & 19h W ivi yu c cui h

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

Preflighting for Newspaper

Preflighting for Newspaper Pflighing f Nwspp PS PDF EPS TIFF JPG Cifid Ghn pflighing* Lyd PDF pfligh ps Fixs ppss isss: ich blck x, hilins, vpins, c. Cn psv nspncis Cs nlizd p Pxy Csizbl pfligh nd p-fix pins Cn wch UNC nd FTP flds

More information

Morningstar Document Research

Morningstar Document Research Morningstar Document Research FORM8-K EMC INSURANCE GROUP INC - EMCI Filed: May 11, 2016 (period: May 11, 2016) Report of unscheduled material events or corporate changes. The information contained herein

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Higher. Exponentials and Logarithms 160

Higher. Exponentials and Logarithms 160 hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions

More information

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981. P. A. V a le s, Ph.D.

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981. P. A. V a le s, Ph.D. AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981 P. A. V a le s, Ph.D. SYNOPSIS Two in d ep en d en t tre a tm e n t g ro u p s, p a r t ic ip

More information

v o a y = = * Since H < 1m, the electron does not reach to the top plate.

v o a y = = * Since H < 1m, the electron does not reach to the top plate. . The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.

More information

V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I

V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I A L A P K IK É P Z É S B E N F Ő IS K O L Á N K O N C T A N U L M Á N Y > N a p j a i n k b

More information

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z C O N C U R S O P Ú B L I C O E D I T A L N º 0 0 1 / 2 0 1 2 D i s p õ e s o b r e C o n c u r s o P ú b l i c o p a r a p r o v i m e n t o c a r g o s e v a g a s d a P r e f e i t u r a M u n i c i

More information

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 -

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 - E ffic a c y o f S e le c tiv e M y e lo id L in e a g e L e u c o c y te D e p le tio n in P y o d e r m a G a n g re n o su m a n d P so r ia sis A sso c ia te d w ith In fla m m a to r y B o w e l D

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

M Mobile Based Clinical Decision Support System Bhudeb Chakravarti & Dr. Suman Bhusan Bhattacharyya Provider & Public Health Group, VBU-HL P S aty am C om puter S ervices L im ited Bhudeb_ C hak ravarti@

More information

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k - 1.0 nm every 6 minutes

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k - 1.0 nm every 6 minutes :1 Navigatio :1 Gal 1 1 1 Rf: P, Huica You a udway o cous T ad you axiu spd is 1 kots. Th y of a huica bas 1 T, ils fo you positio. Th huica is ovig towads T at 1 kots. If you auv at 1 kots to avoid th

More information

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

More information

Frederikshavn kommunale skolevæsen

Frederikshavn kommunale skolevæsen Frederikshavn kommunale skolevæsen Skoleåret 1969-70 V e d K: Hillers-Andersen k. s k o l e d i r e k t ø r o g Aage Christensen f u l d m æ g t i g ( Fr e d e rik sh av n E k sp r e s- T ry k k e rie

More information

Scholarship Help for Technology Students

Scholarship Help for Technology Students i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

More information

/* ------------------------------------------------------------------------------------

/* ------------------------------------------------------------------------------------ Pr o g r a m v a r e fo r tr a fik k b e r e g n in g e r b a s e r t p å b a s is k u r v e m e to d e n n M a tr ix * x M a tr ix E s ta lp h a B e ta ; n M a tr ix * z M a tr ix ; g e n M a tr ix X

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Jesus Performed Miracles

Jesus Performed Miracles F Jonl P Ju Pr Mircl ch f lo Al n fri r b f Li blo n of ick li on Po k r u yi li br o n o y o on y r v y o r b f ch rfriror n -ll cr r p r o y k li Tor n of o ll y r u o kn on r ch n L ch p Ju Hl Officil

More information

Math 22B, Homework #8 1. y 5y + 6y = 2e t

Math 22B, Homework #8 1. y 5y + 6y = 2e t Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.

More information

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST SYSS & SVICS CNUY 21 is th xclusiv sponso in th l stt ctgoy, nd is th only l stt ogniztion tht cn off I ILS wd ils. Poud suppot of st Sls sinc 1979. In 2008, CNUY 21 Cnd ctd th Kids to Cp pog wh vy $2,100

More information

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart . Big i N éi N Cil l l Néi l N i C lli C i é Néi i i I. N -D z Ei if ig Vll Bl ig Vig l'o l S Bg i i g l Ci Qi i Blf Si ig l i i 1945 g li gg ég Ni l Bl l i H Si J iz Eg S i Villi I l Bl i i i H Bliz Dli

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

NerveCenter Protocol and Perl Metrics. November 2014 NCSD-PPM-01

NerveCenter Protocol and Perl Metrics. November 2014 NCSD-PPM-01 rvcntr Procol nd Prl Mtrics ovbr 2014 CSD-PPM-01 Procol nd Prl Mtrics Strting in rvcntr 6.1 Bld28, th nccd cond lin utility supports gnrting trics for rvcntr Srvr s procol lyr nd Prl intrprtrs. Cling upon

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU requirements for renewal. It describes: Number of required for renewal Who approves continuing education Required courses for renewal Which jurisdictions require active practice

More information

ACE-1/onearm #show service-policy client-vips

ACE-1/onearm #show service-policy client-vips M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere

More information

Problem Solving Session 1: Electric Dipoles and Torque

Problem Solving Session 1: Electric Dipoles and Torque MASSACHUSETTS INSTITUTE OF TECHNOLOGY Dpatmnt of Physics 8.02 Poblm Solving Sssion 1: Elctic Dipols and Toqu Sction Tabl (if applicabl) Goup Mmbs Intoduction: In th fist poblm you will lan to apply Coulomb

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

More information

An E mpir ical Analysis of Stock and B ond M ar ket Liquidity

An E mpir ical Analysis of Stock and B ond M ar ket Liquidity A p r il 2 2, 2 0 0 2 An E mpir ical Analysis of Stock and B ond M ar ket Liquidity Ta r u n Ch o r d ia, A s a n i S a r ka r, a n d A va n id h a r S u b r a h m a n ya m Go iz u e t a B u s in e s s

More information

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0 Ctlog E 074486 08/00 Eition ComptPCI Conntors. to PIGMG.0 Rv. 3.0 Gnrl Lt in 999 PCI Inustril Computr Mnufturrs Group (PICMG) introu th nw rvision 3.0 of th ComptPCI Cor Spifition. Vrsion 3.0 of this spifition

More information

DECLARATION OF ASSETS AND LIABILITIES BY MEMBERS OF RAJYA SABHA FORM I

DECLARATION OF ASSETS AND LIABILITIES BY MEMBERS OF RAJYA SABHA FORM I DECLARATION OF ASSETS AND LIABILITIES BY MEMBERS OF RAJYA SABHA (Use extra sheet signed by the Member if space is insufficient for making entries) FORM I [See rule 3 of the Members of Rajya Sabha (Declaration

More information

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING S FOR PHARMACY ONLINE CLAIMS PROCESSING The following is a list of error and warning codes that may appear when processing claims on the online system. The error codes are bolded. CODE AA AB AI AR CB CD

More information

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g...

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g... V e lf rd s s e k re ta ria te t S a g s n r. 1 4 3 4 1 5 B re v id. 9 9 3 9 7 4 R e f. S O T H D ir. tlf. 4 6 3 1 4 0 0 9 s o fie t@ ro s k ild e.d k G o d k e n d e ls e s k rite rie r fo r p riv a tin

More information

Erfa rin g fra b y g g in g a v

Erfa rin g fra b y g g in g a v Erfa rin g fra b y g g in g a v m u ltim e d ia s y s te m e r Eirik M a u s e irik.m a u s @ n r.n o N R o g Im e d ia N o rs k R e g n e s e n tra l fo rs k n in g s in s titu tt in n e n a n v e n d

More information

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

ME 612 Metal Forming and Theory of Plasticity. 6. Strain Mtal Forming and Thory of Plasticity -mail: azsnalp@gyt.du.tr Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.

More information

Budgeting. Here are five easy ways to keep your budget. Keeping up with all the INS and OUTS POSITIVE. Budget Quick Start. Go Green!

Budgeting. Here are five easy ways to keep your budget. Keeping up with all the INS and OUTS POSITIVE. Budget Quick Start. Go Green! Bgig K lif G h igh l f chl Mbil, li, v g bkig h w chck cc c i blc M bk l ff li bkig, which i g w k ll f ic i chck Lk f chckig vig cc h icl li bkig l v bil bkig, c k chck bg i G G! G f l li lik li bill

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

4 Chopper-Controlled DC Motor Drive

4 Chopper-Controlled DC Motor Drive 4 Chopper-Controlled DC Motor Drive Chopper: The vrible dc voltge is controlled by vrying the on- nd off-times of converter. Fig. 4.1 is schemtic digrm of the chopper. Its frequency of opertion is f 1

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

The Lincoln National Life Insurance Company Variable Life Portfolio

The Lincoln National Life Insurance Company Variable Life Portfolio The Lincoln National Life Insurance Company Variable Life Portfolio State Availability as of 12/14/2015 PRODUCTS AL AK AZ AR CA CO CT DE DC FL GA GU HI ID IL IN IA KS KY LA ME MP MD MA MI MN MS MO MT NE

More information

Issue 1, Volume 1 January 2010. news for the residents of alamo heights SAN ANTONIO STOCK SHOW & RODEO. T h e S a n Antonio Stock Show & Rodeo

Issue 1, Volume 1 January 2010. news for the residents of alamo heights SAN ANTONIO STOCK SHOW & RODEO. T h e S a n Antonio Stock Show & Rodeo Al Hi 09 ER I 1 Vl 1 Jy 2010 i i Al Hi 09'ER SAN ANTONIO STOCK SHOW & RODEO V PRCA L I R O T Y F Fi Cciv Y T S Ai Sc S & R i ill c i ill ly ily i AT&T C i Pi R Cy Acii (PRCA) L I R Y. T S Ai Sc S & R cii

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries

Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries Bttris i grl: Bttris How -bsd bttris work A rducig (gtiv) lctrod A oxidizig (positiv) lctrod A - th ioic coductor Rchrgbl bttris Rctios ust b rvrsibl Not too y irrvrsibl sid rctios Aod/cthod i rchrgbl

More information

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Magic Message Maker Amaze your customers with this Gift of Caring communication piece Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of

More information

W h a t is m e tro e th e rn e t

W h a t is m e tro e th e rn e t 110 tv c h a n n e ls to 10 0 0 0 0 u s e rs U lf V in n e ra s C is c o S y s te m s 2 0 0 2, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h a t is m e tro e th e rn e t O b je c tiv

More information

Design for Cyclic Loading

Design for Cyclic Loading Dsign o Cyclic Loading 1. Compltly vsing cyclic stss and ndanc stngth A ply vsing o cyclic stss mans whn th stss altnats btwn qal positiv and ngativ pak stsss sinsoidally ding ach 300 cycl o opation, as

More information

First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a

More information

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu - 1 B Ihsu dulcs cuncts [Supr 1] [Supr 2] Tnr B B B B - B - B - Ih - Ih - Ih - su su su cs cs cs cunc - cunc - cunc - Amns, Bblthèqu Cntl L Agn, ms 162 D, ff 2v-10 ts, ts, ts, E-tr - E-tr - E-tr - n p n

More information

Auburn University Style Guide & Identification Standards Manual

Auburn University Style Guide & Identification Standards Manual y E k H PM 28 C 9 C MY M y K v B 10 k 0% : 60 64 % % x 11 C M MY Y K v 6 97 1% : % P PM 17 C 2 M MY Y K v 6 88 6% : % P PM 15 8 PM 17 2 B R G ID E & PM ID P E 15 8 T IC IF T IO PM 17 2 D T R D M L 0 0

More information

EXACTA. TURRET PRESS TOOLING Weideman & Behrens Type CAT #T064 SS-10 SS-8 SS-9 SS-2 SS-4 SS-5 SS-6 SS-3 SS-11 SS-87 SS-12 SS-86 SS-13 SS-42 SS-40

EXACTA. TURRET PRESS TOOLING Weideman & Behrens Type CAT #T064 SS-10 SS-8 SS-9 SS-2 SS-4 SS-5 SS-6 SS-3 SS-11 SS-87 SS-12 SS-86 SS-13 SS-42 SS-40 400 SS-2 SS-3 SS-4 SS-6 SS-9 SS-10 SS-12 2 SS-13 SS-14 SS-15 SS-18 SS-17 10 SS-19 SS-20 SS-21 SS-22 SS-23 SS-24 SS-25 SS-26 SS-27 SS-28 SS-29 SS-30 SS-31 2 1 SS-32 SS-33 SS-34 SS-35 SS-36 SS-37 SS-38 SS-40

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU (continuing education units) and CCU (continuing competence units) requirements for renewal. It describes: Number of CEUs/CCUs required for renewal Who approves continuing education

More information

P R E F E I T U R A M U N I C I P A L D E J A R D I M

P R E F E I T U R A M U N I C I P A L D E J A R D I M D E P A R T A M E N T O D E C O M P R A S E L I C I T A O A U T O R I Z A O P A R A R E A L I Z A O D E C E R T A M E L I C I T A T с R I O M O D A L I D A D E P R E G O P R E S E N C I A L N 034/ 2 0

More information

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units.

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units. Fomuls nd Units Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line movement: s v = m/s t s = v t m s = t m v = m/s t P = F v W F = m N Rottion ω = π f d/s

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

RPI ROOF PRODUCTS, INC. Email: rpicurbs@comcast.net Visit us on the web at www.rpicurbs.com

RPI ROOF PRODUCTS, INC. Email: rpicurbs@comcast.net Visit us on the web at www.rpicurbs.com MIN OFFICE 7616 Lee Highway Chattanooga, TN 37421 Phone: 423-892-8620 Fax: 423-892-2107 Toll Free: 800-262-6669 RPI PRODUCTS, INC. Email: rpicurbs@comcast.net Visit us on the web at www.rpicurbs.com WEST

More information

Collaboration in Public H e alth be tw e e n U niv e rs ity of H e id e lbe rg and U niv e rs ity of D ar e s S alaam How t h e c oop e r a t i on e m e r g e d Informal c ont ac t s from e arly 1 9

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

v T R x m Version PREVIEW Practice 7 carroll (11108) 1

v T R x m Version PREVIEW Practice 7 carroll (11108) 1 Version PEVIEW Prctice 7 crroll (08) his print-out should he 5 questions. Multiple-choice questions y continue on the next colun or pge find ll choices before nswering. Atwood Mchine 05 00 0.0 points A

More information

High Voltage Cables. Figure 5.1 - Layout of three, single-core cables

High Voltage Cables. Figure 5.1 - Layout of three, single-core cables High oltag Cabls 5.0 High oltag Cabls High oltag Cabls a usd whn undgound tansmission is quid. Ths cabls a laid in ducts o may b buid in th gound. Unlik in ovhad lins, ai dos not fom pat of th insulation,

More information

Other State Policy. CA Policy. Increase Requested

Other State Policy. CA Policy. Increase Requested Rate History Contact: 1 (800) 331-1538 Form * ** Date Date Name 1 NH94 I D 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006 8/20/2006 2 LTC94P I F 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

More information

UNDERSTANDING FLOW PROCESSING WITHIN THE CISCO ACE M ODULE Application de liv e r y pr odu cts can distr ib u te tr af f ic to applications and w e b se r v ice s u sing v ar y ing le v e ls of application

More information

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013)

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013) Excel Invoice Format Excel Column Name Cell Format Notes Campus* Supplier Number* Invoice Number* Order Number* Invoice Date* Total Invoice Amount* Total Sales Tax Amount* Discount Amount Discount Percent

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information