# Motions of the Earth. Stuff everyone should know

Size: px
Start display at page:

Transcription

1 Motions of the Earth Stuff everyone should know

2 Earth Motions E W N W Noon E Why is there day and night? OR Why do the Sun and stars appear to move through the sky? Because the Earth rotates around its N-S axis once every 24 hrs

3 Star trails that include the north celestial pole

4 Star trails at the equator

5

6 How fast is a gaucho napping at the equator moving due to the Earth s rotation (english units)? Speed = Distance/time (units like miles/hr) Distance = 2 x 3.14 x 3820 = 24, 000 miles S = 24000miles/24hours S =1000 miles/hour

7 Seasons: Ge3ing Oriented

8 The Reason for Seasons North pole North pole Northern winter, Southern summer Northern summer, Southern winter Southern hemisphere tilted toward the sun Northern Hemisphere tilted toward the sun. The Earth is in a slightly elliptical orbit around the Sun - we are furthest from the Sun during the Northern Hemisphere summer. It is the tilt of the Earth s axis with respect to orbit plane that is the cause of the seasons.

9 Dec 21 Southern hemisphere summer, Sun is directly above the Tropic of Capricorn June 21 Northern hemisphere summer, Sun is directly above the Tropic of Cancer

10 Sun s Path Through the Year

11 Reason for Seasons cont. The tilt has two main effects. 1) The path the Sun takes through the sky changes during the year (look to the South to see the Sun in the winter, over head in the summer). Fewer daylight hours in the Winter. 2) The intensity of sunlight decreases in the winter (the Sun is at a larger angle from the zenith). Therefore: it is cold in the winter.

12 The solar energy per unit area decreases as the Sun moves lower in the sky. This is the reason it is cooler in the winter and in the morning

13 The Night Sky at Different Seasons We see different stars at different times of the year. The stars are always there, but can only be seen against the dark night sky.

14 Q. How fast is the Earth moving in its orbit around the Sun? Speed=Distance/Time (example units: miles/hour) Distance=2 π R; R= miles; Time = 1 year S = miles year 1year 365days 1day 24hr = 66,800 miles hour

15 Q. How fast is the Earth moving in its orbit around the Sun? S = D/t D = 2πR R = miles t =1year S = miles year 1year 365days 1day 24hr = 66,800 miles hour Funny way to write 1

16 Moon phases The moon phases are due to the relative positions of the Sun and moon. One half of the moon is always illuminated, it is only a question of what fraction of the illuminated face we can see from the Earth.

17 Q. What time does the full moon rise? a) At midnight b) At sunrise c) At sunset d) Any old time, this is a trick question.

18 Q. What time does the full moon rise? a) At midnight b) At sunrise c) At sunset <<< d) Any old time, this is a trick question.

19 Night before full moon, at sunset the moon is 1/27 x 365 = 13.5 above the eastern horizon East West

20 Lunar Eclipse For a full moon, the Sun, Earth and Moon are all aligned. The Moon can fall into the shadow of the Earth. This is called a lunar eclipse.

21 Solar Eclipse A similar thing can happen during the new moon. The Moon can cast a shadow on the Earth when it passes in front of the Sun.

22

23

24

25

26 Why don t we have an eclipse every month?

27

28 Sky at night: constellations Stars are essentially fixed in the sky Apparent groupings of bright stars were connected by various cultures and given names Astrology has zero basis in science

29

30 What about Star Names? The brightest stars have lots of names, none official. There are some widely-used catalogues. A convention often used in astronomy is to use the Greek alphabet to identify the brightest stars in the constellations. - Sirius = α Canis Majoris is the brightest star in the constellation Canis Major. - β Canis Majoris is the second brightest etc.

31 Stellar Brightness Will use brightness to be apparent brightness. This is not an INTRINSIC property of a star, but rather a combination of its Luminosity, distance and amount of dust along the line of sight. Big telescope limit Naked-eye limit Sun Binocular limit Sirius Venus Full Moon faint apparent Magnitude bright

32 Stellar Brightness Five magnitudes is a factor of 100 difference in brightness. How much brighter is the the Sun (-26 magnitude) compared to a typical distant galaxy observed with a Keck Telescope (+24 magnitude) a difference of 50 magnitudes? A. 5 x 100 = 500 B. 50 C =100 x 100 x 100 x 100 x 100 = 10,000,000,000 D =(10 2 ) 10 =10 20 =100,000,000,000,000,000,000

33 Naked- Eye Observations There are about 6000 stars you can see with your unaided eye at a dark site Limited by: - size of the human eye: 5 7 mm pupil - the eye s integration time of ~0.1seconds - resolution of ~ 1 arcmin

34 Planets Mars retrograde motion Planet means wanderer and it was realized long ago that some stars moved against the fixed stars They are seen along the ecliptic. Mercury, Venus, Mars, Jupiter and Saturn are all naked-eye objects

35 Other stuff in the sky Perseid shower The Solar System is full of rocks and dust/ice balls - Comets - Asteroids - Meteoroid - Dust When small bits intersect with the Earth, ( crossing orbits ) they burn up as shooting stars Larger objects can survive and hit the ground (meteorite)

36 Meteorites Approximately 5 tons of material lands on Earth each day. Mostly in dust-sized material. Chances of your house being hit by meteorite in your lifetime: 1 in 4 trillion

37 Large Meteorites Objects > 50m in diameter make quite an impact (1 per 100 years) At 2km and above, has global consequences (once per 250,000 years)

38 Meteor/Asteroid Size Frequency Damage 10-6 meters 300,000 per second Burns up in atmosphere 10-3 meters Every 30 seconds Burns up in atmosphere 1 meter Every year Fireball, minor airburst 10 meters Every 10 years Airburst, sonic boom, fragments hit Earth. Russia Feb meters Every 1000 years Huge airburst, many fragments, ~hydrogen bomb in released energy 10 3 meters Every 100 million years Planet- wide destruction

39 Lifetime odds of cause of death Cause of Death Chances Heart disease 1 in 5 Cancer 1 in 7 Car accident 1 in 100 Homicide 1 in 300 Firearms accident 1 in 800 Electrocution 1 in 5000 Airline crash 1 in 20,000 Tornado 1 in 60,000 Lightning 1 in 84,000 Asteroid impact 1 in 200,000 Shark a3ack 1 in 300,000

40 Early Warning Asteroids are easily detected when they are close to Earth (for sizes > 300 meters) All-sky imaging systems are in place to monitor the entire sky a few times per week Lots of collision avoidance schemes under discussion

41 White dots are Sun, Mercury, Venus, Earth, Mars and Jupiter Blue dots are asteroids that don t cross the Earth s orbit Yellow dots are asteroids with Earthcrossing orbits (courtesy of N. Kaiser, U Hawaii)

42 Where is the North Star?

43 Next topic: Light Spectral Lab will be carried out in Sections during the week of April 6 Quiz 1: April 14

### CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

### Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated

### Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

### Douglas Adams The Hitchhikers Guide to the Galaxy

There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

### Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

### ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

### 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### Chapter 5 Astronomy 110 Motions of the Sun and the Moon 1

Chapter 5 Positions of the Sun and Moon Objects in our Solar System appear to move over the course of weeks to months because they are so close. This motion caused ancient astronomers to use the name planets,

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

### The changing phases of the Moon originally inspired the concept of the month

The changing phases of the Moon originally inspired the concept of the month Motions of the Moon The Moon is in orbit around the Earth, outside the atmosphere. The Moon `shines via reflected light (12%)

### The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

### Which month has larger and smaller day time?

ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

### Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

### Astronomy Club of Asheville October 2015 Sky Events

October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

### Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

### Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

### Geometry and Geography

Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

### Page. ASTRONOMICAL OBJECTS (Page 4).

Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

### An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation

### Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining

### ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

### Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

### CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

### Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

### Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

### The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

### The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

### The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

### Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

### Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System

Outdoor Exploration Guide A Journey Through Our Solar System A Journey Through Our Solar System The Solar System Imagine that you are an explorer investigating the solar system. It s a big job, but in

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

### STUDY GUIDE: Earth Sun Moon

The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

### Homework Assignment #7: The Moon

Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

Common Misconceptions About Astronomy By Liam McDaid Sacramento City College 1). Whither seasons? Seasons are caused by Earth changing its distance from the Sun as it orbits the Sun. It is true that Earth

### COASTLINING THE ZODIAC

COASTLINING THE ZODIAC Astronomy books and skywatching guides offer a wide variety of charts for naked-eye observation of the skies. What works best for each person will depend on various factors such

### Study Guide: Solar System

Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

### Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

### EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

### Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

### Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### Chapter 3 Earth - Sun Relations

3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

### Moon. & eclipses. Acting out celestial events. (oh my)

phasestides & eclipses Moon (oh my) Acting out celestial events Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Moon Phases, Tides, & Eclipses (oh my)! Grade Level: 8 th grade Subject(s):

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Announcements. Due Monday, 11:59pm, Sept 9th. Can submit answers (and see score) more than once: persistence pays off!

Announcements Homework 1 posted on Compass Due Monday, 11:59pm, Sept 9th. Can submit answers (and see score) more than once: persistence pays off! Register those iclickers! link on course site Venus/Saturn

### 2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

### 1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

### Astronomy Notes for Educators

Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar

### THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### Activities: The Moon is lit and unlit too

Activities: The Moon is lit and unlit too Key objectives: This activity aims to help student to: Identify the different phases of the Moon Know that the Moon does not produce its own light, but reflects

### Solar System Overview

Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

### 5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

### Science in the Elementary and Middle School

15-0 Science in the Elementary and Middle School Naturally Occurring Inquiry Process, Which Can Be Made More Effective With Experience Uses Observable Data Science Search for Regularity Involves Information

### Note S1: Eclipses & Predictions

The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily

### Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

### XXX Background information

XXX Background information The solar system Our solar system is made up of the Sun, the planets, the dwarf planets, moons, asteroids and comets. The Sun is the star around which everything orbits. There

### Astronomy. Introduction. Key concepts of astronomy. Earth. Day and night. The changing year

Astronomy Introduction This topic explores the key concepts of astronomy as they relate to: the celestial coordinate system the appearance of the sky the calendar and time the solar system and beyond space

### Essential Question. Enduring Understanding

Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

### Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

### Phases of the Moon. Objective. Materials. Procedure. Name Date Score /20

Name Date Score /20 Phases of the Moon Objective Working with models for the Earth-Moon-Sun system, the student will simulate the phases the Moon passes through each month. Upon completion of this exercise,

### FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

### Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

### Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN - What it s made of - Age and how it formed (provide pictures or diagrams) - What is an AU?

### AST 114 Spring 2016 Introduction to the Night Sky INTRODUCTION TO THE NIGHT SKY

NAME: INTRODUCTION TO THE NIGHT SKY What will you learn in this Lab? This lab will introduce you to the layout of the night sky: constellations and stars, their names and the patterns they make, and the

### Explain the Big Bang Theory and give two pieces of evidence which support it.

Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

### Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit:

The Moon Phase Book Produced by Billy Hix and Terry Sue Fanning As part of the TeachSpace Program For more ideas and an image of the current phase of the moon, visit: www.teachspace.us Printing Date: 10/29/2010

### Proffessor: J. C. Cersosimo

Proffessor: J. C. Cersosimo Objectives Student will: Recognize the Solar and Lunar calendar Demonstrate the how the Moon phases form Explain the main elements of an orbits Describe the orbit of the Earth

### Background Information Students will learn about the Solar System while practicing communication skills.

Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations

### Building Models to Scale

Day Laboratory - 1 Building Models to Scale Introduction Can you picture the dimensions of the solar system? Probably not. The sizes and distances involved are so great that the mind tends to give up,

### Appropriate space vocabulary for Primary School

Appropriate space vocabulary for Primary School Stuff Looks like Gas Dust Rock Liquid Fatter (moon) Thinner (moon) Faster Slower Hot Cold Material Shape Straight at (an object) Direct (light) Indirect

### Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

### Introduction to the Solar System

Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

### Motions of Earth LEARNING GOALS

2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

### Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

### Basic Coordinates & Seasons Student Guide

Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

### Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

### INDEPENDENT PROJECT: The Spring Night Sky

INDEPENDENT PROJECT: The Spring Night Sky Your Name: What is the difference between observing and looking? As John Rummel said to the Madison Astronomical Society, January 11, 2002: Looking implies a passive

### www.mhhe.com/fix Sunrise from Earth orbit by the crew of the STS-47 Space Shuttle Mission. I pray the gods to quit me of my toils,

Confirming Proofs I pray the gods to quit me of my toils, To close the watch I keep this livelong year; For as a watch-dog lying, not at rest, Propped on one arm, upon the palace roof Of Atreus race, too

### The Moon. Nicola Loaring, SAAO

The Moon Nicola Loaring, SAAO Vital Statistics Mean distance from Earth Orbital Period Rotational Period Diameter 384,400 km 27.322 days 27.322 days 3476 km (0.272 x Earth) Mass 7.3477 10 22 kg (0.0123