Vocabulary  Understanding Revolution in. our Solar System


 Deirdre Woods
 2 years ago
 Views:
Transcription
1 Vocabulary  Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar System Revolution Kepler s Laws of orbits Orbit Ellipse Eccentricity Foci (focal points) Major axis Apogee Aphelion Perigee Perhelion Orbital speed Astronomy Cosmology
2 ORBITS work according to very set mathematical rules. Kepler figured this all out and gave us the laws of orbital motion!
3 Remember, gravity is the force of revolution. Gravity makes the world go around the sun and keeps us, the atmosphere, and everything else firmly in place. Closer together or bigger mass means stronger gravity field Further apart or smaller mass means weaker gravity field It s a mass and distance thing!
4 The elliptical shape of the orbits and gravity are the key to understanding a satellite s speed in orbit, so let s first investigate the orbit shape an ellipse! Which of these shapes is an ellipse?
5 Draw some ellipses. Be sure to number the foci and the ellipses so you know how they relate. What happens to the shape of the ellipse when the foci are close together or far apart?
6 Using this simple change from circular orbits to elliptical orbits, the theory of revolution was updated to match the observations of astronomers! Finally, the math could be done and Kepler s Laws of Orbits unified the heliocentric theory and revolution! Of course, it took Newton, and eventually Einstein, to figure out gravity made it work but that s another story!
7 KEPLER s LAWS of ORBITS e = distance between foci length of major axis LAW 1  ORBIT SHAPE: Orbit s shape is slightly elliptical and is mathematically described its eccentricity (e)
8 KEPLER s LAWS of ORBITS LAW 2  SATELLITE s SPEED in ORBIT: closer = faster and further = slower because gravity field is stronger when a planet is closer to sun Fastest at perigee (closest place on orbit path) slowest at apogee (farthest away).
9 KEPLER s LAWS of ORBITS LAW 3  ORBIT SIZE: uses math to say that further away from sun results in a bigger orbit and a longer year!
10 The elliptical shape of the orbits and gravity are the key to understanding a satellite s speed in orbit, so let s start with Kepler s first law of orbits Which of these shapes is an ellipse?
11 But this is an ellipse, too! WHY? CIRCLE with one center point and an EQUAL RADIUS and DIAMETER in all directions We usually think of extreme ELLIPSES like this
12 REVIEW Ellipses DO NOT HAVE one radius CIRCLE with one center point and an EQUAL RADIUS in all directions Ellipses HAVE UNEVEN DIAMETERS in different directions Ellipses HAVE TWO FOCAL POINTS (FOCI) along their major axis at their center
13 But ellipses are not circles! SOME TERMS FOR ELLIPSES MAJOR AXIS is the LONGEST DISTANCE and goes through the two focal points (foci) Why is the sun in this picture? It s one of the foci in the solar system. The other focal point is just math! FOCAL POINTS (FOCI) are the 2 mathematical center points along the major axis
14 Draw some ellipses. Be sure to number the foci and the ellipses so you know how they relate. What happens to the shape of the ellipse when the foci are close together or far apart?
15 Eccentricity = a measure of how circular or elliptical an orbit is Eccentricity (e) = _distance between foci (d) length of the major axis (L) MAJOR AXIS is the LONG DIAMETER FOCAL POINTS (FOCI) are the 2 center points.
16 Now calculate the eccentricity of two of the ellipses you drew Mathematically, what happens to the shape of the ellipse when the foci are close together or far apart? When measuring with the ruler, round to tenths of a centimeter After calculating, round eccentricity to thousandths
17 Let s make sure we get it! Lab Elliptical Path Note: this concept is 1/3 of your lab test in June!
18 Eccentricity (e) = _distance between foci (d) length of the major axis (L) FOCI CLOSE TOGETHER LOOKS MORE CIRCULAR Call it SLIGHTLY ELLIPTICAL LESS ECCENTRIC e closer to 0 FOCI FURTHER APART LESS CIRCULAR Call it MORE ELLIPTICAL MORE ECCENTRIC e closer to 1
19 Are the orbits of the planets around the sun very elliptical or only slightly elliptical? Is there a difference between terrestrial and jovian planets?
20 Are the orbits of the planets very elliptical? Is there a difference in eccentricity between terrestrial and Jovian planets orbits? 1. Get your evidence first! Rank the planets orbits in order of increasing eccentricity. Do they group together? Calculate the average eccentricity for all the planets in our solar system, the Jovian planets, and the terrestrial planets. MAKE A DATA TABLE to summarize your results! GROUP MOST ECCENTRIC LEAST ECCENTRIC AVG ECCENTRICITY ALL PLANETS TERRESTRIALS JOVIANS
21 Which planets orbits are least elliptical and most elliptical? Larger eccentricity values mean orbit is more elliptical.
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earthcentered
More informationLecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
More informationUnit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
More informationName: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
More informationSection 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
More informationToday. Galileo. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws
Today Galileo Planetary Motion Tycho Brahe s Observations Kepler s Laws 1 Galileo c. 15641642 First telescopic astronomical observations 2 First use of telescope for astronomy in 1609 400 years ago! 3
More information1 The Nine Planets. What are the parts of our solar system? When were the planets discovered? How do astronomers measure large distances?
CHAPTER 4 1 The Nine Planets SECTION A Family of Planets BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of our solar system? When were the
More informationPlanetary Orbit Simulator Student Guide
Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.
More informationFrom Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
More informationA. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
More informationStudy Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
More informationGravitation. Physics 1425 Lecture 11. Michael Fowler, UVa
Gravitation Physics 1425 Lecture 11 Michael Fowler, UVa The Inverse Square Law Newton s idea: the centripetal force keeping the Moon circling the Earth is the same gravitational force that pulls us to
More informationKepler, Newton and Gravitation
Kepler, Newton and Gravitation Kepler, Newton and Gravity 1 Using the unit of distance 1 AU = EarthSun distance PLANETS COPERNICUS MODERN Mercury 0.38 0.387 Venus 0.72 0.723 Earth 1.00 1.00 Mars 1.52
More informationAstronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
More informationThe orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
More informationMotion and Gravity in Space
Motion and Gravity in Space Each planet spins on its axis. The spinning of a body, such a planet, on its axis is called rotation. The orbit is the path that a body follows as it travels around another
More informationThe Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:
Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section
More informationEDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
More informationLab 6: Kepler's Laws. Introduction. Section 1: First Law
Lab 6: Kepler's Laws Purpose: to learn that orbit shapes are ellipses, gravity and orbital velocity are related, and force of gravity and orbital period are related. Materials: 2 thumbtacks, 1 pencil,
More informationRETURN TO THE MOON. Lesson Plan
RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 912 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 24 students Preparation time: 1 hour
More informationIntroduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
More informationChapter 25.1: Models of our Solar System
Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets
More informationNames of Group Members:
Names of Group Members: Using telescopes and spacecraft, astronomers can collect information from objects too big or too far away to test and study in a lab. This is fortunate, because it turns out that
More informationEarth in the Solar System
Copyright 2011 Study Island  All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
More information7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).
Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98
More informationastronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
More informationUSING MS EXCEL FOR DATA ANALYSIS AND SIMULATION
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers
More informationExplain the Big Bang Theory and give two pieces of evidence which support it.
Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric
More informationMotions of Earth, Moon, and Sun
Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationOrbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
More informationOut of This World Classroom Activity
Out of This World Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to assess.
More informationChapter 13 Newton s Theory of Gravity
Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 132 Chapter 13 Preview Slide 133 Chapter 13 Preview Slide
More informationSatellite Orbits From Planet Earth
Satellite Orbits From Planet Earth Grade Level: 7 Time Required: Several class periods, depending on research Countdown: 1 copy of table for each student 1 copy of Elliptical Orbits worksheet for each
More informationWhat s going on during a solar eclipse. Solar Eclipses. Total Solar Eclipse on March 29, 2006 (viewed from Turkey) Partial, Total, and Annular
Solar Eclipses The Sun disappears behind the Moon The Moon is always in the New phase during a solar eclipse Can only be seen from certain places on Earth These events are even more rare than lunar eclipses
More informationThe Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html
The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.
More informationChapter 3 The Science of Astronomy
Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar
More informationAnswer Sheet. Astronomy. Your ES Teacher: Name. Spring School 2015. Page 7 Page 9 Page 10 #3) #5) #29) #39) #52) #40) #66) Tide height: #45) Time:
Your ES Teacher: Date: ( M W Th ) Astronomy CIRCLE ONE Answer Sheet Page 7 Page 9 Page 10 Name Spring School 2015 #3) #5) #29) Page 8 #36) #37) #38) #39) #40) #45) #46) #47) #52) #66) Tide height: Time:
More informationEducator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 2381233 www.rhfleet.org
Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 2381233 www.rhfleet.org PreVisit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat
More informationClass 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
More informationKepler s Laws and our Solar System
Kepler s Laws and our Solar System The Astronomical Unit, AU Kepler s Empirical Laws of Planetary mo=on The mass of the Sun, M O. A very brief tour of the solar system Major planets Dwarf planets (defini=on)
More informationOrbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Coordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
More informationGeorgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationNewton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
More informationLESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy
LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.
More informationNewton s Law of Gravity
Newton s Law of Gravity Example 4: What is this persons weight on Earth? Earth s mass = 5.98 10 24 kg Mar s mass = 6.4191 10 23 kg Mar s radius = 3400 km Earth s radius = 6378 km Newton s Form of Kepler
More informationLecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
More informationUC Irvine FOCUS! 5 E Lesson Plan
UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,
More informationExemplar Problems Physics
Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration
More informationChapter 5: Circular Motion, the Planets, and Gravity
Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but
More informationTHE SOLAR SYSTEM  EXERCISES 1
THE SOLAR SYSTEM  EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?
More informationSummary: Four Major Features of our Solar System
Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar
More informationWelcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,
More informationAstronomy 114 Summary of Important Concepts #1 1
Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semimajor axis of the ellipse) is simply related to sidereal period of the
More informationAE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre
AE554 Applied Orbital Mechanics Hafta 1 Egemen Đmre A bit of history the beginning Astronomy: Science of heavens. (Ancient Greeks). Astronomy existed several thousand years BC Perfect universe (like circles
More informationVoyage: A Journey through our Solar System. Grades 58. Lesson 5: Round and Round We Go Exploring Orbits in the Solar System
Voyage: A Journey through our Solar System Grades 58 Lesson 5: Round and Round We Go Exploring Orbits in the Solar System On a visit to the National Mall in Washington, DC, one can see monuments of a
More informationAstromechanics TwoBody Problem (Cont)
5. Orbit Characteristics Astromechanics TwoBody Problem (Cont) We have shown that the in the twobody problem, the orbit of the satellite about the primary (or viceversa) is a conic section, with the
More informationBarycenter of Solar System EarthMoon barycenter? Moon orbits what?
Barycenter of Solar System EarthMoon barycenter? Moon orbits what? Dr. Scott Schneider Friday Feb 24 th, 2006 Sponsored by the Society of Physics Students (SPS) Webpage : http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml
More informationCLIL MODULE: THE SOLAR SYSTEM.
CLIL MODULE: THE SOLAR SYSTEM http://www.youtube.com/watch?v=hdjl8wxjlgi&nr=1 Tibaldi Elena Vittoria Docente di Scienze Naturali Biology  IB Program XXI Century Science Cambridge IGCSE Liceo Vittoria
More informationNewton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
More informationChapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics
Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationGravity at. work. Investigating Gravity s job in the solar system
Gravity at work Investigating Gravity s job in the solar system Developed by: Betsy Mills, UCLA NSF GK12 Fellow Title of Lesson: Gravity at Work! Grade Level: 8 th Subject(s): Gravity Summary: In this
More informationThe Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe
Football Review Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,
More informationThe Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec
More informationThe following words and their definitions should be addressed before completion of the reading:
Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center
More informationExam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti
Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking
More informationPenn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
More informationPage 1 of 2
Kinesthetic Solar System Kinesthetic Solar System Demonstration Materials Students Pictures or signs representing each body in the solar system, including comets, and asteroids. Large outside open area,
More information1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
More informationLecture 5: Newton s Laws. Astronomy 111
Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (16431727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,
More informationName: João Fernando Alves da Silva Class: 74 Number: 10
Name: João Fernando Alves da Silva Class: 74 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands
More informationWhy don t planets crash into each other?
1 Just as we know that the sun will rise every morning, we expect the planets and the moon to stay in their orbits. And rightly so. For 400 years, people have understood that the movements of Earth, the
More informationName Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
More informationDIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationAppropriate space vocabulary for Primary School
Appropriate space vocabulary for Primary School Stuff Looks like Gas Dust Rock Liquid Fatter (moon) Thinner (moon) Faster Slower Hot Cold Material Shape Straight at (an object) Direct (light) Indirect
More informationEarth In Space Chapter 3
Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the
More informationChapter 13  Gravity. David J. Starling Penn State Hazleton Fall Chapter 13  Gravity. Objectives (Ch 13) Newton s Law of Gravitation
The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton
More informationTidal Forces and their Effects in the Solar System
Tidal Forces and their Effects in the Solar System Richard McDonald September 10, 2005 Introduction For most residents of Earth, tides are synonymous with the daily rise and fall of sea levels, and there
More informationArtificial Satellites Earth & Sky
Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,
More informationChapter 13. Newton s Theory of Gravity
Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimetersized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton
More informationChapter 6: Our Solar System and Its Origin
Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit
More information4. Discuss the information as a class (transparency key)
Teacher: Sherry TippsHolder Grade: 8 Subject: World History/ Lesson designed for inclusion in unit on Scientific Revolution Essential Question: What were the major contributions/innovations of the who
More informationNotes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
More informationLab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in
More informationEarth, Moon, and Sun Study Guide. (Test Date: )
Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to
More informationtps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change?
tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change? A. It would be onefourth as strong. B. It would be onehalf as strong. C. It would
More informationThe Sun. Solar radiation (Sun EarthRelationships) The Sun. The Sun. Our Sun
The Sun Solar Factoids (I) The sun, a mediumsize star in the milky way galaxy, consisting of about 300 billion stars. (Sun EarthRelationships) A gaseous sphere of radius about 695 500 km (about 109 times
More informationOrbital Dynamics. Orbital Dynamics 1/29/15
Orbital Dynamics Orbital Dynamics 1/29/15 Announcements Reading for next class Chapter 5: Sections 5.15.4 Homework #2 due next class (Tuesday, Feb. 3) Project #1 topic ideas due next Tuesday (Feb. 3)
More informationSolar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
More informationGravity. in the Solar System. Beyond the Book. FOCUS Book
FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers
More informationGrade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?
Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They
More informationphysics of biomolecular chemistry and structures under stress e.g. protein conformations proteinprotein bonds cell membranes
Figure 12.4 physics of biomolecular chemistry and structures under stress e.g. protein conformations proteinprotein bonds cell membranes unfolding/refolding single bond kinetics pore formation strength
More informationThe University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 6075 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More informationStudy Guide due Friday, 1/29
NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system
More informationNewton s Law of Universal Gravitation
12.1 Newton s Law of Universal Gravitation SECTION Explain Kepler s laws. Describe Newton s law of universal gravitation. Apply Newton s law of universal gravitation quantitatively. KEY TERMS OUTCOMES
More informationPeriods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy
Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining
More informationHow the Universe Works
How the Universe Works Grades: 8 th Program Duration: 30 Min Program Type: Interactive Planetarium Program Program Description This presentation presents evidence that has baffled astronomers for years.
More information