Course Guide Electronics AS LEVEL

Size: px
Start display at page:

Download "Course Guide Electronics AS LEVEL"

Transcription

1 I have come that you might have life & have it to the full John 10 v10 Twyford Church of England High School Course Guide Electronics AS LEVEL Academic year commencing September 2014

2 Contents 1. COURSE OVERVIEW ASSESSMENT SCHEDULE GENERAL EXPECTATIONS PREPARING FOR LESSONS AND HOMEWORK ASSIGNMENTS RESOURCES THE LEVEL 4 PROGRAMME YEAR STRETCHING THE MOST ABLE AND DIFFERENTIATION COMMUNITY SERVICE ADDITIONAL LEARNING OPPORTUNITIES AND WORK EXPERIENCE COMPLETING AN EXTENDED PROJECT CELEBRATING SUCCESS AND STUDENT VOICE Page 2 of 21

3 1. COURSE OVERVIEW Syllabus AQA Course Name GCE Electronics (Science) Web Address Are classes set No, they are of mixed ability see section 7 Modules As Unit 1 ELEC1 Introductory Electronics Written Examination 67 marks, 6 or 7 compulsory questions of varying length. 1 hour 35% of the total AS marks 17½% of the total A Level marks Available in June only Unit 2 ELEC2 Further Electronics Written Examination 67 marks, 6 or 7 compulsory questions of varying length. 1 hour 35% of the total AS marks 17½% of the total A Level marks Available in June only Unit 3 ELEC3 Practical System Development Coursework 50 marks Focused on the content of AS units 1 and 2 30% of the total AS marks 15% of the total A Level marks Available in June only A2 Unit 4 ELEC4 Programmable Control Systems Written Examination 80 marks, 7 or 8 compulsory questions of varying length. 1½ hours 17½% of the total A Level marks Available in June only Unit 5 ELEC5 Communications Systems Written Examination 80 marks, 7 or 8 compulsory questions of varying length. 1½ hours 17½% of the total A Level marks Available in June only Unit 6 ELEC6 Practical System Synthesis Coursework 50 marks Focused on the content of A2 units 4 and 5 15% of the total A Level marks Available in June only Page 3 of 21

4 Scheme of Work - Content Overview Week Content/Specification No. Term 1 1 System synthesis recognise and understand that simple systems consist of an input, a process, an output and possibly feedback; analyse and design system diagrams where the lines between subsystems represent the flow of information; represent complex systems in terms of subsystems; recognise that signals may be analogue or digital in nature, and differentiate between them; describe and explain the operation of modern electronic systems which may make use of several sensors. 2 Voltage (V), current (I), resistance (R), power (P) understand the need for identifying a zero volt point in a circuit; define and apply the fact that resistance,r, is the ratio of the voltage across a V conductor,v, to the current, I, flowing through it, R ; I calculate the combined resistance of resistors connected in series using RT R1 R2 R3... ; calculate the combined resistance of resistors connected in parallel using ; R R1 R 2 select appropriate preferred values for resistorsfrom the E24 series; identify the value ofresistors using the colour code and BS 1852 code; define and apply the fact that power dissipated in a componentis the product of V, the voltage across a component in a circuit, and I, the current through that component; apply the formula VI, or I 2 R, or V 2 /R to calculate the power dissipation in a circuit or component. Page 4 of 21

5 Week Content/Specification No. 3 Diodes + voltage dividers describe the use of light-emitting diodes (LEDs), silicon diodes and Zener diodes and carry out relevant calculations; calculate the value of the series resistor for dc circuits; sketch I V characteristics for silicon diodes and Zener diodes; select appropriate silicon diodes and Zener diodes from given data sheets; describe how a Zener diode can be used with a current limiting resistor to form a simple regulated voltage supply; calculate the value and power rating of a suitable current limiting resistor. 4 Resistive input transducers interpret and use characteristic curves (which may use logarithmic scales) of resistive input transducers; describe and explain the use of LDRs, negative temperature coefficient thermistors, variable resistors and switches in a voltage divider circuit to provide analogue signals; calculate suitable values for series resistors for use with and for protection of LDRs and thermistors; carry out calculations on voltage dividers consisting of resistors and resistive input transducers. 5 Transistors and MOSFETs describe the use of an npn junction transistor as a switch; describe the use of an n-channel (enhancement mode) MOSFET as a switch; compare the advantages and disadvantages of a MOSFET and a junction transistor when they are both used as switches. 6 Output Devices describe the use of electromagnetic relays, solenoids, buzzers, motors, and sevensegment displays in a system and understand and explain circuit protection provided by a diode in parallel with a relay, solenoid or motor; understand and use COM, NO and NC notation. Half term Page 5 of 21

6 Week Content/Specification No. 7 Operation amplifiers (op-amps) recall the characteristics of an ideal op-amp and be aware how these may be different for a typical op-amp; know, understand and use the difference between inverting and non-inverting inputs; understand the power supply requirements and output voltage swing limitations of real op-amps leading to saturation; describe, understand and explain the use of an op-amp in a comparator circuit. 8 Logic gates and Boolean algebra identify and use NOT, AND, OR, NAND, NOR and EX-OR gates in circuits; construct, recognise and use truth tables for NOT, AND, OR, NAND, NOR and EX-OR gates and simple combinations of them; understand the operation of, and use combinations of NOT, AND, OR, NAND, NOR and EX-OR gates to form other logic functions; generate the Boolean expression from a truth table or logic diagram. 9 Design and simplification of combinational logic systems design a logic system from a truth table, written description or Boolean algebra expression using combinations of gates; simplify a logic system using either Boolean algebra or Karnaugh maps; convert logic systems comprising mixed gates into either NOR or NAND gates only; describe and explain the operation of combinational logic systems. 10 Capacitors recall that a capacitor is capable of storing electrical charge and electrical energy; recall that a capacitor will block a direct current but will allow the passage of an alternating current; recall that the unit of capacitance is the farad and that practical capacitors are usually measured in pf, nf and µf; calculate the combined capacitance of capacitors connected in series and parallel combinations; select appropriate capacitors given data on maximum working voltage, polarisation and leakage current. Page 6 of 21

7 Week Content/Specification No. 11 dc RC networks explain the meaning of and calculate the value of the time constant for RC circuits; recall that after one time constant: for a charging capacitor, V = 0.63Vs; for a discharging capacitor, V = 0.37Vs; where Vs is the supply voltage and V is the voltage across the capacitor; recall that: after 0.69RC, V = 0.5Vs; after 5RC for a charging capacitor, V Vs; after 5RC for a discharging capacitor, V 0; sketch graphs of voltage against time for a capacitor charging and discharging. 12 Timing subsystems recall that a monostable circuit has one stable output state and one unstable output state; recognise, draw and use the circuit diagram of a monostable based on a 555 timer circuit; describe the operation of a monostable based on a 555 timer; calculate the time period of such a monostable using T = 1.1RC; recall that an astable circuit has no stable output states but continually changes; recognise, draw and use the circuit diagram of an astable based on a 555 timer circuit; describe the operation of an astable based on a 555 timer; calculate the time, tl, that the output is low using tl = 0.7RBC; calculate the time, th, that the output is high using th = 0.7(RA+RB)C; 1.44 calculate the output frequency using F. C(R 2 R ) A B Term 2 Week Content No. 1 Coursework 2 Coursework 3 Coursework 4 Coursework Page 7 of 21

8 Week Content/Specification No. 5 Sequential logic subsystems recall the circuit diagram of a bistable latch based on NAND gates and describe its operation and function; recall the symbol for a rising edge triggered D-type flip-flop and describe its operation and function; recall that in a shift register information is passed along from one element how rising edge triggered D-type flip-flops can be used to form a shift register and describe its operation and applications.to the next on each clock pulse; recall 6 Counter subsystems describe the use of feedback to make a rising edge triggered D-type flip-flop divide by 2; design 4-bit up or down counters based on rising edge triggered D-type flip-flops, and draw timing diagrams for these counters; design 4-bit modulo-n counters based on rising edge triggered D-type flip-flops, and draw timing diagrams for these counters; convert a 4-bit binary number to decimal or hexadecimal notation; describe the use of a BCD or hexadecimal decoder with a seven segment display. Half term 7 The Operational Amplifier recall the properties of an ideal op-amp; recall that for a real op-amp, the product of voltage gain and bandwidth is a constant; recall that negative feedback is used to reduce the overall voltage gain of an op-amp amplifier subsystem. Page 8 of 21

9 Week Content/Specification No. 8-9 Amplifier subsystems use the formula Vout voltage gain ; Vin recall and use the definition of bandwidth of an amplifier as the frequency range over which the voltage gain is within 70% of the maximum; draw and recognise the inverting op-amp amplifier circuit and describe its applications; use the formula Vout Vin Rf ; R in recall that the input resistance is equal to the value of the input resistor, and that the circuit has a virtual earth point; draw and recognise a summing op-amp amplifier circuit and describe its applications; V use the formula 1 V2 V3 V out R f R1 R2 R ; 3 recall that the input resistance of each input is equal to the value of its input resistor, and that the circuit has a virtual earth point; draw and recognise the single op-amp difference amplifier circuit and describe its applications; R use the formula Vout V V f ; R 1 recall that the input resistance of each input is different and comparatively low; draw and recognise the non-inverting op-amp amplifier circuit and describe its applications; V use the formula out R 1 f ; Vin R1 recall that the input resistance is equal to that of the op-amp; draw and recognise the voltage follower op-amp amplifier circuit and describe its applications; recall that the voltage gain of a voltage follower is 1, but that the current and power gain can be very large; recall that the input resistance is equal to the resistance of the op-amp. Page 9 of 21

10 Week No Content/Specification Power amplifier subsystems use the formula Pout Power Gain ; Pin recall and use the definition of bandwidth of an amplifier as the frequency range over which the power gain is within 50% of the maximum; draw and recognise the enhancement mode MOSFET (both n- and p-channel) source follower amplifier circuits and describe their applications; estimate the power dissipated in a source follower and describe methods for removing the excess heat generated; draw and recognise the push-pull amplifier circuit using p- and n-channel enhancement mode MOSFETs and describe its operation and applications; describe the common types of distortion associated with push-pull amplifier subsystems (cross-over and saturation/clipping) and how they can be reduced; describe the advantages of push-pull amplifier subsystems over single ended output subsystems; estimate the maximum power output from a push-pull amplifier subsystem. Term 3 Revision Page 10 of 21

11 Coursework requirements The coursework will require candidates to design, construct and assess an electronic system which solve a specific electronics problem. Candidates should be encouraged to select a problem to solve in which they are interested and which is considered achievable by their supervisor. The expected outcome is a working electronic system, a written report detailing the work undertaken and an assessment of the success of the work in solving the initial problem. The coursework is expected to be carried out alongside the theoretical work of AS Unit 1 and Unit 2 and should be such that it can be completed in 30 hours (with a suggestion of 20 hours laboratory/workshop time and 10 hours private study) and must contain at least three active devices. There should be sufficient detail in the report to enable someone else to carry out the same work and know what to expect in terms of the system s function and performance. Within the Coursework students should: identify a specific problem to be solved; consider alternative solutions and give reasons for selecting the solution they have chosen; conduct research so that a list of performance parameters can be provided; using at least three active devices, devise appropriate circuit diagrams calculating appropriate component values; construct the system; test the system and make suitable modifications; Produce a report which details all stages of the development. Practical requirements A large amount of the theoretical work will be backed up by lab work involving the building and testing of circuits. On arrival to the course you will be issued with a kit of components and a prototyping board which will then be used within practical activities. Page 11 of 21

12 2. ASSESSMENT SCHEDULE Date Assessment Type Covering Last week Question Paper Unit 1 Ohms Law and the basics of first half of term 1 Nov Assessment week Assessment week Test (+student voice questionnaires) Unit 1 Diodes, Voltage Dividers, Transistors, Input and output devices Last week Past Exam Paper Unit 1 - (all) of Term 1 Feb 25 Final Coursework deadline Unit 3 coursework Feb Assessment week Test (+student voice questionnaires) Unit 2 Sequential logic systems and counters End of Past Exam Paper Unit 2 (all) Term 2 June Public Exam Unit 1 June Public Exam Unit 2 Grade boundaries % Grade 90 a* 80 A 70 B 60 C 50 D 40 E Interventions What happens if I fail a test or get a low grade in it? You may be offered 1 re sit but this is on the teachers descression What happens if I hand in Homework or Assignments late? Your teacher is thus not obliged to mark the work and you would gain a U grade. This of course will also be recorded and used What if I am not completing homework tasks? If this is a regular occurrence then your head of year will be informed and you will be issued a warning. Page 12 of 21

13 What happens if I am struggling to keep up with the work? You should speak to your teacher about this as soon as possible to discuss a resolution. Your teacher wants you to succeed and asking for help is the best starting point to sorting things out What happens if I some of the above issues continue? You may be put into the course for concern cohort. This will mean the involvement of your head of year and possibly parents. You will be given a number of opportunities to get back on track, but there are consequences if things do not improve. Page 13 of 21

14 3. GENERAL EXPECTATIONS At Least 1 hour study per day outside of lessons Bring all books, folders and tasks to lessons Min 5 days per week Bring a scientific calculator and equipment to every lesson Key areas: Organisation Working at home (1 hour per day) Planning (using your diary) Use resources provided (support booklets etc) Completing set tasks on time Meeting deadlines Fully applying yourself during all lessons Seeking help when needed Daily actions: 1 hour every day revising, reading, taking notes on sections, checking through the course spec or completing AS tasks set by your teacher Record in your folder questions to ask in class Keep a glossary of electronics terms and notes When revising at home: Complete exam questions (use AQA website to find specimen papers) Watch videos from Read and research from the internet of from your support booklet Keep a list of questions to ask teacher in class Keep an electronics dictionary of terms that you keep adding to as you learn new words practice writing descriptions of how circuits function draw circuit diagrams from memory find/write the meanings/definitions for a number of electronics terms/words Construct and test circuits on circuit simulator (live wire) calculate component values Recall and use prefixes and multiples summarise an electronics text drawing out the key information take notes on a key area from your current module review your progress by ticking off all the parts of the specification that you feel you are competent within The main thing to remember is to keep referring to your specification and use this as a starting point for revision. Revise the things that you are week on. Identify these areas from your specification sheet. Page 14 of 21

15 4. PREPARING FOR LESSONS AND HOMEWORK ASSIGNMENTS Homework You will be set Homework tasks regularly but when not set you are expected to follow the guidance given within section 3 (General Expectations) for your 1 hours home study for that day. Preparing for the lessons You should find out at the end of each lesson what topics you are going to be covering next so that you can prepare yourself. You may be asked to prepare for the lesson by following a specific method. Lesson preparation methods Method Name Method Description Evidence Method A Read on topic and take bullet point notes on it On paper Method B Derive key words and record the meaning for each On paper Method C Re write in your own words On paper Method D Memorise 10 facts on the topic of Be able to recall Method E Compare the differences between. And On paper Method F Describe in your own words the function of On paper Method G Create a set of questions and answers for. On Paper Method H Memorise the circuit diagram for... Be able to recall Method I Record formula and re arrangements of for On Paper Page 15 of 21

16 5. RESOURCES The following lists the resources and equipment that you will be responsible for bringing to each and every one of your lessons within this subject No of Item Bring to every lesson? 1 Scientific Calculator Yes 1 Unit 1 Support Book (you will be given this) Yes (first part of year) 1 Unit 2 Support Book (you will be given this) Yes (second part of year) 1 Pencils yes 1 Pencil case containing drawing/writing equipment yes 1 A4 Ring Binder with at least 15 dividers Yes 1 USB Memory Stick (at least 1GB capacity) yes Student resources and support material Resource Name Course Specification Past Exam Papers Question packs videos Revision Site Course information Resource Location Within your unit 1 and 2 support pack but also available at key material/past papers DT Electronics Student Menu From School Computers /qualifications/a Levels/ Science/ Electronics 6. THE LEVEL 4 PROGRAMME YEAR 12 To be at level 4 you should be working at a level beyond A level (Level 4 is equivalent to the first year of a undergraduate degree and Level 3 is A level). Level 4 students are highly independent and motivated students who show a mastery of their subject and demonstrate higher level thinking skills (Analysis, Synthesis, Evaluation etc). Page 16 of 21

17 Within this subject a level 4 student will: Complete the Extended Project to a high level Complete the Induction task with a demonstration of higher level thinking skills Be passionate about the subject and conduct their own on going research and investigations into the subject Have the desire to become and expert within this subject Keep track of their own progress Contribute to the electronics department with ideas and expertise Be highly organised Complete at least 1 hour of lesson prep each day Aspires to continue to study the subject at to higher levels at a top class University What is the criteria to be a level 4 student Target or grade of A in this subject or projected a grade from termly grades What do you need to get into the TOP 10 universities for Electronics Example of entrance requirements league table for Engineering (see University of Cambridge (R) A*AA Imperial College London (R) A*AA University of Sheffield (R) AAB University of Bristol (R) AAA University of Surrey ABB University of Loughborough ABB University of Nottingham(R) ABB University of Southampton (R) AAA University of Bath AAA University of Strathcylde BBB What do you need to do to get an A* in this subject To achieve an A* grade in A-Level Electronics you require a grade A (80%) on your full A Level qualification and an A* (90%) on the aggregate of your A2 units. A level 4 student would be expected to take part in: Extension stretch activities one task per week Community Service Additional learning Opportunities including work experience Extended projects All of these are detailed below Page 17 of 21

18 7. STRETCHING THE MOST ABLE AND DIFFERENTIATION Level 4 student stretch and challenge textbook: Electronics Explained - M.W. Brimcombe o Publisher: Nelson Thornes, 1st Edition (2000) o ISBN There are copies of this book within the electronics department that you can read while you are there. You may be allowed to borrow them to take home. However buying your own copy would make a good investment for future study as this book will take you into first year degree level study. AS Year Extension Tasks From the Electronics Explained book, To be signed off by your teacher on successful completion. Task Syllabus Links Reading/Study Material Pages Task Pages 1 Power supplies 1-16 Page Digital systems Analogue Systems Timing Circuits Sequential Systems 6 Signal Processing Transistor Circuits Teacher Signature These tasks are fairly large but you are expected to be able to complete between 5 and 7 of them by the end of the AS year, along with the Extended Task and any other extension tasks you may be set or be doing as part of your own investigations/research Page 18 of 21

19 8. COMMUNITY SERVICE What is going to make you stand out from the crowd when applying to Universities? Having shown your engagement with your community, your drive, your commitment and your enthusiasm! There are many opportunities within Twyford to get involved in different areas of the school and in different subjects. Within the Electronics Department we have student mentoring programs that will see you offering your expert help to students lower down the school who may be struggling to keep up with the demands of their courses. At GCSE (year 11) there is a large demand on students to produce an extensive piece of coursework and then complete a written exam. In Year 10 GCSE electronics some students find it difficult to grasp some of the fundamental theoretical elements of the course and could do with help here. If you would like to help a student in this department then please come and speak with your teacher about how you could mentor/guide a student through the tougher parts of their courses. Assign yourself to 1 or more struggling students Meet with them at least once per week Keep a meeting log and set and manage targets with this student Report to electronics teacher each support session to have your community service hours logged 9. ADDITIONAL LEARNING OPPORTUNITIES AND WORK EXPERIENCE Science museum trip Extended Project Talks from year 13 students regarding their experiences Feedback from past Twyford students who are now studying Electronics based subjects at University Visit to Electronic Engineering design company Talk on Electronics in industry given by Electronic Engineers currently working in industry Visit to Electronic Engineering Department of London University Video lectures from MIT University (Electronic Engineering and Robotics) Page 19 of 21

20 10. COMPLETING AN EXTENDED PROJECT There are 3 optional extended project briefs to choose from. The extended project will allow you to go beyond the course syllabus into areas that would normally be covered within a Level 4 Program of study (HNC, BTEC or Foundation year etc). This work will be completed within your own time and does not form part of the assessment for your A level (but does look very good on your UCAS application). If you are keen on extending your scope of experience and knowledge within this subject then you should discuss the extended project with your teacher. For each project you must create an electronic system and document the design process clearly. Extended project briefs: 1. Create a weather station that monitors temperature and light level and can record highest and lowest values for each (involves logic circuits and or programming a microcontroller) 2. Use and program microcontrollers to create a relatively simple electronic game that is based around testing and developing either the users logic or memory skills/abilities (involves programming) 3. Switch a light on and off wirelessly? Page 20 of 21

21 11. CELEBRATING SUCCESS AND STUDENT VOICE Electronics Notice Board in D05 containing: o Student comments, feedback and questions whiteboard (anonymous) o Information and feedback from past students of A Level Electronics o Careers information Attainment results o Student attainment grades projected on board regularly Celebration of Achievement Evening o You may be nominated for an award if you are consistently working to a high standard and have shown mastery within most areas of the A level Electronics syllabus. Departmental Involvement o If you are excelling within this subject you may want to become more involved within the department by helping create new and innovative teaching and learning resources and contribute to departmental discussions/meetings regarding subject specific developments. o You may want to try your hand at delivering lessons to the other students within your class on specific topics. Feedback and student voice (questionnaires) o It is important for you to share your ideas and thoughts with us relating to your course and there will be a chance to do this during each assessment week. Page 21 of 21

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

Electronics Technology

Electronics Technology Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

More information

Electronics Technology

Electronics Technology Job Ready Assessment Blueprint Electronics Technology Test Code: 4035 / Version: 01 Copyright 2010. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 5 Electronic devices UNIT 11AP.5 6 hours About this unit This unit is the fifth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information

Operational Amplifier as mono stable multi vibrator

Operational Amplifier as mono stable multi vibrator Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2 UPDATED SCHEME OF EXAMS. & SYLLABI FOR B.SC. Course: Bachelor of Science (B. Sc.) 1 st year Subject: Electronic Equipment Maintenance Scheme of Examination for Semester 1 & 2 (i) Theory: Two papers of

More information

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Inventario de Materiales Edificio: Escuela de Ingeniería Oficina o Salón: G-221 Descripción(Circuitos

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com Aus- und Weiterbildung GmbH Electrical Engineering Electronics Digital Technology www.elabo-ts.com Principles of Electrical Engineering... Analysis of electrical-engineering systems on component level

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

VCE Physics and VCE Systems Engineering: Table of electronic symbols

VCE Physics and VCE Systems Engineering: Table of electronic symbols VCE Physics and VCE Systems Engineering: Table of electronic symbols In response to requests from teachers the VCAA has produced a table of commonly used electronic symbols. Practicing teachers have provided

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

Analog Signal Conditioning

Analog Signal Conditioning Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

More information

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices

More information

Development of a Simple Sound Activated Burglar Alarm System

Development of a Simple Sound Activated Burglar Alarm System [ Leonardo Journal of Sciences ISSN 1583-0233 Issue 9, July-December 2006 p. 97-102 Development of a Simple Sound Activated Burglar Alarm System Department of Electrical and Computer Engineering, Federal

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

Electronics course for in-service teachers of engineering and technology

Electronics course for in-service teachers of engineering and technology World Transactions on Engineering and Technology Education Vol.10, No.1, 2012 2012 WIETE Electronics course for in-service teachers of engineering and technology Gorazd Šantej & Slavko Kocijancic University

More information

Physics. Cambridge IGCSE. Workbook. David Sang. Second edition. 9780521757843 Cambers & Sibley: IGCSE Physics Cover. C M Y K

Physics. Cambridge IGCSE. Workbook. David Sang. Second edition. 9780521757843 Cambers & Sibley: IGCSE Physics Cover. C M Y K Cambridge IGCSE Physics, Second edition matches the requirements of the latest Cambridge IGCSE Physics syllabus (0625). It is endorsed by Cambridge International Examinations for use with their examination.

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products. INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR.

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR. COURSE SYLLABUS COURSE NUMBER AND TITLE: CETT 1325- Digital Fundamentals COURSE (CATALOG) DESCRIPTION An entry level course in digital electronics covering number systems, binary mathematics, digital codes,

More information

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Digital Logic Elements, Clock, and Memory Elements

Digital Logic Elements, Clock, and Memory Elements Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

More information

More Op-Amp Circuits; Temperature Sensing

More Op-Amp Circuits; Temperature Sensing ECE 2A Lab #5 Lab 5 More OpAmp Circuits; Temperature Sensing Overview In this lab we will continue our exploration of opamps but this time in the context of a specific application: temperature sensing.

More information

Push-Pull FET Driver with Integrated Oscillator and Clock Output

Push-Pull FET Driver with Integrated Oscillator and Clock Output 19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

How To Use A Watt Saver On A Microcontroller (Watt Saver) On A Cell Phone Or Mp3 Player

How To Use A Watt Saver On A Microcontroller (Watt Saver) On A Cell Phone Or Mp3 Player Watt Saver for a Cell Phone AC Adapter Reference Design Document Number: DRM130 Rev 1, 10/2013 2 Freescale Semiconductor, Inc. Contents Section number Title Page Chapter 1 Introduction 1.1 Overview...5

More information

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2 Features Functional Schematic High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost 4x4 mm, 20-lead PQFN Package 100% Matte

More information

Voltage/current converter opamp circuits

Voltage/current converter opamp circuits Voltage/current converter opamp circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Design Project: Power inverter

Design Project: Power inverter Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption: Low-power single CMOS timer Description Datasheet - production data The TS555 is a single CMOS timer with very low consumption: Features SO8 (plastic micropackage) Pin connections (top view) (I cc(typ)

More information

Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

More information

css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

EE 210 Introduction to Electrical Engineering Fall 2009 COURSE SYLLABUS. Massimiliano Laddomada, PhD Assistant Professor

EE 210 Introduction to Electrical Engineering Fall 2009 COURSE SYLLABUS. Massimiliano Laddomada, PhD Assistant Professor 1 Texas A&M University-Texarkana College of Science, Technology, Engineering, and Mathematics Department of Electrical Engineering Bachelor of Science in Electrical Engineering EE 210 Introduction to Electrical

More information

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller

Single Supply Op Amp Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits. 2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board

ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board ULRASONIC GENERATOR POWER CIRCUITRY Will it fit on PC board MAJOR COMPONENTS HIGH POWER FACTOR RECTIFIER RECTIFIES POWER LINE RAIL SUPPLY SETS VOLTAGE AMPLITUDE INVERTER INVERTS RAIL VOLTAGE FILTER FILTERS

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions

More information

MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process

MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process 12A-Peak Low-Side MOSFET Driver Bipolar/CMOS/DMOS Process General Description MIC4451 and MIC4452 CMOS MOSFET drivers are robust, efficient, and easy to use. The MIC4451 is an inverting driver, while the

More information

AP-1 Application Note on Remote Control of UltraVolt HVPS

AP-1 Application Note on Remote Control of UltraVolt HVPS Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage

More information

CD4511BM CD4511BC BCD-to-7 Segment Latch Decoder Driver

CD4511BM CD4511BC BCD-to-7 Segment Latch Decoder Driver CD4511BM CD4511BC BCD-to-7 Segment Latch Decoder Driver General Description The CD4511BM CD4511BC BCD-to-seven segment latch decoder driver is constructed with complementary MOS (CMOS) enhancement mode

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

A Novel Course To Provide Electrical Engineering Experience To Freshmen Students

A Novel Course To Provide Electrical Engineering Experience To Freshmen Students A Novel Course To Provide Electrical Engineering Experience To Freshmen Students Hirak C. Patangia University of Arkansas at Little Rock [email protected] SESSION 2253 Abstract An experiential learning

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

3-Digit Counter and Display

3-Digit Counter and Display ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring

More information

MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit 32-Channel High Voltage Amplifier Array Features 32 independent high voltage amplifiers 3V operating voltage 295V output voltage 2.2V/µs typical output slew rate Adjustable output current source limit

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information