Chapter 14: Inductor design

Size: px
Start display at page:

Download "Chapter 14: Inductor design"

Transcription

1 Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points 1

2 14.1 Filter inductor design constraints Objective: i L R Design inductor having a given inductance L, which carries worst-case current I max without saturating, and which has a given winding resistance R, or, equivalently, exhibits a worst-case copper loss of P cu = I rms 2 R Example: filter inductor in CCM buck converter L i i I i L + 0 DT s T s t 2

3 Assumed filter inductor geometry Core reluctance R c Φ i + n v turns Air gap reluctance ni + R g F c + R c Φ R g R c = R g = l c µ c A c l g µ 0 A c Solve magnetic circuit: ni = Φ R c + R g Usually R c < R g and hence ni ΦR g 3

4 Constraint: maximum flux density Given a peak winding current I max, it is desired to operate the core flux density at a peak value B max. The value of B max is chosen to be less than the worst-case saturation flux density B sat of the core material. From solution of magnetic circuit: ni = BA c R g Let I = I max and B = B max : ni max = B max A c R g = B max l g µ 0 This is constraint #1. The turns ratio n and air gap length l g are unknown. 4

5 Constraint: inductance Must obtain specified inductance L. We know that the inductance is L = n2 R g = µ 0A c n 2 l g This is constraint #2. The turns ratio n, core area A c, and air gap length l g are unknown. 5

6 Constraint: winding area Wire must fit through core window (i.e., hole in center of core) core Total area of copper in window: na W Area available for winding conductors: wire bare area A W core window area W A K u W A Third design constraint: K u W A na W 6

7 The window utilization factor K u also called the fill factor K u is the fraction of the core window area that is filled by copper Mechanisms that cause K u to be less tha: Round wire does not pack perfectly, which reduces K u by a factor of 0.7 to 0.55 depending on winding technique Insulation reduces K u by a factor of 0.95 to 0.65, depending on wire size and type of insulation Bobbin uses some window area Additional insulation may be required between windings Typical values of K u : 0.5 for simple low-voltage inductor 0.25 to 0.3 for off-line transformer 0.05 to 0.2 for high-voltage transformer (multiple kv) 0.65 for low-voltage foil-winding inductor 7

8 Winding resistance The resistance of the winding is R = ρ l b A W where is the resistivity of the conductor material, l b is the length of the wire, and A W is the wire bare area. The resistivity of copper at room temperature is cm. The length of the wire comprising an n-turn winding can be expressed as l b = n (MLT) where (MLT) is the mean-length-per-turn of the winding. The meanlength-per-turn is a function of the core geometry. The above equations can be combined to obtain the fourth constraint: R = ρ n (MLT) A W 8

9 The core geometrical constant K g The four constraints: ni max = B max A c R g = B max l g µ 0 L = n2 R g = µ 0A c n 2 l g K u W A na W R = ρ n (MLT) A W These equations involve the quantities A c, W A, and MLT, which are functions of the core geometry, I max, B max, µ 0, L, K u, R, and, which are given specifications or other known quantities, and n, l g, and A W, which are unknowns. Eliminate the three unknowns, leading to a single equation involving the remaining quantities. 9

10 Core geometrical constant K g Elimination of n, l g, and A W leads to A 2 c W A (MLT) ρl2 2 I max 2 B max RK u Right-hand side: specifications or other known quantities Left-hand side: function of only core geometry So we must choose a core whose geometry satisfies the above equation. The core geometrical constant K g is defined as K g = A c 2 W A (MLT) 10

11 Discussion K g = A 2 cw A (MLT) ρl2 2 I max 2 B max RK u K g is a figure-of-merit that describes the effective electrical size of magnetic cores, in applications where the following quantities are specified: Copper loss Maximum flux density How specifications affect the core size: A smaller core can be used by increasing B max use core material having higher B sat R allow more copper loss How the core geometry affects electrical capabilities: A larger K g can be obtained by increase of A c more iron core material, or W A larger window and more copper 11

12 14.2 A step-by-step procedure The following quantities are specified, using the units noted: Wire resistivity ( -cm) Peak winding current I max (A) Inductance L (H) Winding resistance R ( ) Winding fill factor K u Core maximum flux density B max (T) The core dimensions are expressed in cm: Core cross-sectional area A c (cm 2 ) Core window area W A (cm 2 ) Mean length per turn MLT (cm) The use of centimeters rather than meters requires that appropriate factors be added to the design equations. 12

13 Determine core size K g ρl2 2 I max (cm 5 ) RK u B max Choose a core which is large enough to satisfy this inequality (see Appendix D for magnetics design tables). Note the values of A c, W A, and MLT for this core. 13

14 Determine air gap length l g = µ 2 0LI max A c B max (m) with A c expressed in cm 2. µ 0 = H/m. The air gap length is given in meters. The value expressed above is approximate, and neglects fringing flux and other nonidealities. 14

15 A L Core manufacturers sell gapped cores. Rather than specifying the air gap length, the equivalent quantity A L is used. A L is equal to the inductance, in mh, obtained with a winding of 1000 turns. When A L is specified, it is the core manufacturer s responsibility to obtain the correct gap length. The required A L is given by: A L = 10B 2 max 2 (mh/1000 turns) LI max L = A L n A c 2 (Henries) Units: A c cm 2, L Henries, B max Tesla. 15

16 Determine number of turns n n = LI max B max A c

17 Evaluate wire size A W K uw A n (cm 2 ) Select wire with bare copper area A W less than or equal to this value. An American Wire Gauge table is included in Appendix D. As a check, the winding resistance can be computed: R = ρn (MLT) A w (Ω) 17

18 14.3 Multiple-winding magnetics design using the K g method The K g design method can be extended to multiplewinding magnetic elements such as transformers and coupled inductors. This method is applicable when Copper loss dominates the total loss (i.e. core loss is ignored), or The maximum flux density B max is a specification rather than a quantity to be optimized To do this, we must Find how to allocate the window area between the windings Generalize the step-by-step design procedure 18

19 Window area allocation Given: application with k windings having known rms currents and desired turns ratios v 1 = v 2 n 2 = = v k n k rms current I 1 : n 2 rms current I 2 Core Window area W A Core mean length per turn (MLT) Wire resistivity ρ Fill factor K u : n k rms current I k Q: how should the window area W A be allocated among the windings? 19

20 Allocation of winding area Winding 1 allocation α 1 W A Winding 2 allocation α 2 W A etc. { { Total window area W A 0<α j <1 α 1 + α α k =1 20

21 Copper loss in winding j Copper loss (not accounting for proximity loss) is P cu, j = I j 2 R j Resistance of winding j is R j = ρ l j A W,j with l j = n j (MLT) A W, j = W AK u α j n j length of wire, winding j wire area, winding j Hence R j = ρ n2 j (MLT) W A K u α j P cu,j = n j 2 i j 2 ρ(mlt) W A K u α j 21

22 Total copper loss of transformer Sum previous expression over all windings: P cu,tot = P cu,1 + P cu,2 + + P cu,k = ρ (MLT) W A K u k Σj =1 n 2 2 j I j α j Need to select values for 1, 2,, k such that the total copper loss is minimized 22

23 Variation of copper losses with 1 Copper loss Pcu,1 P cu,tot P cu,2 + P cu, P cu,k For 1 = 0: wire of winding 1 has zero area. P cu,1 tends to infinity For 1 = 1: wires of remaining windings have zero area. Their copper losses tend to infinity 0 1 α 1 There is a choice of 1 that minimizes the total copper loss 23

24 Method of Lagrange multipliers to minimize total copper loss Minimize the function P cu,tot = P cu,1 + P cu,2 + + P cu,k = ρ (MLT) W A K u k Σj =1 n 2 2 j I j α j subject to the constraint α 1 + α α k =1 Define the function where f (α 1, α 2,, α k, ξ)=p cu,tot (α 1, α 2,, α k )+ξ g(α 1, α 2,, α k ) g(α 1, α 2,, α k )=1 α j Σj =1 is the constraint that must equal zero and is the Lagrange multiplier k 24

25 Lagrange multipliers continued Optimum point is solution of the system of equations f (α 1, α 2, α 1, α k,ξ) =0 f (α 1, α 2, α 2, α k,ξ) =0 Result: ξ = ρ (MLT) W A K u α m = n mi m Σ n j I j n =1 k Σj =1 n j I j 2 = P cu,tot f (α 1, α 2, α k, α k,ξ) =0 f (α 1, α 2, ξ, α k,ξ) =0 An alternate form: α m = V mi m Σ V j I j n =1 25

26 Interpretation of result α m = V mi m Σ V j I j n =1 Apparent power in winding j is where V j I j V j is the rms or peak applied voltage I j is the rms current Window area should be allocated according to the apparent powers of the windings 26

27 Example PWM full-bridge transformer i 1 i 2 I turns { } n 2 turns } n 2 turns i 1 n 2 I i Note that waveshapes (and hence rms values) of the primary and secondary currents are different Treat as a threewinding transformer i 2 i 3 I 0 n 2 I 0.5I 0.5I 0 I 0.5I 0.5I 0 DT s T s T s +DT s 2T s t 27

28 Expressions for RMS winding currents i 1 n 2 I I 1 = 1 2Ts I 2 = I 3 = 1 2Ts see Appendix A 0 2T s i 2 1 dt = n 2 I 0 D 2T s i 2 2 dt = 1 2 I 1+D i 2 i 3 I n 2 I 0.5I 0.5I 0 I 0.5I 0.5I 0 DT s T s T s +DT s 2T s t 28

29 Allocation of window area: α m = V mi m Σ V j I j n =1 Plug in rms current expressions. Result: α 1 = D D Fraction of window area allocated to primary winding α 2 = α 3 = D 1+D Fraction of window area allocated to each secondary winding 29

30 Numerical example Suppose that we decide to optimize the transformer design at the worst-case operating point D = Then we obtain α 1 = α 2 = α 3 = The total copper loss is then given by P cu,tot = ρ(mlt) W A K u 3 Σj =1 n j I j 2 = ρ(mlt)n 2 2 I 2 W A K u 1+2D +2 D(1 + D) 30

31 Coupled inductor design constraints Consider now the design of a coupled inductor having k windings. We want to obtain a specified value of magnetizing inductance, with specified turns ratios and total copper loss. i 1 + v 1 i M L M : n 2 + v 2 i 2 Magnetic circuit model: R c R 1 R 2 i M + Φ R g + v k i k : n k R k 31

32 Relationship between magnetizing current and winding currents : n 2 i 1 + i M + i 2 v 1 L M v 2 R 1 R 2 Solution of circuit model, or by use of Ampere s Law: i M =i 1 + n 2 i n k i k + v k i k : n k R k 32

33 Solution of magnetic circuit model: Obtain desired maximum flux density R c Assume that gap reluctance is much larger than core reluctance: i M + Φ R g i M =BA c R g Design so that the maximum flux density B max is equal to a specified value (that is less than the saturation flux density B sat ). B max is related to the maximum magnetizing current according to I M,max = B max A c R g = B max l g µ 0 33

34 Obtain specified magnetizing inductance By the usual methods, we can solve for the value of the magnetizing inductance L M (referred to the primary winding): L M = n = n µ 0 A c R 1 g l g 34

35 Copper loss Allocate window area as described in Sectio As shown in that section, the total copper loss is then given by P cu = ρ(mlt)n2 2 1I tot W A K u with I tot = k Σ j =1 n j I j 35

36 Eliminate unknowns and solve for K g Eliminate the unknowns l g and : P cu = ρ(mlt)l 2 MI 2 2 tot I M,max 2 B max A 2 c W A K u Rearrange equation so that terms that involve core geometry are on RHS while specifications are on LHS: A 2 c W A (MLT) = ρl 2 MI 2 2 tot I M,max 2 B max K u P cu The left-hand side is the same K g as in single-winding inductor design. Must select a core that satisfies K g ρl 2 MI 2 2 tot I M,max 2 B max K u P cu 36

37 Step-by-step design procedure: Coupled inductor The following quantities are specified, using the units noted: Wire resistivity ( -cm) k n Total rms winding currents j (A) (referred to winding 1) I tot = Peak magnetizing current I M, max (A) (referred to winding 1) Desired turns ratios n 2 /. n 3 /n 2. etc. Magnetizing inductance L M (H) (referred to winding 1) Allowed copper loss P cu (W) Winding fill factor K u Core maximum flux density B max (T) The core dimensions are expressed in cm: Core cross-sectional area A c (cm 2 ) Core window area W A (cm 2 ) Mean length per turn MLT (cm) Σ j =1 I j The use of centimeters rather than meters requires that appropriate factors be added to the design equations. 37

38 1. Determine core size K g ρl 2 MI 2 2 tot I M,max (cm 5 ) P cu K u B max Choose a core that satisfies this inequality. Note the values of A c, W A, and MLT for this core. The resistivity of copper wire is cm at room temperature, and cm at 100 C. 38

39 2. Determine air gap length l g = µ 2 0L M I M,max (m) A c B max (value neglects fringing flux, and a longer gap may be required) The permeability of free space is µ 0 = H/m 39

40 3. Determine number of turns For winding 1: = L MI M,max B max A c 10 4 For other windings, use the desired turns ratios: n 2 = n 2 n 3 = n 3 40

41 4. Evaluate fraction of window area allocated to each winding α 1 = I 1 I tot α 2 = n 2I 2 I tot α k = n ki k I tot Winding 1 allocation α 1 W A Winding 2 allocation α 2 W A etc. { { 0<α j <1 α 1 + α α k =1 Total window area W A 41

42 5. Evaluate wire sizes A w1 α 1K u W A A w2 α 2K u W A n 2 See American Wire Gauge (AWG) table at end of Appendix D. 42

43 14.4 Examples Coupled Inductor for a Two-Output Forward Converter CCM Flyback Transformer 43

44 Coupled Inductor for a Two-Output Forward Converter v g + + i 1 v 1 Output 1 28 V 4 A f s = 200 khz n 2 turns i 2 + v 2 Output 2 12 V 2 A The two filter inductors can share the same core because their applied voltage waveforms are proportional. Select turns ratio n 2 / approximately equal to v 2 /v 1 = 12/28. 44

45 Coupled inductor model and waveforms v M + i 1 + i M i M L M v 1 I M i M Coupled inductor model : n 2 i 2 + v 2 0 v M 0 D T s V 1 Secondary-side circuit, with coupled inductor model Magnetizing current and voltage waveforms. i M is the sum of the winding currents i 1 + i 2. 45

46 Nominal full-load operating point Design for CCM operation with D = 0.35 v g + + i 1 v 1 Output 1 28 V 4 A i M = 20% of I M f s = 200 khz f s = 200 khz n 2 turns i 2 + v 2 Output 2 12 V 2 A DC component of magnetizing current is I M = I 1 + n 2 I 2 =(4A) = 4.86 A (2 A) 46

47 Magnetizing current ripple i M = V 1D T s 2L M To obtain i M = 20% of I M choose L M = V 1D T s 2 i M (28 V)(1 0.35)(5 µs) = 2(4.86 A)(20%) =47µH i M I M 0 v M 0 D T s V 1 i M This leads to a peak magnetizing current (referred to winding 1) of I M,max = I M + i M = 5.83 A 47

48 RMS winding currents Since the winding current ripples are small, the rms values of the winding currents are nearly equal to their dc comonents: I 1 = 4 A I 2 = 2 A Hence the sum of the rms winding currents, referred to the primary, is I tot = I 1 + n 2 I 2 = 4.86 A 48

49 Evaluate K g The following engineering choices are made: Allow 0.75 W of total copper loss (a small core having thermal resistance of less than 40 C/W then would have a temperature rise of less than 30 C) Operate the core at B max = 0.25 T (which is less than the ferrite saturation flux density of 0.3 ot 0.5 T) Use fill factor K u = 0.4 (a reasonable estimate for a lowvoltage inductor with multiple windings) Evaluate K g : K g ( Ω cm)(47 µh) 2 (4.86 A) 2 (5.83 A) 2 (0.25 T) 2 (0.75 W)(0.4) = cm

50 Select core It is decided to use a ferrite PQ core. From Appendix D, the smallest PQ core having K g cm 5 is the PQ 20/16, with K g = cm 5. The data for this core are: A 1 A c = 0.62 cm 2 W A = cm 2 MLT = 4.4 cm 2D 50

51 Air gap length l g = µ 2 0L M I M,max A c B max = (4π 10 7 H/m)(47 µh)(5.83 A) 2 (0.25 T) 2 (0.62 cm 2 ) = 0.52 mm

52 Turns = L MI M,max 10 B max A 4 c (47 µh)(5.83 A) = (0.25 T)(0.62 cm 2 ) 104 = 17.6 turns n 2 = n 2 = (17.6) = 7.54 turns Let s round off to = 17 n 2 = 7 52

53 Wire sizes Allocation of window area: α 1 = I 1 I tot = α 2 = n 2I 2 I tot = (17)(4 A) (17)(4.86 A) = (7)(2 A) (17)(4.86 A) = Determination of wire areas and AWG (from table at end of Appendix D): A w1 α 1K u W A = (0.8235)(0.4)(0.256 cm2 ) = cm 2 (17) use AWG #21 A w2 α 2K u W A = (0.1695)(0.4)(0.256 cm2 ) = cm 2 n 2 (7) use AWG #24 53

54 Example 2: CCM flyback transformer i M Transformer model I M i M V g i 1 i M + L M + v M : n 2 D 1 i 2 C R + V 0 i 1 I M 0 i 2 Q 1 n 2 I M 0 v M V g 0 DT s 54

55 Specifications Input voltage V g = 200V Output (full load) 20 V at 5 A Switching frequency 150 khz Magnetizing current ripple 20% of dc magnetizing current Duty cycle D = 0.4 Turns ratio n 2 / = 0.15 Copper loss 1.5 W Fill factor K u = 0.3 Maximum flux density B max = 0.25 T 55

56 Basic converter calculations Components of magnetizing current, referred to primary: I M = n 2 1 D V R = 1.25 A RMS winding currents: I 1 = I M D i M I M 2 = A i M = 20% I M = 0.25 A I 2 = n 2 I M D i M I M 2 = 6.50 A I M,max = I M + i M = 1.5 A Choose magnetizing inductance: I tot = I 1 + n 2 I 2 = 1.77 A L M = V g DT s 2 i M = 1.07 mh 56

57 Choose core size K g ρl 2 MI 2 2 tot I M,max P cu K u B max = Ω-cm H A A 2 = cm T W The smallest EE core that satisfies this inequality (Appendix D) is the EE30. A 57

58 Choose air gap and turns l g = µ 2 0L M I M,max A c B max = 4π 10 7 H/m H 1.5 A T cm =0.44mm = L MI M,max B max A c 10 4 = H 1.5 A 0.25 T 1.09 cm = 58.7 turns Round to =59 58 n 2 = n 2 = = 8.81 n 2 =9

59 Wire gauges α 1 = I 1 I tot = A 1.77 A = 0.45 α 2 = n 2I 2 I tot = A A = 0.55 A W1 α 1K u W A = cm 2 use #28 AWG A W2 α 2K u W A n 2 = cm 2 use #19 AWG 59

60 Core loss CCM flyback example B-H loop for this application: B The relevant waveforms: B B sat B max B B max B V g H c Minor B H loop, CCM flyback example 0 v M 0 A c V g DT s B H loop, large excitation B vs. applied voltage, from Faraday s law: db dt = v M A c For the first subinterval: db dt = V g A c 60

61 Calculation of ac flux density and core loss Solve for B: B = V g A c DT s Plug in values for flyback example: 200 V µs B = cm 2 =0.041 T From manufacturer s plot of core loss (at left), the power loss density is 0.04 W/cm 3. Hence core loss is P fe = 0.04 W/cm 3 A c l m = 0.04 W/cm cm cm = 0.25 W 61 Power loss density, Watts/cm W/cm 3 400kHz 200kHz 150kHz 100kHz 50kHz 20kHz B, Tesla

62 Comparison of core and copper loss Copper loss is 1.5 W does not include proximity losses, which could substantially increase total copper loss Core loss is 0.25 W Core loss is small because ripple and B are small It is not a bad approximation to ignore core losses for ferrite in CCM filter inductors Could consider use of a less expensive core material having higher core loss Neglecting core loss is a reasonable approximation for this application Design is dominated by copper loss The dominant constraint on flux density is saturation of the core, rather than core loss 62

63 14.5 Summary of key points 1. A variety of magnetic devices are commonly used in switching converters. These devices differ in their core flux density variations, as well as in the magnitudes of the ac winding currents. When the flux density variations are small, core loss can be neglected. Alternatively, a low-frequency material can be used, having higher saturation flux density. 2. The core geometrical constant K g is a measure of the magnetic size of a core, for applications in which copper loss is dominant. In the K g design method, flux density and total copper loss are specified. 63

Chapter 15: Transformer design

Chapter 15: Transformer design Chapter 15 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss + + Selection of operating flux i 1 density to optimize total loss v 1 v Multiple

More information

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

More information

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox HOME APPLICATION NOTES Iron Powder Cores for Switchmode Power Supply Inductors by: Jim Cox Purpose: The purpose of this application note is to cover the properties of iron powder as a magnetic core material

More information

LECTURE 31 Inductor Types and Associated Magnetic Cores

LECTURE 31 Inductor Types and Associated Magnetic Cores LECTURE 31 Inductor Types and Associated Magnetic Cores 1 A. Magnetic Core Choices to Wind Cu Wire Around 1. Available Magnetic Cores a. Commercial Core Geometry s b. Available Core Materials(B SAT,µ vs.

More information

Chapter 10. AC Inductor Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Chapter 10. AC Inductor Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Chapter 10 AC Inductor Design Table of Contents 1. Introduction 2. Requirements 3. Relationship of, A p, to the Inductor Volt-Amp Capability 4. Relationship of, K g, to the Inductor Volt-Amp Capability

More information

Chapter 12: Basic Magnetics Theory

Chapter 12: Basic Magnetics Theory Chapter 12. Basic Magnetics Theory 12.1. Review of basic magnetics 12.1.1. Basic relations 12.1.2. Magnetic circuits 12.2. Transformer modeling 12.2.1. The ideal transformer 12.2.3. Leakage inductances

More information

Renco Electronics, Inc.

Renco Electronics, Inc. Abstract As high tech electronic products and their power supplies continue to shrink in size the peak current handling capability of power inductors should be looked at closely by the design engineer.

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

EMI and t Layout Fundamentals for Switched-Mode Circuits

EMI and t Layout Fundamentals for Switched-Mode Circuits v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

INDUCTOR DESIGN IN SWITCHING REGULATORS

INDUCTOR DESIGN IN SWITCHING REGULATORS Division of Spang & Company Technical Bulletin BULLETIN SR-1A INDUCTOR DESIGN IN SWITCHING REGULATORS Better efficiency, reduced size, and lower costs have combined to make the switching regulator a viable

More information

Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391

Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Abstract- A novel approach to boost inductor design using a quasi-planar

More information

Magnetics in Switched-Mode Power Supplies

Magnetics in Switched-Mode Power Supplies Magnetics in Switched-Mode Power Supplies Agenda Block Diagram of a Typical AC-DC Power Supply Key Magnetic Elements in a Power Supply Review of Magnetic Concepts Magnetic Materials Inductors and Transformers

More information

d di Flux (B) Current (H)

d di Flux (B) Current (H) Comparison of Inductance Calculation Techniques Tony Morcos Magnequench Technology Center Research Triangle Park, North Carolina 1 VCM Baseline: Geometry Axially-magnetized MQ3-F 42 NdFeB disk Br = 131kG

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Chapter 16 Current Transformer Design Table of Contents 1. Introduction 2. Analysis of the Input Current Component 3. Unique to a Current Transformer 4. Current Transformer Circuit Applications 5. Current

More information

A Simple Current-Sense Technique Eliminating a Sense Resistor

A Simple Current-Sense Technique Eliminating a Sense Resistor INFINITY Application Note AN-7 A Simple Current-Sense Technique Eliminating a Sense Resistor Copyright 998 A SIMPE CURRENT-SENSE TECHNIQUE EIMINATING A SENSE RESISTOR INTRODUCTION A sense resistor R S,

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Inductor Cores Material and Shape Choices by Mark A. Swihart, Manager of Applications Engineering Magnetics, Division of Spang & Co. Pittsburgh, Pennsylvania USA ABSTRACT A carefully considered power inductor

More information

Current Ripple Factor of a Buck Converter

Current Ripple Factor of a Buck Converter Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always

More information

AN109. Push-Pull Converter Design Using a CoreMaster E2000Q Core. By Colonel Wm. T. McLyman. Figure 1 Single output push-pull converter.

AN109. Push-Pull Converter Design Using a CoreMaster E2000Q Core. By Colonel Wm. T. McLyman. Figure 1 Single output push-pull converter. age 1 of 6 AN109 ush-ull Converter Design Using a CoreMaster E000Q Core By Colonel Wm. T. McLyman The single output push-pull converter is shown in Fig.1. Figure 1 ingle output push-pull converter. ush-ull

More information

DC-DC Converter Basics

DC-DC Converter Basics Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook

More information

TN0023 Technical note

TN0023 Technical note Technical note Discontinuous flyback transformer description and design parameters Introduction The following is a general description and basic design procedure for a discontinuous flyback transformer.

More information

Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

More information

Application Notes. Magnetics. Determining L min for Buck/Boost Converters

Application Notes. Magnetics. Determining L min for Buck/Boost Converters Application Notes Magnetics etermining min for Buck/Boost onverters Fundamental oncepts 172 alculating Minimum nductance Buck Type onverters 174 Boost Type onverters 177 Buck-Boost onverters 180-171 APPATON

More information

Topic 5. An Interleaved PFC Preregulator for High-Power Converters

Topic 5. An Interleaved PFC Preregulator for High-Power Converters Topic 5 An nterleaved PFC Preregulator for High-Power Converters An nterleaving PFC Pre-Regulator for High-Power Converters Michael O Loughlin, Texas nstruments ABSTRACT n higher power applications, to

More information

AN2228 APPLICATION NOTE

AN2228 APPLICATION NOTE AN2228 APPLICATION NOTE STD1LNK60Z-based Cell Phone Battery Charger Design Introduction This application note is a Ringing Choke Converter (RCC)-based, step-by-step cell phone battery charger design procedure.

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers 25 januari 2012 Topics - Theory of current transformers (CTs) - Equivalent Circuit for

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Planar versus conventional transformer

Planar versus conventional transformer Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply

More information

The Flyback Converter

The Flyback Converter The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer

More information

Revision Calcs. 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2

Revision Calcs. 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2 EMA Revision Calcs Miller College Revision Calcs Revision Calcs 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2 2. For the magnet in the previous

More information

Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors. Introducing Coupled Inductors Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

More information

Which is the best PFC stage for a 1kW application?

Which is the best PFC stage for a 1kW application? Which is the best PFC stage for a 1kW application? Comparison of different PFC stage topologies under an identical design philosophy Ulf Schwalbe/ Marko Scherf ISLE Steuerungstechnik und Leistungselektronik

More information

Planar Magnetic Design

Planar Magnetic Design Planar Magnetic Design Abstract: Excelsys Technologies concentrates on the design of AC/DC designs and in many of these designs the output stage will be a synchronous buck. This paper focuses on the design

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I) 00-00-//$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

APPLICATION NOTE 1166 Flyback Transformer Design for MAX1856 SLIC Power Supplies

APPLICATION NOTE 1166 Flyback Transformer Design for MAX1856 SLIC Power Supplies Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 1166 Keywords: MAX1856, SLIC, power supplies, POTS, flyback transformer APPLICATION NOTE 1166 Flyback Transformer

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Design of an Auxiliary Power Distribution Network for an Electric Vehicle Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Design and Analysis of Switched Reluctance Motors

Design and Analysis of Switched Reluctance Motors Design and Analysis of Switched Reluctance Motors İbrahim ŞENGÖR, Abdullah POLAT, and Lale T. ERGENE Electrical and Electronic Faculty, İstanbul Technical University, 34469, Istanbul, TURKEY sengoribrahim@gmail.com,

More information

Section 4 Power Transformer Design

Section 4 Power Transformer Design Section 4 Power Transformer Design Power Transformer Design This Section covers the design of power transformers used in buck-derived topologies: forward converter, bridge, half-bridge, and full-wave centertap.

More information

Application Parameters:

Application Parameters: May 93 Lloyd Dixon Summary: Coupled inductors have many applications in power electronics. In a multiple-output buck derived regulator. filter inductor windings coupled on a common core provide vastly

More information

Physics 2102 Lecture 19. Physics 2102

Physics 2102 Lecture 19. Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

More information

Chapter 11 Current Programmed Control

Chapter 11 Current Programmed Control Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

AND8328/D. 700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter

AND8328/D. 700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter 700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter Prepared by: Frank Cathell ON Semiconductor Introduction Light emitting diodes (LEDs) are

More information

Experiment 1 The DC Machine

Experiment 1 The DC Machine Experiment 1 The DC Machine ECEN 4517 R. W. Erickson and D. Maksimovic The purpose of this experiment is to become familiar with operating principles, equivalent circuit models, and basic characteristics

More information

Selecting the Optimal Inductor for Power Converter Applications

Selecting the Optimal Inductor for Power Converter Applications Selecting the Optimal Inductor for Power Converter Applications BACKGROUND Today s electronic devices have become increasingly power hungry and are operating at higher switching frequencies, starving for

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... ) Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor Non-Ideal Inductor Dr. P.J. Randewijk

More information

Power Electronic Circuits

Power Electronic Circuits Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter

More information

Chapter 20 Quasi-Resonant Converters

Chapter 20 Quasi-Resonant Converters Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms

More information

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Coupling Magnetic Signals to a SQUID Amplifier

Coupling Magnetic Signals to a SQUID Amplifier SQUID Application Note 105-0 Coupling Magnetic Signals to a SQUID Amplifier Matching the effective inductances of the Pickup Coil and the Input Coil to detect and couple magnetic flux maximizes the sensitivity

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

TECHNICAL GUIDE. Call 800-624-2766 or visit 1 SOLENOID DESIGN & OPERATION

TECHNICAL GUIDE. Call 800-624-2766 or visit  1 SOLENOID DESIGN & OPERATION Definition & Operation Linear solenoids are electromechanical devices which convert electrical energy into a linear mechanical motion used to move an external load a specified distance. Current flow through

More information

Flux Conference 2012. High Efficiency Motor Design for Electric Vehicles

Flux Conference 2012. High Efficiency Motor Design for Electric Vehicles Flux Conference 2012 High Efficiency Motor Design for Electric Vehicles L. Chen, J. Wang, P. Lombard, P. Lazari and V. Leconte University of Sheffield, Date CEDRAT : 18 October 2012 Presented by: P. Lazari

More information

Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

More information

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331) Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the

More information

Basics of Ferrite and Noise Countermeasures

Basics of Ferrite and Noise Countermeasures TDK EMC Technology Basic Section Basics of Ferrite and Noise Countermeasures TDK Corporation Magnetics Business Group Shinichiro Ito 1 What is Ferrite? Ferrite was invented by Dr. Kato and Dr. Takei in

More information

WINDING RESISTANCE TESTING

WINDING RESISTANCE TESTING WINDING RESISTANCE TESTING WINDING RESISTANCE TEST SET, MODEL WRT-100 ADWEL INTERNATIONAL LTD. 60 Ironside Crescent, Unit 9 Scarborough, Ontario, Canada M1X 1G4 Telephone: (416) 321-1988 Fax: (416) 321-1991

More information

Custom Products. Magnetic Components. Vishay Dale. www.vishay.com

Custom Products. Magnetic Components. Vishay Dale. www.vishay.com Magnetic Components SWITCH MODE MAGNETICS AIR CORE INDUCTORS INDUCTIVE PRODUCTS CUSTOM DESIGN AND PRODUCTION has extensive facilities for custom design and production of custom magnetics. Design applications

More information

Mutual Inductance and Transformers F3 3. r L = ω o

Mutual Inductance and Transformers F3 3. r L = ω o utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

More information

Design Considerations for an LLC Resonant Converter

Design Considerations for an LLC Resonant Converter Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter

More information

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

Inductor and Magnetic Product Terminology

Inductor and Magnetic Product Terminology INTRODUCTION IFC LPT ILB IHSM IM IMC LPE TJ LPC IRF IHB The scope of this application note is to define the terminology associated with inductors and their applications. Some of these terms are listed

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Design Guide for Off-line Fixed Frequency DCM Flyback Converter

Design Guide for Off-line Fixed Frequency DCM Flyback Converter Design Guide for Off-line Fixed Frequency DCM Flyback Converter Allan A. Saliva Infineon Technologies North America (IFNA) Corp. Edition 2013-01 Published by Infineon Technologies North America 27703 Emperor

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Fall 12 PHY 122 Homework Solutions #10

Fall 12 PHY 122 Homework Solutions #10 Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an

More information

Current Sensor: ACS755xCB-050

Current Sensor: ACS755xCB-050 Package CB-PFF 5 4 The Allegro ACS75x family of current sensors provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Chapter 4. Magnetic Materials and Circuits

Chapter 4. Magnetic Materials and Circuits Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

More information

CURRENT TRANSFORMERS FOR ELECTRONIC WATTHOUR METERS ADVANCED MATERIALS THE KEY TO PROGRESS

CURRENT TRANSFORMERS FOR ELECTRONIC WATTHOUR METERS ADVANCED MATERIALS THE KEY TO PROGRESS CURRENT TRANSFORMERS FOR ELECTRONIC WATTHOUR METERS ADVANCED MATERIALS THE KEY TO PROGRESS CURRENT TRANSFORMERS FOR ELECTRONIC WATTHOUR METERS VACUUMSCHMELZE GmbH & Co. KG (VAC) is one of the worldwide

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Chapter 7 ( ) Second Edition ( 2001 McGraw-Hill) 7.1 Relative permittivity and polarizability. Solution. α e 4πε o r o

Chapter 7 ( ) Second Edition ( 2001 McGraw-Hill) 7.1 Relative permittivity and polarizability. Solution. α e 4πε o r o Chapter 7 Second Edition ( 2001 McGraw-Hill) 7.1 Relative permittivity and polarizability a. Show that the local field is given by E loc = E + 2 3 Local field b. Amorphous selenium (a-se) is a high resistivity

More information

Introduction to Power Supplies

Introduction to Power Supplies Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

Chapter 17 The Ideal Rectifier

Chapter 17 The Ideal Rectifier Chapter 17 The Ideal Rectifier 17.1 Properties of the ideal rectifier 17.2 Realization of a near-ideal rectifier 17.3 Single-phase converter systems employing ideal rectifiers 17.4 RMS values of rectifier

More information

The power supply employs a single ended forward topology. (see Figure 3) The targeted performance figures for the supply are as follows:

The power supply employs a single ended forward topology. (see Figure 3) The targeted performance figures for the supply are as follows: Application Note 9 July, A8W, KHz Forward Converter Using QFET by I.S. Yang Introduction The inherent performance advantage of power MOSFETs makes their use very attractive in switched mode power supplies.

More information

Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

The leakage inductance of the power transformer

The leakage inductance of the power transformer Nondissipative lamping Benefits - onverters Even if small, a transformer s leakage inductance reduces the efficiency of some isolated dc-dc converter topologies However, the technique of lossless voltage

More information

Toroids. Toroids. Design Considerations

Toroids. Toroids. Design Considerations Ferrite toroids provide an often convenient and very effective shape for many wide band, pulse and power transformers and inductors. The continuous magnetic path yields the highest effective permeability

More information

Instrument Transformers Application Guide

Instrument Transformers Application Guide Instrument Transformers Application Guide Edited by ABB AB High Voltage Products Department: Marketing & Sales Text: Knut Sjövall, ABB Layout, 3D and images: Mats Findell, ABB SE-771 80 LUDVIKA, Sweden

More information

AN4414 Application note

AN4414 Application note AN4414 Application note Anti-tampering ferrite less power supply for 3-phase energy meter Introduction Harjeet Singh This power supply design is dedicated to energy meter applications and an other low

More information

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

More information

How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors

How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors thinkmotion How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors I. Introduction II. III. IV. Optimization of a Brushless DC motor for high speed

More information

Application Note AN-53

Application Note AN-53 Application Note AN-53 Active Power Factor Correction Basics Introduction Power Factor (PF) is a measure of how a load draws power from the source. When the current phasor leads the voltage phasor, PF

More information

When the Power Fails: Designing for a Smart Meter s Last Gasp

When the Power Fails: Designing for a Smart Meter s Last Gasp When the Power Fails: Designing for a Smart Meter s Last Gasp Daniel Pruessner 1/10/2012 5:25 PM EST Overview Smart meter designers have an unusual predicament: The meter is powered from the same bus that

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information