Section 5.3 Annuities, Future Value, and Sinking Funds


 Ann McGee
 2 years ago
 Views:
Transcription
1 Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme from the begnnng of the frst payment perod to the end of the last perod s called the term of the annuty. Annutes can be used to accumulate funds for example, when you make regular deposts n a savngs account. Or they can be used to pay out funds as when you receve regular payments from a penson plan after you retre. Annutes that pay out funds are consdered n the next secton. Ths secton deals wth annutes n whch funds are accumulated by regular payments nto an account or nvestment that earns compound nterest. The future value of such an annuty s the fnal sum on depost that s, the total amount of all deposts and all nterest earned by them. We begn wth ordnary annutes ones where the payments are made at the end of each perod and the frequency of payments s the same as the frequency of compoundng the nterest. EXAMPLE: $1500 s deposted at the end of each year for the next 6 years n an account payng 8% nterest compounded annually. Fnd the future value of ths annuty. Soluton: The Fgure below shows the stuaton schematcally. To fnd the future value of ths annuty, look separately at each of the $1500 payments. The frst $1500 s deposted at the end of perod 1 and earns nterest for the remanng 5 perods. The compound amount produced by ths payment s A = P(1+) n = 1500(1+.08) 5 = 1500(1.08) 5 The second $1500 payment s deposted at the end of perod 2 and earns nterest for the remanng 4 perods. So the compound amount produced by the second payment s 1500(1+.08) 4 = 1500(1.08) 4 Contnue to compute the compound amount for each subsequent payment, as shown n the Fgure below. Note that the last payment earns no nterest. 1
2 The last column of the Fgure above shows that the total amount after 6 years s the sum = 1500( ) (1) It s known that Applyng ths algebrac fact to the expresson n parentheses (wth x = 1.08 and n = 6). It shows that the sum (the future value of the annuty) s = $11, Ths Example s the model for fndng a formula for the future value of any annuty. Suppose that a payment of R dollars s deposted at the end of each perod for n perods, at an nterest rate of per perod. Then the future value of ths annuty can be found by usng the procedure n the Example, wth these replacements: The future value S n the Example call t S s the sum (1), whch now becomes S = R [ 1+(1+)+(1+) (1+) n 2 +(1+) n 1] Apply the algebrac fact n the box above to the expresson n brackets (wth x = 1+). Then we have (1+) n 1 (1+) n 1 S = R = R (1+) 1 The quantty n brackets n the rghthand part of the precedng equaton s sometmes wrtten s n (read sanglen at ). So we can summarze as follows. 2
3 EXAMPLE: A rooke player n the Natonal Football League just sgned hs frst 7year contract. To prepare for hs future, he deposts $150,000 at the end of each year for 7 years n an account payng 4.1% compounded annually. How much wll he have on depost after 7 years? Soluton: Hs payments form an ordnary annuty wth R = 150,000, n = 7, and =.041. The future value of ths annuty s (1+) n 1 (1+.041) 7 1 S = R = 150, [ ] (1.041) 7 1 = 150,000 = $1,188, EXAMPLE: Allyson, a college professor, contrbuted $950 a month to the CREF stock fund (an nvestment vehcle avalable to many college and unversty employees). For the past 10 years ths fund has returned 4.25%, compounded monthly. (a) How much dd Allyson earn over the course of the last 10 years? Soluton: Allyson s payments form an ordnary annuty, wth monthly payment R = 950. The nterest per month s =.0425, and the number of months n 10 years s n = = The future value of ths annuty s (1+) n 1 ( /12) S = R = 950 = $141, /12 (b) As of Aprl 14, 2013, the year to date return was 9.38%, compounded monthly. If ths rate were to contnue, and Allyson contnues to contrbute $950 a month, how much would the account be worth at the end of the next 15 years? Soluton: Deal separately wth the two parts of her account(the $950 contrbutons n the future and the $141, already n the account). The contrbutons form an ordnary annuty as n part (a). Now we have R = 950, =.0938/12, and n = = 180. So the future value s (1+) n 1 ( /12) S = R = 950 = $372, /12 Meanwhle, the $141, from the frst 10 years s also earnng nterest at 9.38%, compounded monthly. By the compound amount formula, the future value of ths money s A = P(1+) n = 141,746.90( /12) 180 = $575, So the total amount n Allyson s account after 25 years s the sum $372, $575, = $947,
4 Snkng Funds A snkng fund s a fund set up to receve perodc payments. Corporatons and muncpaltes use snkng funds to repay bond ssues, to retre preferred stock, to provde for replacement of fxed assets, and for other purposes. If the payments are equal and are made at the end of regular perods, they form an ordnary annuty. EXAMPLE: A busness sets up a snkng fund so that t wll be able to pay off bonds t has ssued when they mature. If t deposts $12,000 at the end of each quarter n an account that earns 5.2% nterest, compounded quarterly, how much wll be n the snkng fund after 10 years? Soluton: The snkng fund s an annuty, wth R = 12,000, =.052/4, and n = 4(10) = 40. The future value s (1+) n 1 (1+.052/4) 40 1 S = R = 12,000 = $624, /4 So there wll be about $624,370 n the snkng fund. EXAMPLE: A frm borrows $6 mllon to buld a small factory. The bank requres t to set up a $200,000 snkng fund to replace the roof after 15 years. If the frm s deposts earn 6% nterest, compounded annually, fnd the payment t should make at the end of each year nto the snkng fund. Soluton: Ths stuaton s an annuty wth future value S = 200,000, nterest rate =.06, and n = 15. Solve the futurevalue formula for R: (1+) n 1 (1+.06) 15 1 S = R = 200,000 = R.06 hence R = 200, 000 [ ] (1+.06) 15 = 200, = $ So the annual payment s about $8593. EXAMPLE: As an ncentve for a valued employee to reman on the job, a company plans to offer her a $100,000 bonus, payable when she retres n 20 years. If the company deposts $200 a month n a snkng fund, what nterest rate must t earn, wth monthly compoundng, n order to guarantee that the fund wll be worth $100,000 n 20 years? Soluton: The snkng fund s an annuty wth R = 200, n = 12(20) = 240, and future value S = 100,000. We must fnd the nterest rate. If x s the annual nterest rate n decmal form, then the nterest rate per month s = x/12. Insertng these values nto the futurevalue formula, we have (1+) n 1 (1+x/12) R = S = 200 = 100,000 x/12 Ths equaton s hard to solve algebracally. You can get a rough approxmaton by usng a calculator and tryng dfferent values for x. Wth a graphng calculator, you can get an accurate soluton by graphng [ ] (1+x/12) y 1 = 200 and y 2 = 100,000 x/12 and fndng the xcoordnate of the pont where the graphs ntersect. The Fgure on the rght shows that the company needs an nterest rate of about 6.661%. 4
5 Annutes Due The formula developed prevously s for ordnary annutes annutes wth payments at the end of each perod. The results can be modfed slghtly to apply to annutes due annutes where payments are made at the begnnng of each perod. An example wll llustrate how ths s done. Consder an annuty due n whch payments of $100 are made for 3 years, and an ordnary annuty n whch payments of $100 are madefor4years,bothwth5%nterest,compounded annually. The Fgure on the rght computes the growth of each payment separately. The Fgure shows that the future values are thesame, exceptforone$100paymentonthe ordnary annuty (shown n red). So we can use the Future Value of an Ordnary Annuty formula [ ] (1+) n 1 S = R tofndthefuturevalueofthe4yearordnary annuty and then subtract one $100 payment to get the future value of the 3year annuty due: Essentally the same argument works n the general case. 5
6 EXAMPLE: Payments of $500 are made at the begnnng of each quarter for 7 years n an account payng 8% nterest, compounded quarterly. Fnd the future value of ths annuty due. Soluton: In 7 years, there are n = 28 quarterly perods. For an annuty due, add one perod to get n+1 = 29, and use the formula wth =.08/4 =.02: (1+) n+1 1 (1+.02) 29 1 S = R R = = $18, After 7 years, the account balance wll be $18, EXAMPLE: Jay Rechten plans to have a fxed amount from hs paycheck drectly deposted nto an account that pays 5.5% nterest, compounded monthly. If he gets pad on the frst day of the month and wants to accumulate $13,000 n the next threeandahalf years, how much should he depost each month? Soluton: Jay s deposts form an annuty due whose future value s S = 13, 000. The nterest rate s =. There are = 42 months n threeandahalf years. Snce ths s an annuty due, add one perod, so that n+1 = 43. Then solve the futurevalue formula for the payment R: [ ] (1+) n+1 1 R R = S [ ] (1+) 43 1 R R = 13,000 [ ] (1+) 43 1 R R 1 = 13,000 ([ ] (1+) 43 1 R ) 1 = 13,000 therefore R = 13, 000 ([ ] (1+) 43 1 ) = 13, = Jay should have $ deposted from each paycheck. 6
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationSection 2.2 Future Value of an Annuity
Secton 2.2 Future Value of an Annuty Annuty s any sequence of equal perodc payments. Depost s equal payment each nterval There are two basc types of annutes. An annuty due requres that the frst payment
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More information10.2 Future Value and Present Value of an Ordinary Simple Annuity
348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More information1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More informationLecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
More informationThursday, December 10, 2009 Noon  1:50 pm Faraday 143
1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More informationTime Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6  The Time Value of Money. The Time Value of Money
Ch. 6  The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21 Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
More informationLevel Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Symoblc approach
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More information8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value
8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at
More informationSection 2.3 Present Value of an Annuity; Amortization
Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00
More informationFinite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
More information3. Present value of Annuity Problems
Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = 
More information10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
More informationTexas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
More informationA) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.
ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
More informationOn some special nonlevel annuities and yield rates for annuities
On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes
More informationTime Value of Money Module
Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the
More information0.02t if 0 t 3 δ t = 0.045 if 3 < t
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve
More informationMathematics of Finance
Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY
More informationMathematics of Finance
CHAPTER 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty; Amortzaton Revew Exercses Extended Applcaton: Tme, Money, and Polynomals Buyng
More informationFINANCIAL MATHEMATICS
3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually
More informationMathematics of Finance
5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty;Amortzaton Chapter 5 Revew Extended Applcaton:Tme, Money, and Polynomals Buyng a car
More informationTexas Instruments 30Xa Calculator
Teas Instruments 30Xa Calculator Keystrokes for the TI30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check
More informationFinancial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
More informationEXAMPLE PROBLEMS SOLVED USING THE SHARP EL733A CALCULATOR
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly
More informationFINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
More informationA Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
More informationAn Overview of Financial Mathematics
An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take
More informationIDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,
More informationANALYSIS OF FINANCIAL FLOWS
ANALYSIS OF FINANCIAL FLOWS AND INVESTMENTS II 4 Annutes Only rarely wll one encounter an nvestment or loan where the underlyng fnancal arrangement s as smple as the lump sum, sngle cash flow problems
More informationLIFETIME INCOME OPTIONS
LIFETIME INCOME OPTIONS May 2011 by: Marca S. Wagner, Esq. The Wagner Law Group A Professonal Corporaton 99 Summer Street, 13 th Floor Boston, MA 02110 Tel: (617) 3575200 Fax: (617) 3575250 www.ersalawyers.com
More informationSmall pots lump sum payment instruction
For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More informationInterest Rate Futures
Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon
More informationChapter 4 Financial Markets
Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that
More informationCompound Interest: Further Topics and Applications. Chapter 9
92 Compound Interest: Further Topcs and Applcatons Chapter 9 93 Learnng Objectves After letng ths chapter, you wll be able to:? Calculate the nterest rate and term n ound nterest applcatons? Gven a nomnal
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationNumber of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000
Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from
More informationTrivial lump sum R5.0
Optons form Once you have flled n ths form, please return t wth your orgnal brth certfcate to: Premer PO Box 2067 Croydon CR90 9ND. Fll n ths form usng BLOCK CAPITALS and black nk. Mark all answers wth
More informationIntrayear Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error
Intrayear Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor
More informationStaff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 200502 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 148537801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
More informationNasdaq Iceland Bond Indices 01 April 2015
Nasdaq Iceland Bond Indces 01 Aprl 2015 Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes
More informationTuition Fee Loan application notes
Tuton Fee Loan applcaton notes for new parttme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1
More informationChapter 15 Debt and Taxes
hapter 15 Debt and Taxes 151. Pelamed Pharmaceutcals has EBIT of $325 mllon n 2006. In addton, Pelamed has nterest expenses of $125 mllon and a corporate tax rate of 40%. a. What s Pelamed s 2006 net
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A
Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars
More informationUncrystallised funds pension lump sum payment instruction
For customers Uncrystallsed funds penson lump sum payment nstructon Don t complete ths form f your wrapper s derved from a penson credt receved followng a dvorce where your ex spouse or cvl partner had
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More information+ + +   This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
More informationDocumentation about calculation methods used for the electricity supply price index (SPIN 35.1),
STATISTICS SWEDEN Documentaton (6) ES/PRS 0 artn Kullendorff arcus rdén Documentaton about calculaton methods used for the electrct suppl prce ndex (SPIN 35.), home sales (HPI) The ndex fgure for electrct
More informationUncrystallised funds pension lump sum
For customers Uncrystallsed funds penson lump sum Payment nstructon What does ths form do? Ths form nstructs us to pay the full penson fund, under your nonoccupatonal penson scheme plan wth us, to you
More informationInterest Rate Forwards and Swaps
Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (nm) months, startng n m months: Example: Depostor wants to fx rate
More information14.74 Lecture 5: Health (2)
14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,
More informationProject Networks With MixedTime Constraints
Project Networs Wth MxedTme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
More information( ) Homework Solutions Physics 8B Spring 09 Chpt. 32 5,18,25,27,36,42,51,57,61,76
Homework Solutons Physcs 8B Sprng 09 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat = E. Please refer to Fgure EX32.5. We wll choose a clockwse
More informationChapter 15: Debt and Taxes
Chapter 15: Debt and Taxes1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationSection B9: Zener Diodes
Secton B9: Zener Dodes When we frst talked about practcal dodes, t was mentoned that a parameter assocated wth the dode n the reverse bas regon was the breakdown voltage, BR, also known as the peaknverse
More informationHomework Solutions Physics 8B Spring 2012 Chpt. 32 5,18,25,27,36,42,51,57,61,76
Homework Solutons Physcs 8B Sprng 202 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat =. Please refer to Fgure EX32.5. We wll choose a clockwse
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationEffective December 2015
Annuty rates for all states EXCEPT: NY Prevous Index Annuty s effectve Wednesday, December 7 Global Multple Index Cap S&P Annual Pt to Pt Cap MLSB Annual Pt to Pt Spread MLSB 2Yr Pt to Pt Spread 3 (Annualzed)
More informationFINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
More informationEffective September 2015
Annuty rates for all states EXCEPT: NY Lock Polces Prevous Prevous Sheet Feld Bulletns Index Annuty s effectve Monday, September 28 Global Multple Index Cap S&P Annual Pt to Pt Cap MLSB Annual Pt to Pt
More information8 Algorithm for Binary Searching in Trees
8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the
More informationJoe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
More informationAmeriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration
CED0105200808 Amerprse Fnancal Servces, Inc. 70400 Amerprse Fnancal Center Mnneapols, MN 55474 Incomng Account Transfer/Exchange/ Drect Rollover (Qualfed Plans Only) for Amerprse certfcates, Columba mutual
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationFuture Value of an Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationn + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (InClass) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
More information9.1 The Cumulative Sum Control Chart
Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s
More informationProfessor Iordanis Karagiannidis. 2010 Iordanis Karagiannidis
Fnancal Modelng Notes Basc Excel Fnancal Functons Professor Iordans Karagannds Excel Functons Excel Functons are preformatted formulas that allow you to perform arthmetc and other operatons very quckly
More informationChapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationIntroduction: Analysis of Electronic Circuits
/30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,
More informationSolutions to First Midterm
rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.
More informationDISCLOSURES I. ELECTRONIC FUND TRANSFER DISCLOSURE (REGULATION E)... 2 ELECTRONIC DISCLOSURE AND ELECTRONIC SIGNATURE CONSENT... 7
DISCLOSURES The Dsclosures set forth below may affect the accounts you have selected wth Bank Leum USA. Read these dsclosures carefully as they descrbe your rghts and oblgatons for the accounts and/or
More informationMultiple discount and forward curves
Multple dscount and forward curves TopQuants presentaton 21 ovember 2012 Ton Broekhuzen, Head Market Rsk and Basel coordnator, IBC Ths presentaton reflects personal vews and not necessarly the vews of
More informationAccount Transfer and Direct Rollover
CED0105 Amerprse Fnancal Servces, Inc. 70100 Amerprse Fnancal Center Mnneapols, MN 55474 Account Transfer and Drect Rollover Important: Before fnal submsson to the Home Offce you wll need a Reference Number.
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationDeath Claim Statement for RiverSource Life of NY Annuities Disability Income Life Insurance
DOC011838111 Servce address: RverSource Lfe Insurance Co. of New York 70500 Amerprse Fnancal Center Mnneapols, MN 55474 Death Clam Statement for RverSource Lfe of NY Annutes Dsablty Income Lfe Insurance
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationMath 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011
Math 31 Lesson Plan Day 27: Fundamental Theorem of Fnte Abelan Groups Elzabeth Gllaspy November 11, 2011 Supples needed: Colored chal Quzzes Homewor 4 envelopes: evals, HW, presentaton rubrcs, * probs
More informationHollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )
February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs
More informationI = Prt. = P(1+i) n. A = Pe rt
11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest
More informationDeath Claim Statement for RiverSource Life of NY Annuities Disability Income Life Insurance
DOC011838111 Servce address: RverSource Lfe Insurance Co. of New York 70500 Amerprse Fnancal Center Mnneapols, MN 55474 Death Clam Statement for RverSource Lfe of NY Annutes Dsablty Income Lfe Insurance
More information1.1 The University may award Higher Doctorate degrees as specified from timetotime in UPR AS11 1.
HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher
More informationTrade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity
Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton
More informationAS 2553a Mathematics of finance
AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all
More informationSocial Insurance Institution
Socal Insurance Insttuton PENSIONS FROM THE SOCIAL INSURANCE INSTITUTION ESTABLISHED ON THE BASIS OF THE AGREEMENT ON SOCIAL SECURITY BETWEEN THE REPUBLIC OF POLAND AND THE UNITED STATES OF AMERICA Who
More informationor deduction by employers from the compensation of
THIRTEENTH CONGRESS OF THE REPUBLIC) OF THE PHILIPPINES 1 Frst Regular Sesson 1 Introduced by Senator Mram Defensor Santago _. The GGestrcted g&shment EXPLANATORY NOTE or deducton by employers from the
More informationChapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
More informationEE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN
EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson  3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson  6 Hrs.) Voltage
More informationActivity Scheduling for CostTime Investment Optimization in Project Management
PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta San Sebastán, September 8 th 10 th 010 Actvty Schedulng
More information(6)(2) (6)(4) (4)(6) + (2)(3) + (4)(3) + (2)(3) = 1224 + 24 + 6 + 12 6 = 0
Chapter 3 Homework Soluton P3., 4, 6, 0, 3, 7, P3.3, 4, 6, P3.4, 3, 6, 9, P3.5 P3.6, 4, 9, 4,, 3, 40  P 3. Determne the alues of, 4,, 3, and 6
More information