DEFINING %COMPLETE IN MICROSOFT PROJECT


 Marshall Gaines
 2 years ago
 Views:
Transcription
1 CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems, Inc East Mra Loma Ave, Sute 43 Anahem, CA Unted States Telephone: or E 3 V 8 M 6 S 7 [Intentonally Blank]
2 CelersSystems Contents Table of Contents Introducton Background Percent Complete Calcuaton Types Percent Complete Percent Work Complete Physcal Percent Complete Analyss Duraton Analyss (Detal Tasks)... 7 Equatons Equaton Duraton Based Percent Complete... 3 Equaton 2 Percent Work Complete... 5 Equaton 3 Physcal Percent Complete... 6 Fgures Fgure Percent Complete Screen Shot... 4 Fgure 2 Resource Sheet... 4 Fgure 3 Resource Loaded Schedule Showng Total Work... 4 Fgure 4 Work Profle (Task Usage Vew)... 4 Fgure 5 Percent Work Complete Screen Shot... 5 Fgure 6 Costed Resource Loadng... 5 Fgure 7 Physcal Percent Complete Screen Shot... 6 Fgure 8 Graphcal Illustratons of Three Methods of Percent Complete... 7 Tables Table Expected Values of Percent Complete... 7
3 CelersSystems INTRODUCTION The key to understandng percent complete s to recognze the value s a fracton. To obtan a fracton, dvde two numbers. Ths mples the user knows whch two numbers to dvde: Brcks lad dvded by total brcks requred, wages pad dvded by total budget, work hours spent dvded by total work hours estmated. Wthout knowng whch two numbers to dvde, a percent complete s just a number for msnterpretaton by others. The real questons here are: If I am on schedule, how many brcks should I have lad? How many dollars n wages should I have pad? How many work hours should have been expended? How much cost should I have ncurred? 2 BACKGROUND Mcrosoft Project contans three measures of %Complete. Many users of the software want to know: If they are on schedule, what should be the values calculated by each of the measures of percent complete. The three measures are: Percent Complete (%Complete), Percent Work Complete (%Work Complete), and Physcal % Complete. Addtonal measures are avalable f created by the user. 3 PERCENT COMPLETE CALCUATION TYPES 3. Percent Complete The default method of measurng %Complete by Mcrosoft Project s based on actvty duraton, a 0 day actvty s 40% Complete at the close of busness on the 4 th work day from the start date of the actvty. Mcrosoft Project wll ndcate ths task s late f the value for %Complete s less than the expected value as of the status date. Ths nformaton s vewable n ether the status ndcator or status columns. The formula to roll up %Complete for summary level tasks, and eventually the entre project s gven by: = tasks = % Complete * Duraton = task = Duraton Equaton Duraton Based Percent Complete Usng Fgure below, Mcrosoft Project wll calculate the percent complete as follows: Page 3 of CelersSystems Telephone
4 CelersSystems Fgure Percent Complete Screen Shot %Complete = [(50%*(5 days) + 30%*(7 days) + 65%*(3 days)]/(5 days + 7 days + 3 days) %Complete = % Mcrosoft Project wll round to the nearest whole nteger, 44%. 3.2 Percent Work Complete Percent complete based on the number of work hours completed s another measure calculated by Mcrosoft Project. For ths purpose, two resources wll be loaded to the tasks wth work as shown. Fgure 2 Resource Sheet Fgure 3 Resource Loaded Schedule Showng Total Work The manhour profle for workhours s loaded wth the majorty of the work n the frst three days: Fgure 4 Work Profle (Task Usage Vew) Percent work complete s calculated n accordance wth an effort based weghtng: Page 4 of CelersSystems Telephone
5 CelersSystems % WorkComplete = tasks % WorkComplete * Work = = = tasks Equaton 2 Percent Work Complete Usng the same percentages as the orgnal example, the calculaton becomes: %Work Complete= [50%*(40) + 30%*(4) + 65%*(2)]/[40+4+2] %Work Complete=48.48% Mcrosoft Project confrms the calculaton: = Work Fgure 5 Percent Work Complete Screen Shot 3.3 Physcal Percent Complete When the desred unt of measure s Physcal Percent Complete, a baselne s requred and the calculaton s based on the dollar costs nvolved. In ths case, the cost of the project s spread as shown below: Fgure 6 Costed Resource Loadng For the moment, the Project Status Date wll be set far nto the future, past the last day of the project. In ths case, although any measure of the three measures of percent complete should ndcate a behnd schedule condton, the Physcal % Complete appears n the fgure below: Page 5 of CelersSystems Telephone
6 CelersSystems Fgure 7 Physcal Percent Complete Screen Shot The equaton used by Mcrosoft Project depends on the dollar value of the work budgeted and s shown below: Physcal% Complete = tasks Physcal% Complete * BAC = = = tasks Equaton 3 Physcal Percent Complete Note: BAC s Budget At Complete, Total Cost, or Baselne Cost. The detals of the calculaton are: Physcal Percent Complete = [50%($3,440)+30%($204)+65%(228)]/[$4872] Physcal Percent Complete = 46% Further analyss regardng calculaton of Physcal % Complete s n a later secton of ths paper. Specfcally, what happens when the status date s before or durng the perod of performance of tasks? 4 ANALYSIS The prevous secton descrbes three methods of determnng percent complete. In each case, the value clamed for percent complete was numercally dentcal for the three dscrete tasks (50%, 30% and 65%, respectvely). The weghted value of the calculaton produced a dfferent result n each case at the summary level. In the example, the values are close. However, consder what mght happen f there was a large dscrepancy n the amount of work assgned to the tasks, or, f the costs of the resources were vastly dfferent from each other. Further, the measures of percent complete (Duraton, Work, and Physcal) all represent dfferent thngs. Although the possblty does exst that the measures could theoretcally be equal under certan crcumstances, the general case s the measures wll not be numercally equal. If a project marches along on schedule the table below wll show the cumulatve % Complete for each calculaton type: = BAC Page 6 of CelersSystems Telephone
7 CelersSystems Table Expected Values of Percent Complete Method vs. Day %Complete %Work Complete Physcal % Complete Graphcally the results are dfferent for each method of percent complete as a functon of tme: %Complete %Work Complete Physcal % Complete Fgure 8 Graphcal Illustratons of Three Methods of Percent Complete 4. Duraton Analyss (Detal Tasks) By defnton, the duraton percent complete of a task grows only wth the passage of tme and s always on schedule. Snce t s duraton based measurement, unless the task has not started and needs to be delayed, the user should always clam the tasks to be as scheduled when updatng the duraton based percent complete. Where the calculaton wll vary s when the user makes updates to the remanng work and remanng duraton felds. Ths author has no understandng of the concept a user can clam any duraton based %complete and then provde remanng duraton estmates that are nconsstent wth the percent complete provded. In the case of Page 7 of CelersSystems Telephone
8 CelersSystems duraton based percent complete, t s best to adjust remanng duraton (or remanng work) and let the software calculate the percent complete. If the user provdes remanng work or duraton greater than calculated by the program, the %Complete value wll regress. If the user revses the remanng duraton/work to be less than calculated by the program, the %Complete ncreases. Dependng on the reportng rules n place on the program, t may be a volaton of reportng rules to allow the percent complete to decrease from a pror reportng perod. If an estmator beleves t wll take three days to pant 24 feet of fence, the planned profle wll be 33% per day. If at the end of the frst day the panter clams four addtonal days are needed, then the job s /5 = 20% duraton complete ( day of actual duraton, 4 days of remanng duraton). What the user really wants to know s how the 20% complete calculaton compares to the 33% complete that s expected (the baselne). Indeed, what duraton percent complete s expected for the purpose of ths comparson as of the status date (end of day )? The answer s 33% and the panter met 20/33=6% of expectaton (39% behnd schedule). What can be done n a case such as ths? If the task s orgnally assgned as fxed unts wth one resource, then management needs to decde how to recover from the gven stuaton. There appears to be several choces: Clearly the panter has reestmated the job, perhaps because of ncreased ntellgence ganed durng the performance of Day. The panter provdes a revsed estmate to complete so the cost of the job ncreases (from 24 hours to 40 hours). Management must decde f the addtonal cost wll be absorbed or passed on to the customer, and, f the addtonal duraton s acceptable to all the stakeholders. Substtute a resource and assgn the task to someone who can complete the job wthn the remanng baselne duraton (2 remanng days). Ths may change costs. Change technology, perhaps the panter can use spray equpment as opposed to a brush and complete on the baselne fnsh day (Day 3). Ths may also mpact cost. Manload the task wth addtonal workers (perhaps at ncreased cost) to save the baselne duraton, or at least compress duraton. It s a matter for management to reconcle estmatng practces that 24 manhours were estmated for the job when the performng organzaton provded a hgher estmate once the task was underway and more nformaton was known. Of course ths scenaro that sooner or later Page 8 of CelersSystems Telephone
9 CelersSystems the maxmum amount of productve resources wll have already been added to the job and addng more resources wll decrease productvty. Page 9 of CelersSystems Telephone
10 For nformaton regardng Earned Value Management Systems, Program Offce functonalty and schedulng management, please contact: CelersSystems 3335 East Mra Loma Ave, Sute 43 Anahem, Calforna Toll Free n the Unted States ext 706 Outsde the Unted States: CelersSystems
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationTime Value of Money Module
Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More informationTrafficlight a stress test for life insurance provisions
MEMORANDUM Date 006097 Authors Bengt von Bahr, Göran Ronge Traffclght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationAPPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT
APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT Toshhko Oda (1), Kochro Iwaoka (2) (1), (2) Infrastructure Systems Busness Unt, Panasonc System Networks Co., Ltd. Saedocho
More informationTo manage leave, meeting institutional requirements and treating individual staff members fairly and consistently.
Corporate Polces & Procedures Human Resources  Document CPP216 Leave Management Frst Produced: Current Verson: Past Revsons: Revew Cycle: Apples From: 09/09/09 26/10/12 09/09/09 3 years Immedately Authorsaton:
More informationMapplications Development using High Performance Project Management Techniques
Mapplcatons Development usng Hgh Performance Project Management Technques PAUL POCATILU, MARIUS VETRICI Economc Informatcs Department Academy of Economc Studes 6 Pata Romana, Sector, Bucharest ROMANIA
More informationDepreciation of Business R&D Capital
Deprecaton of Busness R&D Captal U.S. Bureau of Economc Analyss Abstract R&D deprecaton rates are crtcal to calculatng the rates of return to R&D nvestments and captal servce costs, whch are mportant for
More informationCHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
More informationThe Development of Web Log Mining Based on ImproveKMeans Clustering Analysis
The Development of Web Log Mnng Based on ImproveKMeans Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.
More informationINVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMAHDR NETWORKS
21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationMAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPPATBDClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
More informationSection 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationA DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION. Michael E. Kuhl Radhamés A. TolentinoPeña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION
More informationSection 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
More informationNumber of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000
Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from
More informationTraffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,
More informationIMPACT ANALYSIS OF A CELLULAR PHONE
4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng
More informationJoe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
More informationSmall pots lump sum payment instruction
For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationActivity Scheduling for CostTime Investment Optimization in Project Management
PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta San Sebastán, September 8 th 10 th 010 Actvty Schedulng
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationUpdating the E5810B firmware
Updatng the E5810B frmware NOTE Do not update your E5810B frmware unless you have a specfc need to do so, such as defect repar or nstrument enhancements. If the frmware update fals, the E5810B wll revert
More informationFINAL REPORT. City of Toronto. Contract 47016555. Project No: B0002033
Cty of Toronto SAFETY IMPACTS AD REGULATIOS OF ELECTROIC STATIC ROADSIDE ADVERTISIG SIGS TECHICAL MEMORADUM #2C BEFORE/AFTER COLLISIO AALYSIS AT SIGALIZED ITERSECTIO FIAL REPORT 3027 Harvester Road, Sute
More informationHow Much to Bet on Video Poker
How Much to Bet on Vdeo Poker Trstan Barnett A queston that arses whenever a gae s favorable to the player s how uch to wager on each event? Whle conservatve play (or nu bet nzes large fluctuatons, t lacks
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More informationReporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide
Reportng Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (ncludng SME Corporate), Soveregn and Bank Instructon Gude Ths nstructon gude s desgned to assst n the completon of the FIRB
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More informationANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 6105194390,
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationStaff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 200502 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 148537801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
More informationThe Current Employment Statistics (CES) survey,
Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probabltybased sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,
More informationMARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS
MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS Tmothy J. Glbrde Assstant Professor of Marketng 315 Mendoza College of Busness Unversty of Notre Dame Notre Dame, IN 46556
More informationAmeriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration
CED0105200808 Amerprse Fnancal Servces, Inc. 70400 Amerprse Fnancal Center Mnneapols, MN 55474 Incomng Account Transfer/Exchange/ Drect Rollover (Qualfed Plans Only) for Amerprse certfcates, Columba mutual
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationSUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976761000
More informationIT09  Identity Management Policy
IT09  Identty Management Polcy Introducton 1 The Unersty needs to manage dentty accounts for all users of the Unersty s electronc systems and ensure that users hae an approprate leel of access to these
More information8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value
8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at
More informationThe Use of Analytics for Claim Fraud Detection Roosevelt C. Mosley, Jr., FCAS, MAAA Nick Kucera Pinnacle Actuarial Resources Inc.
Paper 18372014 The Use of Analytcs for Clam Fraud Detecton Roosevelt C. Mosley, Jr., FCAS, MAAA Nck Kucera Pnnacle Actuaral Resources Inc., Bloomngton, IL ABSTRACT As t has been wdely reported n the nsurance
More information2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet
2008/8 An ntegrated model for warehouse and nventory plannng Géraldne Strack and Yves Pochet CORE Voe du Roman Pays 34 B1348 LouvanlaNeuve, Belgum. Tel (32 10) 47 43 04 Fax (32 10) 47 43 01 Emal: corestatlbrary@uclouvan.be
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationHow Large are the Gains from Economic Integration? Theory and Evidence from U.S. Agriculture, 18802002
How Large are the Gans from Economc Integraton? Theory and Evdence from U.S. Agrculture, 18802002 Arnaud Costnot MIT and NBER Dave Donaldson MIT, NBER and CIFAR PRELIMINARY AND INCOMPLETE August 15, 2011
More informationRESEARCH ON DUALSHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.
ICSV4 Carns Australa 9 July, 007 RESEARCH ON DUALSHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract
More informationMultiplePeriod Attribution: Residuals and Compounding
MultplePerod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationPrediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationAssessing the Fairness of a Firm s Allocation of Shares in Initial Public Offerings: Adapting a Measure from Biostatistics
Assessng the Farness of a Frm s Allocaton of Shares n Intal Publc Offerngs: Adaptng a Measure from Bostatstcs by Efstatha Bura and Joseph L. Gastwrth Department of Statstcs The George Washngton Unversty
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationTuition Fee Loan application notes
Tuton Fee Loan applcaton notes for new parttme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationPrediction of Disability Frequencies in Life Insurance
1 Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng 1, Fran Weber 1, Maro V. Wüthrch 2 Abstract: For the predcton of dsablty frequences, not only the observed, but also the ncurred but not yet
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationDesign and Development of a Security Evaluation Platform Based on International Standards
Internatonal Journal of Informatcs Socety, VOL.5, NO.2 (203) 780 7 Desgn and Development of a Securty Evaluaton Platform Based on Internatonal Standards Yuj Takahash and Yoshm Teshgawara Graduate School
More informationAbstract # 0150399 Working Capital Exposure: A Methodology to Control Economic Performance in Production Environment Projects
Abstract # 0150399 Workng Captal Exposure: A Methodology to Control Economc Performance n Producton Envronment Projects Dego F. Manotas. School of Industral Engneerng and Statstcs, Unversdad del Valle.
More informationInternet Job Search and Unemployment Durations
Internet Job Search and Unemployment Duratons Peter Kuhn Department of Economcs Unversty of Calforna, Santa Barbara Santa Barbara CA 93106 805 893 3666 pjkuhn@econ.ucsb.edu Mkal Skuterud Famly and Labour
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationConversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
More informationControl Charts for Means (Simulation)
Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng
More informationQuantification of qualitative data: the case of the Central Bank of Armenia
Quantfcaton of qualtatve data: the case of the Central Bank of Armena Martn Galstyan 1 and Vahe Movssyan 2 Overvew The effect of nonfnancal organsatons and consumers atttudes on economc actvty s a subject
More informationKiel Institute for World Economics Duesternbrooker Weg 120 24105 Kiel (Germany) Kiel Working Paper No. 1120
Kel Insttute for World Economcs Duesternbrooker Weg 45 Kel (Germany) Kel Workng Paper No. Path Dependences n enture Captal Markets by Andrea Schertler July The responsblty for the contents of the workng
More informationASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 140 TO 200 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA
ASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 14 TO 2 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA Subr K. Sanyal 1, Ann RobertsonTat 1, Chrstopher W. Klen 1, Steven
More informationA Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy Scurve Regression
Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy Scurve Regresson ChengWu Chen, Morrs H. L. Wang and TngYa Hseh Department of Cvl Engneerng, Natonal Central Unversty,
More informationNordea G10 Alpha Carry Index
Nordea G10 Alpha Carry Index Index Rules v1.1 Verson as of 10/10/2013 1 (6) Page 1 Index Descrpton The G10 Alpha Carry Index, the Index, follows the development of a rule based strategy whch nvests and
More informationLoad Settlement System. Procedures and Methods
Procedures and Methods Effectve January 01 TABLE OF CONTENTS 1. NTRODUCTON... 1. STE TO SETTLEMENT ZONE MAPPNG.... LOAD PROFLNG... LOAD RESEARCH SAMPLES... SAMPLNG ACCURACY REQUREMENTS... HSTORC CLASS
More informationUncrystallised funds pension lump sum payment instruction
For customers Uncrystallsed funds penson lump sum payment nstructon Don t complete ths form f your wrapper s derved from a penson credt receved followng a dvorce where your ex spouse or cvl partner had
More informationChapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationA Secure PasswordAuthenticated Key Agreement Using Smart Cards
A Secure PasswordAuthentcated Key Agreement Usng Smart Cards Ka Chan 1, WenChung Kuo 2 and JnChou Cheng 3 1 Department of Computer and Informaton Scence, R.O.C. Mltary Academy, Kaohsung 83059, Tawan,
More informationDISCLOSURES I. ELECTRONIC FUND TRANSFER DISCLOSURE (REGULATION E)... 2 ELECTRONIC DISCLOSURE AND ELECTRONIC SIGNATURE CONSENT... 7
DISCLOSURES The Dsclosures set forth below may affect the accounts you have selected wth Bank Leum USA. Read these dsclosures carefully as they descrbe your rghts and oblgatons for the accounts and/or
More informationOverview of monitoring and evaluation
540 Toolkt to Combat Traffckng n Persons Tool 10.1 Overvew of montorng and evaluaton Overvew Ths tool brefly descrbes both montorng and evaluaton, and the dstncton between the two. What s montorng? Montorng
More informationJ. Parallel Distrib. Comput.
J. Parallel Dstrb. Comput. 71 (2011) 62 76 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. journal homepage: www.elsever.com/locate/jpdc Optmzng server placement n dstrbuted systems n
More informationwww.olr.ccli.com Introducing Online Reporting Your stepbystep guide to the new online copy report Online Reporting
Onlne Reportng Introducng Onlne Reportng www.olr.ccl.com Your stepbystep gude to the new onlne copy report Important nformaton for all lcence holders No more software to download Reportng as you go...
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationSome literature also use the term Process Control
A Formal Approach for Internal Controls Complance n Busness Processes Koumars Namr 1, Nenad Stojanovc 2 1 SAP Research Center CEC Karlsruhe, SAP AG, VncenzPreßntzStr.1 76131 Karlsruhe, Germany Koumars.Namr@sap.com
More informationTrivial lump sum R5.0
Optons form Once you have flled n ths form, please return t wth your orgnal brth certfcate to: Premer PO Box 2067 Croydon CR90 9ND. Fll n ths form usng BLOCK CAPITALS and black nk. Mark all answers wth
More informationVRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT09105, Phone: (3705) 2127472, Fax: (3705) 276 1380, Email: info@teltonika.
VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths userfrendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual
More informationMeasuring Ad Effectiveness Using Geo Experiments
Measurng Ad Effectveness Usng Geo Experments Jon Vaver, Jm Koehler Google Inc Abstract Advertsers have a fundamental need to quantfy the effectveness of ther advertsng For search ad spend, ths nformaton
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationStatistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
More informationUsing Multiobjective Metaheuristics to Solve the Software Project Scheduling Problem
Usng Multobectve Metaheurstcs to Solve the Software Proect Schedulng Problem Francsco Chcano Unversty of Málaga, Span chcano@lcc.uma.es Francsco Luna Unversty of Málaga, Span flv@lcc.uma.es Enrque Alba
More informationA Performance Analysis of View Maintenance Techniques for Data Warehouses
A Performance Analyss of Vew Mantenance Technques for Data Warehouses Xng Wang Dell Computer Corporaton Round Roc, Texas Le Gruenwald The nversty of Olahoma School of Computer Scence orman, OK 739 Guangtao
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationAnalysis of the provisions for claims outstanding for nonlife insurance based on the runoff triangles
OFFE OF THE NSURANE AND PENSON FUNDS SUPERVSORY OMMSSON Analyss of the provsons for clams outstandng for nonlfe nsurance based on the runoff trangles Ths Report has been prepared n the nformaton Systems
More informationDynamic Scheduling of Emergency Department Resources
Dynamc Schedulng of Emergency Department Resources Junchao Xao Laboratory for Internet Software Technologes, Insttute of Software, Chnese Academy of Scences P.O.Box 8718, No. 4 South Fourth Street, Zhong
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationMaster s Thesis. Configuring robust virtual wireless sensor networks for Internet of Things inspired by brain functional networks
Master s Thess Ttle Confgurng robust vrtual wreless sensor networks for Internet of Thngs nspred by bran functonal networks Supervsor Professor Masayuk Murata Author Shnya Toyonaga February 10th, 2014
More informationTexas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
More informationSurvey on Virtual Machine Placement Techniques in Cloud Computing Environment
Survey on Vrtual Machne Placement Technques n Cloud Computng Envronment Rajeev Kumar Gupta and R. K. Paterya Department of Computer Scence & Engneerng, MANIT, Bhopal, Inda ABSTRACT In tradtonal data center
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More information