Laws of Electromagnetism

Size: px
Start display at page:

Download "Laws of Electromagnetism"

Transcription

1 There are four laws of electromagnetsm: Laws of Electromagnetsm The law of Bot-Savart Ampere's law Force law Faraday's law magnetc feld generated by currents n wres the effect of a current on a loop of flux whch t threads the force on an electron movng through a magnetc feld the voltage nduced n a crcut by magnetc flux cuttng t Our unfed theory deduces each of these from ts basc assumpton that magnetc felds exst to gve elementary charged partcles the property of nertal mass. Classcal Physcs calls these "emprcal laws" meanng that they have been formed from observaton. That s to say that they have no theoretcal justfcaton; they just work. Our dervaton of these laws rases ther status, but also rases questons about ther physcal meanng. What nature does Drectons are mportant n electromagnetsm and nature usually does thngs at rght angles. Any proper descrpton must nvolve vectors and the vector cross product descrbed n the secton on felds. Magnetc felds contan energy. That s ther functon n nature. The factor whch determnes ther nteracton wth movng charges s ther energy densty. There s no unversally agreed symbol for energy densty so we have chosen to use for the energy densty of magnetc felds. Q m Q m = 1 B H or Q m = 1 B H where H = v D If we use the propertes of permeablty µ and our defnton of magnetc ntensty as the sum of the actons of the movng electrc felds, we can wrte: whch expands to Q m = 1 µ H Q m = 1 µ ( ) v D ( ) v D Ths absolutely ghastly bt of unversty maths s the key to how everythng works. Snce there s no way that we can ever work t out because t nvolves more sums than there are atoms n the earth, t should be possble to talk about t wthout gettng too worred about how horrble t looks. The thng to understand s that the movng electrc flux of every electron s nteractng wth the movng flux of tself and every other electron and quark. Each one of these adds or subtracts a lttler bt to the energy densty at each pont n space. Energy Movement Cube of the magnetc feld Force Velocty Force Cone of electrc flux Energy Movement Cone of electrc flux Let us consder just two electrons. Velocty Page 1 of 5

2 ˆ We can draw the two cones of electrc flux whch come from the two electrons and meet n the tny volume of magnetc flux. We have made the drawng so that they meet at rght angles n a cube, but they could meet at any angle and the cube could be any shape. The contrbuton to the energy densty of each electron depends on ts velocty and all the angles between ts velocty, the cone of electrc flux and the magnetc flux. Any change n one of these results n a change to ts contrbuton to the energy n that tny cube. Ths requres energy to move back and forth along the tube of electrc flux. Now a consderable length of the tube of electrc flux passes through smlar tny mss-shaped cubes and the change n energy n each these adds to the energy whch needs to flow up or down the cone. The cone ends n a lttle square of the surface of the electron and that s where net amount of ths energy whch moves up and down the cone has to be ether generated or adsorbed. Ths results n a force. The force could be dong work or adsorbng energy; t all depends on the relatve drecton of the force and the velocty. One thng we can be certan of: each of these forces s tangental to the surface. What happens s that the whole of the surface les at the end of ts own cone of electrc flux and each s resonsble for a tny force. All these tny contrbutons add up to gve a net force on the electron. But the unverse s not qute that smple. If the magnetc feld s tryng to dump energy, the electron has to be free to move allowng the force to do work. If we stop the electron from movng, the magnetc feld has to fnd another electron whch s free to move. Ths acton can be seen n transformers and swtch mode power supples. If the unverse dd not work ths way, none of our televsons, computers or moble phones would work. If we could look closely at a movng electron and could see the magnetc feld generated by ts moton, we would see energy denstes mllons and bllons of tmes greater than any found n the magnetc feld of a magnet. The nteracton we have descrbed s completely domnated by the electrons own contrbuton. The magnetc feld contans ts knetc energy and the force generated s the nertal force whch ressts ts acceleraton. The maths even gves us Newton's law F = m a. As we buld machnes whch explot ths nteracton, the geometry and acton of each results n a specal law to ft the crcumstances. Tradtonal TV sets contan a tube n whch a beam of electrons scans the screen generatng the pcture. The beam s deflected by a powerful magnetc feld generated by currents n the feld cols. The law of Bot-Savart enables us to calculated the magnetc feld and the force law allows us to calculate how t bends the beam. Ampere's law allows us to calculate the energy contaned n a magnetc feld and together wth Faraday's nducton law s used n the desgn of the transformer or swtch mode power supply whch powers the TV from the mans. The law of Bot-Savart Ths gves the magnetc feld generated by a current I flowng through a small length of wre δl. The law s heavly dependent on drectons and can only be descrbed by a vector equaton. The flux densty B s: B = µ I δl r 4π r The basc assumpton of our unfed theory s that movng electrc flux generates a magnetc ntensty H = v D. We consder a short secton of wre and all of the electrons and quarks n t. The magnetc ntensty generated by ther moton s gven by the sum of all of ther ndvdual contrbutons H = v D. At frst the veloctes v are measured relatve to the background formed by the electrc felds of all the Page of 5

3 ˆ electrons and quarks n the unverse. But f we group together all the electrons and quarks of an atom, the sum of ther magnetc ntenstes s equal to H = u D where u s now the velocty of a conducton band electron relatve to ts parent atom. Thus the magnetc ntensty due to all the conducton band electrons n the length δl of wre s: δh = u D Then wth a bt more maths, we can show that the sum depends on the current I and the length δl of the bt of wre. We need to nclude the drecton of the current along the wre for the vector cross product and the end result s the law of Bot-Savart: B = µ I δl r 4π r Force law Classcal Physcs gves the emprcal law that the force on a charge q movng at velocty v through a magnetc feld of flux densty B s gven by the school and unversty maths formulae: F = B e v F = q v B If the electron's velocty s perpendcular to the flux then the magntude of the force s gven by the school maths F = B e v n whch e s now the charge of the electron. Classcal physcs makes no attempt to explan how the force s generated. Modern Physcs attempts to explan t wth relatvty usng a "Lorentz transform" to turn the magnetc feld nto an electrc feld, but n the author's opnon, ths s a maths fudge. In our unfed theory, there s an nteracton between the whole of the magnetc feld and the whole of the electron's electrc feld. Ths nteracton results n an energy transfer between the magnetc feld and the electron generatng a net force. When we look closely at the stuaton, we fnd that equal amounts of energy are flowng nto and out of the electron wth resultng forces spread over ts surface. Because they are not all n the same drecton, when we add them, we fnd that there s a net force. Ths s perpendcular to the velocty, so does no work and the speed and knetc energy reman unchanged. In our unfed theory, the electron s surrounded by ts own magnetc flux generated by ts velocty, so the flux of the magnetc feld through whch t s passng must be pushed asde. Ths means that t does not "feel" any local presence of the magnetc flux. Ths does not matter because n our unfed theory, the force s not generated by a local acton. The maths s dffcult unversty stuff, but amazngly t all smplfes to gve: F = µ q v H We should not talk of the "bev" force, but of the "mu-hev" force because t s ths mathematcal artefact whch comes out of the maths. Because H s a mathematcal artefact, t s not subject to the lmtaton mposed on the flux densty B by the fact that the flux s real and sngular. H That havng been sad, t s obvous that the force on the electron s perpendcular to ts velocty. Ths beng so, the acceleraton t mparts always causes the electron to follow a crcular or a spral path. Page 3 of 5

4 Faraday's Law Ths s the most mportant law. Wthout t, we would only have batteres. There would be no mans electrcty, no electrc motors. Ths s the law whch once understood allowed us to generate electrcty. The dagram shows a sketch of Faraday's orgnal apparatus whch conssted of a rng of soft ron wth two cols of wre wrapped around t. It s n fact the world's frst transformer. In our unfed theory, we try to descrbe how nature works at the most fundamental level and dentfy the actual physcal processes through whch she acts. Classcal Physcs as taught n the unversty Electrcal and Electroncs Engneerng Departments has the very smple dea that the ron rng contans magnetc flux and that any change n the flux content envolves flux cuttng through each turn of the wre. Modern Physcs should f t s honest to tself follow Ensten's doctrne that magnetc flux does not really exst. The truth les somewhere between these. Magnetc flux s real stuff, but t does not cut the wres. Faraday's law follows on from the force law. We saw how the movng electron does not actually pass through the magnetc flux, because t s surrounded by ts own magnetc feld and ths pushes the flux of the background feld asde. Once a current starts to flow, the turns of wre are each surrounded by ther own magnetc feld. A loop of flux can only move past the wre by jonng wth one of the flux loops around the wre, then breakng from t on the other sde as shown n the sequence below Lght blue represents the flux strands encrclng the wre and dark blue the strands of the background flux. As the wre moves two flux strands each break and rejon wth each other so that the strand now passes on the other sde. As the wre passes further away from ths strand, an new strand of flux shown n magenta emerges from the wre to replace the lost encrclng lght blue strand. The reverse process occures when the wre moves the rght so from 6 to 1, a pont s reached where the magenta loop of flux s adsorbed nto the wre 4 3 and then splts n two places rejonng wth tself 3 to allow the adsorbed encrclng loop to be replaced. So there s no drect acton between the loop of flux and the wre or the conducton band electrons wthn t. It s an ndrect acton nvolvng the nteracton of the electrc feld of each conducton band electron wth the whole the background magnetc feld. Ths nteracton nvolves energy transfers between the magnetc feld and each conducton band electron resultng n net force F = µ q v H on each one. It s only when we try to add up these forces that Faraday's law emerges. Page 4 of 5

5 w The "trck" s to express the velocty v of an electron relatve to the magnetc flux as the sum of the the velocty of the electron relatve to the wre and the velocty of the wre relatve to the flux. F = µ q v H becomes 1 = µ q w H F F = µ q (w + u) H Now, we can splt the force nto two parts F and. When we add up the all the F 1 forces for a short length of wre, we get a force actng on the wre at rght angles to t. When we add up all the F forces, we get a force along the length of the short bt of wre. If we now add up the forces on the short lengths, the F forces all add to zero and the F forces add up to gve the nduced voltage. 1 = µ q u H = µ q u H We need to understand how the equaton F relates to natures' actons. The actual magnetc flux does not pass through the wre, but the mathematcal artefact H whch s the magnetc ntensty of the background magnetc feld can be descrbed n exactly the same way as f t were a flux and ts flux passes through the wre. We have to use a suffx to dstngush t from the magnetc ntensty H w generated by any current n the wre. The actual magnetc flux threadng the crcut formed by the wre results form the sum of the two magnetc ntenstes. We need some college maths to descrbe how we calculate the amount of flux threadng the crcut by ntegratng µ (H + H w) over the area enclosed by the crcut. Nature s busy breakng and jonng, then breakng flux strand that they move form one sde of the wre to the other, so along the length of the crcut flux s beng lost or ganed resultng a net rate of change of the amount Φ of flux threadng the crcut. When all the maths s worked out, we fnd that the voltage nduced n the crcut s: Where the term dφ dt V = dφ dt descrbes the rate at whch the flux threadng the crcut s changng wth tme. Ampere's law Ampere's law s mportant when we consder magnetc felds n transformers and nductances. It nvolves the concept of magnetomotve force ( mmf) whch s gven by an ntegral around a closed path. Ampere's law states that the mmf s equal to the current threadng the path: mmf = H The ntal assumpton of our unfed theory s that movng electrc flux generates a magnetc feld. Ths leads to the descrpton of magnetc ntensty generated by the moton of an electron H = v D. We saw how ths could be summed for a current I n a short length δl of wre to gve the law of Bot-Savart. For a partcular crcut, t s possble to calculate the magnetc feld produced by the current. It s then possble to ntegrate H dl around a partcular path and show t s equal to the current. However, t only smple enough to do n the case of some very specal geometres. It does not consttute a general proof. We can derve the law when we consder the nteracton between a sngle electron and a loop of flux. It then becomes qute easy to sum the actons of all the conducton band electrons n a crcut and deduce the law. But there s a lot of geometry n t, so we have refer the reader to the dervaton at physcst level. dl = I Page 5 of 5

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

1 What is a conservation law?

1 What is a conservation law? MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2015 2016, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

More information

Chapter 12 Inductors and AC Circuits

Chapter 12 Inductors and AC Circuits hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

Chapter 31B - Transient Currents and Inductance

Chapter 31B - Transient Currents and Inductance Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

HALL EFFECT SENSORS AND COMMUTATION

HALL EFFECT SENSORS AND COMMUTATION OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth three-phase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State.

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State. Effects of Etreme-Low Frequency Electromagnetc Felds on the Weght of the at the Superconductng State. Fran De Aquno Maranhao State Unversty, Physcs Department, S.Lus/MA, Brazl. Copyrght 200 by Fran De

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Mean Molecular Weight

Mean Molecular Weight Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

More information

- 573 A Possible Detector for the Study of Weak Interactions at Fermi Clash R. Singer Argonne National Laboratory

- 573 A Possible Detector for the Study of Weak Interactions at Fermi Clash R. Singer Argonne National Laboratory - 573 A Possble Detector for the Study of Weak nteractons at Ferm Clash R. Snger Argonne Natonal Laboratory The purpose of ths paper s to pont out what weak nteracton phenomena may exst for center-of-mass

More information

Inertial Field Energy

Inertial Field Energy Adv. Studes Theor. Phys., Vol. 3, 009, no. 3, 131-140 Inertal Feld Energy C. Johan Masrelez 309 W Lk Sammamsh Pkwy NE Redmond, WA 9805, USA jmasrelez@estfound.org Abstract The phenomenon of Inerta may

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

QUESTIONS, How can quantum computers do the amazing things that they are able to do, such. cryptography quantum computers

QUESTIONS, How can quantum computers do the amazing things that they are able to do, such. cryptography quantum computers 2O cryptography quantum computers cryptography quantum computers QUESTIONS, Quantum Computers, and Cryptography A mathematcal metaphor for the power of quantum algorthms Mark Ettnger How can quantum computers

More information

Chapter 6 Inductance, Capacitance, and Mutual Inductance

Chapter 6 Inductance, Capacitance, and Mutual Inductance Chapter 6 Inductance Capactance and Mutual Inductance 6. The nductor 6. The capactor 6.3 Seres-parallel combnatons of nductance and capactance 6.4 Mutual nductance 6.5 Closer look at mutual nductance Oerew

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mt.edu 5.74 Introductory Quantum Mechancs II Sprng 9 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 4-1 4.1. INTERACTION OF LIGHT

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

We are now ready to answer the question: What are the possible cardinalities for finite fields?

We are now ready to answer the question: What are the possible cardinalities for finite fields? Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry 1 Battery Technology and Markets, Sprng 2010 Lecture 1: Introducton to Electrochemstry 1. Defnton of battery 2. Energy storage devce: voltage and capacty 3. Descrpton of electrochemcal cell and standard

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) 2127472, Fax: (370-5) 276 1380, Email: info@teltonika.

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) 2127472, Fax: (370-5) 276 1380, Email: info@teltonika. VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths user-frendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

UPGRADE YOUR PHYSICS

UPGRADE YOUR PHYSICS Correctons March 7 UPGRADE YOUR PHYSICS NOTES FOR BRITISH SIXTH FORM STUDENTS WHO ARE PREPARING FOR THE INTERNATIONAL PHYSICS OLYMPIAD, OR WISH TO TAKE THEIR KNOWLEDGE OF PHYSICS BEYOND THE A-LEVEL SYLLABI.

More information

Section 2 Introduction to Statistical Mechanics

Section 2 Introduction to Statistical Mechanics Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Lnear Momentum and Collsons CHAPTER OUTLINE 9.1 Lnear Momentum and Its Conservaton 9.2 Impulse and Momentum 9.3 Collsons n One Dmenson 9.4 Two-Dmensonal Collsons 9.5 The Center of Mass 9.6 Moton

More information

The difference between voltage and potential difference

The difference between voltage and potential difference Slavko Vjevć 1, Tonć Modrć 1 and Dno Lovrć 1 1 Unversty of Splt, Faclty of electrcal engneerng, mechancal engneerng and naval archtectre Splt, Croata The dfference between voltage and potental dfference

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

An Overview of Financial Mathematics

An Overview of Financial Mathematics An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

TECHNICAL NOTES 3. Hydraulic Classifiers

TECHNICAL NOTES 3. Hydraulic Classifiers TECHNICAL NOTES 3 Hydraulc Classfers 3.1 Classfcaton Based on Dfferental Settlng - The Hydrocyclone 3.1.1 General prncples of the operaton of the hydrocyclone The prncple of operaton of the hydrocyclone

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

The quantum mechanics based on a general kinetic energy

The quantum mechanics based on a general kinetic energy The quantum mechancs based on a general knetc energy Yuchuan We * Internatonal Center of Quantum Mechancs, Three Gorges Unversty, Chna, 4400 Department of adaton Oncology, Wake Forest Unversty, NC, 7157

More information

Introduction to Statistical Physics (2SP)

Introduction to Statistical Physics (2SP) Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz

More information

Loop Parallelization

Loop Parallelization - - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1. HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher

More information

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Shielding Equations and Buildup Factors Explained

Shielding Equations and Buildup Factors Explained Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

Energies of Network Nastsemble

Energies of Network Nastsemble Supplementary materal: Assessng the relevance of node features for network structure Gnestra Bancon, 1 Paolo Pn,, 3 and Matteo Marsl 1 1 The Abdus Salam Internatonal Center for Theoretcal Physcs, Strada

More information

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages:

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages: Welcome to ALERT BINGO, a fun-flled and educatonal way to learn the fve ways to change engnes levels (Put somethng n your Mouth, Move, Touch, Look, and Lsten) as descrbed n the How Does Your Engne Run?

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

MULTIVAC Customer Portal Your access to the MULTIVAC World

MULTIVAC Customer Portal Your access to the MULTIVAC World MULTIVAC Customer Portal Your access to the MULTIVAC World 2 Contents MULTIVAC Customer Portal Introducton 24/7 Accessblty Your ndvdual nformaton Smple and ntutve Helpful and up to date Your benefts at

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

Damage detection in composite laminates using coin-tap method

Damage detection in composite laminates using coin-tap method Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The con-tap test has the

More information

Inner core mantle gravitational locking and the super-rotation of the inner core

Inner core mantle gravitational locking and the super-rotation of the inner core Geophys. J. Int. (2010) 181, 806 817 do: 10.1111/j.1365-246X.2010.04563.x Inner core mantle gravtatonal lockng and the super-rotaton of the nner core Matheu Dumberry 1 and Jon Mound 2 1 Department of Physcs,

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn Arzona State Unversty & Ln Wen Unversty of Redlands MARKET PARTICIPANTS: Customers End-users Multnatonal frms Central

More information

Experiment 5 Elastic and Inelastic Collisions

Experiment 5 Elastic and Inelastic Collisions PHY191 Experment 5: Elastc and Inelastc Collsons 8/1/014 Page 1 Experment 5 Elastc and Inelastc Collsons Readng: Bauer&Westall: Chapter 7 (and 8, or center o mass deas) as needed 1. Goals 1. Study momentum

More information

Multiple stage amplifiers

Multiple stage amplifiers Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992

More information

Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.

Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance. Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;

More information

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN

More information

Peak Inverse Voltage

Peak Inverse Voltage 9/13/2005 Peak Inerse Voltage.doc 1/6 Peak Inerse Voltage Q: I m so confused! The brdge rectfer and the fullwae rectfer both prode full-wae rectfcaton. Yet, the brdge rectfer use 4 juncton dodes, whereas

More information

The Full-Wave Rectifier

The Full-Wave Rectifier 9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to

More information

denote the location of a node, and suppose node X . This transmission causes a successful reception by node X for any other node

denote the location of a node, and suppose node X . This transmission causes a successful reception by node X for any other node Fnal Report of EE359 Class Proect Throughput and Delay n Wreless Ad Hoc Networs Changhua He changhua@stanford.edu Abstract: Networ throughput and pacet delay are the two most mportant parameters to evaluate

More information

4 Cosmological Perturbation Theory

4 Cosmological Perturbation Theory 4 Cosmologcal Perturbaton Theory So far, we have treated the unverse as perfectly homogeneous. To understand the formaton and evoluton of large-scale structures, we have to ntroduce nhomogenetes. As long

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR XVIII Internatonal Conference on Gas Dscharges and Ther Applcatons (GD 2010) Grefswald - Germany SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR M. Mezane, J.P. Sarrette,

More information