The isopod Asellus aquaticus: A novel arthropod model organism to study evolution of segment identity and patterning 1



Similar documents
Evolution of new appendage types by gradual changes in Hox gene expression the case of crustacean maxillipeds 1

Anatomy PHL 212. By Dr Tajdar Husain Khan

Chapter 47: Animal Development

Chapter 32: An Introduction to Animal Diversity

ALLEN Mouse Brain Atlas

Origin of insect metamorphosis based on designby-contract: larval stages as an atavism

Welcome to Anatomy & Physiology

Fossils, genes and the evolution of animal limbs

The first steps to forming a new organism Descriptive embryology 2. Cleavage, Gastrulation, Neurulation and Organogenesis

In developmental genomic regulatory interactions among genes, encoding transcription factors

II. Germ Layers Ontogeny can reveal a great deal about evolutionary relationships. Answer and discuss the following:

Biological kinds and the causal theory of reference

Macroevolution: Change above the species level NABT 2006 Evolution Symposium

Human Anatomy & Physiology General

Letter to the Student... 5 Letter to the Family... 6 Ohio Academic Content Standards Correlation Chart... 7 Investigation

FIELD RECOGNITION OF THE LARVAE OF NATIVE COCCINELLIDAE, COMMON TO THE POTATO FIELDS OF AROOSTOOK COUNTY

The Making of the Fittest: Evolving Switches, Evolving Bodies

AP BIOLOGY 2012 SCORING GUIDELINES

Mit einem Auge auf den mathema/schen Horizont: Was der Lehrer braucht für die Zukun= seiner Schüler

CHAPTER 9 BODY ORGANIZATION

A Process Flow for Classification and Clustering of Fruit Fly Gene Expression Patterns

Biological Sciences Initiative. Human Genome

Vertebral anatomy study guide. Human Structure Summer Prepared by Daniel Schmitt, Angel Zeininger, and Karyne Rabey.

Interphase (A) and mitotic (B) D16 cells were plated on concanavalin A and processed for

Preparing RTF and MS Word Files with Untranslatable Content for SDL Trados TagEditor & Déjà Vu

13.4 Gene Regulation and Expression

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40)

CSE511 Brain & Memory Modeling. Lect04: Brain & Spine Neuroanatomy

BIOLOGY REDISCOVERING. Genes and Development. Molecular to Global Perspectives. Differentiation and Genetic Cascades

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 2 ORGANIZATION OF THE BODY

How To Ensure A Kreditierung Austria Is A Successful

Transverse Sections of the Spinal Cord

Embryo Clay Model Embryogenesis and Stem Cell Development

Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage

Human Digestive System Anatomy

Body Planes & Directions Anatomic Reference Systems (Unit 6, pp )

Fig. S1. Identification of CRMs with activity in Ci-Tbx2/3 expression domains outside the notochord. B-F

Upgrading Your Skills to MCSA Windows Server 2012 MOC 20417

Introduction to Animals

eaged salmon and trout in Chile 1

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

Fig. S1. Visualizing and manipulating peripheral MEs and SAs in zebrafish. (A) Lateral wholemount view of peripheral MEs (magenta: TgNBT:dsRed) and

BIOLOGY 205/SECTION 7 DEVELOPMENT- LILJEGREN. Third Examination April 2, 2009

Laboratory 1 Anatomical Planes and Regions

A new araneid genus from the Galapagos Islands (Araneae: Araneidae)

Thoracic Spine Anatomy

Vertebrate Development Chapter 60

Leitfaden für die Antragstellung zur Förderung einer nationalen Biomaterialbankeninitiative

Matthias Kistler, Urs Marti, Jérôme Ray, Christian Baumann and Adrian Wiget (Federal Office of Topography swisstopo - Switzerland)

Microsoft Certified IT Professional (MCITP) MCTS: Windows 7, Configuration ( )

Divisions of the Skeletal System

Class Insecta - The insects

Mechanosensitive Neurons on the Internal Reproductive Tract Contribute to Egg-Laying- Induced Acetic Acid Attraction in Drosophila

Kapitel 2 Unternehmensarchitektur III

Developments in the Austrian Surveying Education

Businessmodelle des SaaS Eco-Systems Chancen, Risiken und kritische Erfolgsfaktoren

SPICE auf der Überholspur. Vergleich von ISO (TR) und Automotive SPICE

Problems With Programmable self-assembly in a thousand-robot swarm

Limb Development. Limb Development. Limb Axes. Limb Development. Clinical Terms

Gene Switches A Model

The exhibition brought together three aspects of Reiner Maria Matysik s multi-layered oeuvre in a new synthesis: in the museum s lecture hall ruins

Human Embryonic Development. Human fetal development

How To Analyse A Flugzeugflugfl\U00Fcgels In 3D Cda

Martin Krus, Klaus Sedlbauer, Herbert Sinnesbichler

9. PHARYNGEAL ARCHES. READING ASSIGNMENT: Larsen 3 rd Edition. Chapter 12: pp. 352; ; SUMMARY: LEARNING OBJECTIVES:

Guide for Data Visualization and Analysis using ACSN

Distinguishing characters of Niphargus gebhardti Schellenberg, 1934 and Niphargus molnari Mehely, 1927 (Crustacea: Amphipoda): a clarification

Conference Paper Computer model for agricultural holdings: Useful tool in the evaluation and implementation of a high performance management

INSRUCTION MANUAL AND GUARANTEE POLICY

Carnivore, omnivore or herbivore?

Search Engines Chapter 2 Architecture Felix Naumann

CARO The Common Anatomy Reference Ontology

HYPO TIROL BANK AG. EUR 5,750,000,000 Debt Issuance Programme (the "Programme")

Trasposable elements: P elements

CobraNet TM User s Manual

30 August PROC. BIOL. SOC. WASH. 98(3), 1985, pp

Services supply chain management and organisational performance

Name Date Hour. Nerve Histology Microscope Lab

Implementing Data Models and Reports with Microsoft SQL Server

CCR Biology - Chapter 10 Practice Test - Summer 2012

The shape of things to come: Young researchers in Germany

How To Teach A Software Engineer

Introduction to Animal Systems

The Olympus stereology system. The Computer Assisted Stereological Toolbox

The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse

Supply Chain and Logistics in National, International and Governmental Environment

Development of a Topographical Transcription Method. Introduction

Update to V10. Automic Support: Best Practices Josef Scharl. Please ask your questions here Event code 6262

A new species of Myrmarachne from Kenya (Araneae: Salticidae)

Vergleich der Versionen von Kapitel 1 des EU-GMP-Leitfaden (Oktober 2012) 01 July November Januar 2013 Kommentar Maas & Peither

Big Data Vendor Benchmark 2015 A Comparison of Hardware Vendors, Software Vendors and Service Providers

Proceedings of the 8 th Euro-Asia Conference on Environment and CSR: Tourism, MICE, Hospitality Management and Education Session (Part II)

Introduction to A&P (Chapter 1) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College. Eastern Campus

Animal Models of Human Behavioral and Social Processes: What is a Good Animal Model? Dario Maestripieri

Problems. Knowing. back of the

Supplementary Information accompanying with the manuscript titled:

LEARNING AGREEMENT FOR STUDIES

Timebox Planning View der agile Ansatz für die visuelle Planung von System Engineering Projekt Portfolios

Genetomic Promototypes

Transcription:

Palaeodiversity 3, Supplement: 89 97; Stuttgart 30 December 2010. 89 The isopod Asellus aquaticus: A novel arthropod model organism to study evolution of segment identity and patterning 1 PHILIPP VICK & MARTIN BLUM Abstract Hox genes have been recognized as widely conserved metazoan genes relevant for patterning of embryonic axes. In insects, Hox genes display more or less strict tagmata-related expression patterns. For example, activity of abdominal-a (abd-a) correlates with the legless abdomen. In crustaceans, in contrast, expression domains are more divers. In the branchiopod Artemia franciscana, expression domains of posterior Hox genes display overlapping patterns. In the more modern malacostracan isopod Porcellio scaber however, abd-a is restricted to the developing pleon. Here we present the partial cloning and expression patterns of the Hox genes abd-a and Antennapedia from the freshwater crustacean Asellus aquaticus. In contrast to Porcellio this isopod shows a slightly different regulation of posterior segment patterning. The obtained abd-a signal points to a conserved early role in the pleon as well as to an anteriorly extended function in the pereon and pleon in later stages. In addition, we detected an as yet unknown endodermal expression domain of abd-a in the epithelium of the early developing digestive gland, which indicates a diverse role of this gene. The waterlouse Asellus aquaticus thus may provide a relevant and novel crustacean model organism for the study of evolutionary changes of segment identity and patterning. K e y w o r d s : EvoDevo, Asellus aquaticus, Hox, Antp, abd-a, dll, evolution, segment identity, segment patterning. Zusammenfassung Hox-Gene sind stark konservierte Gene der Metazoa, die für die Musterbildung embryonaler Achsen von Bedeutung sind. In Insekten zeigen Hox-Gene mehr oder weniger streng an Tagmata gebundene Expressionsmuster. Die Aktivität von abdominal-a (abd-a) korreliert zum Beispiel mit dem beinlosen Abdomen. In den Krebstieren sind die Expressionsdomänen dagegen unterschiedlicher. In dem Kiemenfußkrebs Artemia franciscana zeigen die posterioren Hox-Expressionsdomänen überlappende Muster. In dem modernen Isopoden Porcellio scaber ist abd-a jedoch auf das entstehende Pleon beschränkt. Wir berichten hier von der partiellen Klonierung und den Expressionsmustern der Hox-Gene abd-a und Antennapedia des Süßwasserkrebses Asellus aquaticus. Im Gegensatz zu Porcellio zeigt dieser Isopode eine leicht unterschiedliche Regulierung der posterioren Segmente. Das erhaltene abd-a-signal deutet sowohl auf eine konservierte frühe Rolle im Pleon als auch auf eine in späteren Stadien nach anterior hin erweiterte Funktion in Pereon und Pleon hin. Zusätzlich entdeckten wir eine bislang unbekannte endodermale Expression von abd-a im entstehenden Mitteldarmdrüsenepithel, was auf eine vielfältige Rolle für dieses Gen hindeutet. Die Wasserassel Asellus aquaticus könnte damit einen neuen und relevanten Modellorganismus zur Studie von evolutionären Änderungen von Segmentidentität und -musterbildung darstellen. Contents 1. Introduction...90 2. Results and discussion...92 2.1. Adult morphology of Asellus aquaticus...92 2.2. Embryonic development of Asellus aquaticus...92 2.3. Early expression patterns of abdominal-a in embryos of Asellus aquaticus...93 2.4. Late expression pattern of abd-a...94 2.5. Late expression pattern of Antp in Asellus aquaticus...94 2.6. Distal-less (dll) expression in developing appendages of Asellus aquaticus embryos...95 2.7. Summary and outlook: comparison of Hox expression patterns in Asellus and Porcellio...95 3. References...96 1 Contribution to the WILLI-HENNIG-Symposium on Phylogenetics and Evolution, University of Hohenheim, 29 September 2 October 2009.

90 PALAEODIVERSITY 3, SUPPLEMENT, 2010 1. Introduction The Hox genes have been recognized as widely conserved metazoan genes relevant for patterning of the em- bryonic axes (TABIN 1992; K RUMLAUF 1993; AKAM et al. 1994; RUDDLE et al. 1994; AKAM 1995; HOLLAND & GARCIAFERNANDEZ 1996; AVEROF 1997; WOLPERT 2000; POPODI & R AFF 2001; VERVOORT 2002; DEUTSCH & MOUCHEL-VIELH Fig. 1. Asellus aquaticus: adult female morphology. A. Dorsal view of an adult female displaying the cephalothorax (ct) with a pair of antennules (an) and antennae (at), seven free thoracic segments (T2 T8), two free pleonic segments and the pleotelson (pt) bearing the uropods (u). B. Lateral view of same specimen displaying the seven pairs of pereopods (walking legs), marsupium and operculum. Please note the absence of the 5th pereopod (marked by an asterisk). C. Ventral view of a female with the marsupium in high magnification. The breeding room is filled with developing embryos. For some embryos the body shape is outlined by dotted lines. Eyes have developed and are visible as pigmented dots (e), and the green yolk inside the paired digestive glands is clearly discernable. Anterior to the left. m, marsupium; op, operculum; T2 T8, thoracomer 2 8; y, yolk; zc, Zenker cells (ZENKER 1854; DOHRN 1867).

VICK & BLUM, THE ISOPOD ASELLUS AQUATICUS 2003; GARCIA-FERNANDEZ 2005; HOEGG & MEYER 2005; PEARSON et al. 2005; DUBOULE 2007; HUEBER & LOHMANN 2008; WELLIK 2009). In particular, they act as selector genes for segment identity throughout the animal kingdom. In insects, Hox genes display more or less strict tagmata-related expression patterns. For example, activity of abdominal-a (abd-a) correlates with the legless abdomen. In crustaceans, in contrast, expression domains are more divers. In the branchiopod brine shrimp Artemia franciscana, for example, expression domains of the posterior Hox genes follow the insect-type overlapping pattern (AVEROF & A KAM 1995). In the more modern malacostracan isopod Porcellio scaber however, abd-a is restricted to the developing pleon (ABZHANOV & KAUFMAN 2000a). Here we present the partial cloning and expression patterns of the Hox genes abd-a and Antennapedia (Antp), 91 and the homeobox gene distal-less (dll) from the freshwater crustacean Asellus aquaticus. In contrast to Porcellio this isopod shows a similar but slightly different regulation of posterior segment patterning. The abd-a signal obtained by whole-mount in situ hybridization points to a more anterior extended function in the posterior pereon as well as to a conserved role in the pleon. In addition, we detected an as yet unknown endodermal expression domain of abd-a in the epithelium of the early developing digestive gland, which indicates a diverse role of this gene. Furthermore, we analyzed the expression of Asellus Antp, a Hox gene known to be expressed in the crustacean trunk, and of distal-less (dll), a gene expressed specifically in body appendages. Both expression domains are conserved in Asellus, underlining the significance of the derived expression patterns of abd-a. The waterlouse Fig. 2. Embryonic development of Asellus aquaticus. A. Lateral view of an embryo at about 40 % of development, still inside the chorion. The starting point of the dorsal curvature between head and posterior end of the pleon is indicated by a dotted line. B. Lateral view of an embryo at about 60 % of development. B. Ventral view of the embryo shown in B. Lateral organs can be seen at the level of the first thoracomer. C. Lateral view of an embryo at about 70 % of development. Anteriorly, the yolk begins to be incorporated into the paired digestive glands (arrowhead). Appendages are well developed and dorsal bending is nearly fully retracted. D. Dorsal view of an embryo just before the end of embryonic development (first molt). The yolk now is fully incorporated into the glands and thoracomers are clearly distinguishable. Please note the greenish color of the yolk. Staging of embryos according to WHITINGTON et al. (1993). Anterior to the left. White arrows mark approximate border between pereon/thorax and pleon. at, antenna; ct, cephalothorax; e, eye; h, head; lo, lateral organ; pl, pleon; pt, pleotelson; T2 T8, thoracomer 2 8; u, uropod; y, yolk.

92 PALAEODIVERSITY 3, SUPPLEMENT, 2010 Asellus aquaticus thus may provide a relevant and novel crustacean model organism for the study of evolutionary changes of segment identity and patterning. 2. Results and discussion 2.1. Adult morphology of Asellus aquaticus Fig. 1 shows the adult morphology of Asellus aquaticus, both as a reference point and to correlate embryonic expression patterns shown below. In the genus Asellus the head and the first trunk segment are fused to form a cephalothorax, followed by seven free thoracic segments (the so-called pereomers), two small free pleonic segments and a pleotelson, in which four pleon segments are fused with the telson (Fig. 1A, B). Females temporarily develop a marsupium on the ventral side, representing an isopodcharacteristic breeding room, in which the whole embryonic development takes place (Fig. 1C). The marsupium is bordered by the anterior pereonic sternites and the specialized, flattened epipodites of the same segments. Embryos are visible through the marsupium and may easily be obtained (GRUNER 1965; VICK et al. 2009). 2.2. Embryonic development of Asellus aquaticus For a comparative analysis of embryonic development of Asellus aquaticus in relation to other crustacean species, staging of embryos was adapted to WHITINGTON et al. (1993). Asellus develops no ventral groove and is thus characterized by a dorsal curvature, which separates head and pleon early during development (Fig. 2A, B). This represents a typical feature of isopods and a few other crustacean orders, which all lack development of a ventral groove (GRUNER 1965). Another typical characteris- Fig. 3. Early embryonic expression patterns of abd-a in Asellus aquaticus embryos. A A. Whole-mount in situ hybridization (WMISH) of an embryo at ~50 % of development showing abd-a mrna expression mainly in the pleon and in the paired endodermal anlagen of the digestive glands (e). A. Only the posterior expression domain can bee seen. A. Ventral view displaying lateral organs (lo) and endodermal primordia, which are visible through the translucent ectoderm (dotted rings). A. A sagittal section (plane indicated in A ) highlights expression domains. B B. Control embryo at ~50 % of development hybridized with a sense probe showing no expression in any tissue. A, A, B, B lateral views, anterior to the left, dorsal to the top; A, B ventral views, anterior to the left. an, antennule; h, head; y, yolk. Black arrowheads indicate approximate anterior and posterior expression boundaries.

VICK & BLUM, THE ISOPOD ASELLUS AQUATICUS 93 tic of this species are the so-called lateral organs (WEY- GOLDT 1959). These arise very early in development and persist until the first ecdysis, i. e. they mark embryonic development (Fig. 2B, D). During development, appendages arise from all segments formed. Parallel to the stretching of the anterior-posterior axis, through which the dorsal curvature disappears, the yolk is consumed or incorporated into the digestive glands (Fig. 2B D). Before the first molt, which transforms the embryo into a juvenile isopod, the embryo is fully stretched, bears developed appendages, eye spots, and a continuous gut, and thus roughly resembles an adult specimen (Fig. 2D). However, this late embryo as well as the following juvenile (or manca) stage still lack the eighth thoracic appendages, i. e. the last pair of walking legs. 2.3. Early expression patterns of abdominal-a in embryos of Asellus aquaticus Following partial cloning of the Asellus aquaticus abd-a gene (VICK et al. 2009; accession number ACG63499), an expression analysis was performed by whole-mount in situ hybridization using an antisense-specific riboprobe. At about 50 % of development, mrna transcription could be detected in the developing pleon, excluding the very posterior part, i. e. the telson (Fig. 3A A ). Most remarkably, an additional expression domain was detected in the epithelial lining of the two endodermal anlagen of the digestive glands in the anterior thorax (Fig. 3A, A ). A sense control probe revealed no staining, underscoring the specificity of the obtained mrna signals (Fig. 3B B ). Fig. 4. Late expression patterns of abd-a in embryos of Asellus aquaticus. A A. abd-a mrna expression in a ~75 % embryo. Expression was seen between the 5 th pereonic segment and the anterior pleon. Transversal sections (A, A ) showed strong expression in the ventral nerve cord (vnc) and weaker signals in the proximal limbs and the remainder of the mesodermal and ectodermal trunk tissue, which gradually faded towards the dorsal side. B, B. Expression of abd-a in an embryo at ~90 % of development. The signal was clearly restricted to a region between T5 and pleonic segment 3, with strongest expression in T7 and T8 (B ), the developing 7 th pereopod (* in B), and the proximal limbs of the anterior pleonic segments (B). A and B, lateral views, anterior to the left, dorsal to the top; B, dorsal view, anterior to the left; A and A, transversal sections, dorsal to the top. White arrows mark tagmata boundary between pereon and pleon. Black arrowheads indicate approximate anterior and posterior expression boundaries. Dashed lines indicate approximate planes of section. h, head; lo, lateral organ; pt pleotelson; T2 T8, thoracomers 2 8; y, yolk.

94 PALAEODIVERSITY 3, SUPPLEMENT, 2010 2.4. Late expression pattern of abd-a A careful expression analysis of the final stages of embryonic development of Asellus aquaticus revealed a striking change of abd-a transcript distribution. From 75 % of embryonic development onwards, abd-a was active more anteriorly in the embryo. abd-a was found to be expressed in the anterior-most pleon (pleomeres 1 and 2) and most strongly in the posterior thoracic segments (T5 T8; Fig. 4A, B). Transversal histological sections revealed strong staining of the ventral nerve cord and of the surrounding ventral ectodermal and mesodermal tissues (Fig. 4A, A ). The appendages of these segments showed positive abd-a signals only in the very proximal parts (asterisk in Fig. 4B). Interestingly, this positive staining of the pleonic ventral nerve cord was not found in Porcellio scaber (ABZHANOV & KAUFMAN 2000a). 2.5. Late expression pattern of Antp in Asellus aquaticus To learn more about the significance of this derived expression pattern of abd-a, Antennapedia (Antp), another trunk Hox gene, was cloned (accession number Fig. 5. Late embryonic expression patterns of Antp in embryos of Asellus aquaticus. A. Lateral view of an embryo at about 90 % of development after WMISH. A strong signal was detectable in T2 T8 and in the proximal appendages. Weak expression was seen in T1 and the ventral pleonic segments. A. Transverse histological section through the pereon. Besides weak ventral and lateral expression patterns, a strong signal was detected in the ventral nerve cord (vnc). B. Lateral view of a sense control embryo of the same stage, in which no staining could be detected besides an artificial signal at the base of the lateral organ. B, B. Higher magnification of the lateral organ region to visualize artificial staining at its basis. Dorsal to the top in A, A, B. Anterior to the top in B, B. Black arrowheads indicate approximate anterior and posterior expression boundaries. White arrow marks tagmata boundary between pereon/thorax and pleon. Dashed line in (A) indicates approximate plane of section. h, head; lo, lateral organ; T2 T8, thoracomers 2 8; y, yolk.

VICK & BLUM, THE ISOPOD ASELLUS AQUATICUS 95 HM044765). Antp is known to be expressed in the crustacean thorax (AVEROF & AKAM 1995; ABZHANOV & KAUFMAN 2000a) and therefore served as a probe to compare conservation of expression patterns among different crustacean species. In contrast to abd-a, expression of Antp was found to be conserved as compared to other crustacean and isopod species. Expression was detected in all thorax segments (including T1) as well as in the ventral parts of the anterior pleon and some proximal pleonic appendages (Fig. 5A). The domain in the pleonic appendages represented the sole difference to Porcellio Antp (ABZHANOV & KAUFMAN, 2000a). Histological sections revealed intense signals in the ventral nerve cords (Fig. 5A ). Sense control riboprobes showed no specific staining (Fig. 5B). dll as a further example (accession number HM044766). In all arthropod species analyzed so far, dll is expressed in developing appendages (PANGANIBAN et al. 1994, 1995, 1997; ABZHANOV & KAUFMAN 2000b; PANGANIBAN & RU- BENSTEIN 2002). Expression of Asellus aquaticus dll was found in most developing appendages in embryos developed to 60 % and 70 % of embryogenesis (Fig. 6A, B), while sense control riboprobes were negative in all cases (cf. inset in Fig. 6A). In accordance with their very early occurrence and origin, the lateral organs showed no expression ( WEYGOLDT 1959). Histological sections verified specific staining of the appendages (Fig. 6A, B, B ). Therefore, Asellus aquaticus represents another example of conserved dll expression in developing appendages. 2.6. Distal-less (dll) expression in developing appendages of Asellus aquaticus embryos To verify conservation of expression patterns of major developmental genes in Asellus aquaticus, we analyzed 2.7. Summary and outlook: comparison of Hox expression patterns in Asellus and Porcellio In summary, the expression patterns of the developmental genes were largely conserved, particularly with Fig. 6. Expression of dll in appendages but not in the lateral organs of Asellus aquaticus embryos. A. Ventral view of an embryo at about 60 % of development showed expression specifically in developing appendages (arrows). Sense control (inset) was free of staining. A. Lateral view of the same specimen showed strong expression in the antenna. Lateral staining at the posterior thorax and pleon represents an artifact. A. Transversal section as indicated in (A) and (A ) revealed staining in the appendages. B. Lateral view of an embryo at about 70 % exhibited expression in the mouth parts and appendages. B. Ventral view of the same embryo showed distinct domains of dll expression in the pleonic and posterior thoracic appendages. B, B. Sagittal sections of the specimen as depicted in (B ) underlined appendage-specific dll mrna transcription in the proximal and distal parts. Anterior to the left in A, A and B B. In A B, B and B dorsal is to the top. an, antennula; at, antenna; h, head; lo, lateral organ; pp, pleopod; pr, pereopod; y, yolk.

96 PALAEODIVERSITY 3, SUPPLEMENT, 2010 respect to Antp and dll. In this light, the divergent patterns of abd-a deserve all the more attention (Fig. 7). Asellus aquaticus displayed strong expression patterns of abd-a in P6, P7 and the free pleonic segments 1 and 2, and weaker levels in P5 and pleonic segment 3. In contrast, strong expression in Porcellio was restricted to the pleonic segments. In P6 and P7 a weak expression was reported (ABZHANOV & KAUFMAN 2000a). Our abd-a expression analysis in Asellus aquaticus thus demonstrated a clear correlation of expression domains with distinct morphogenetic units in two cases: pleotelson fusion (absence of abd-a transcription; cf. Fig. 4B ) and pereonic limb orientation (strong abd-a expression during the process of posterior bending in late stages; cf. Fig. 4A). Compared to abd-a expression in Porcellio, the adult morphology divergence is mimicked by a corresponding change in gene expression, i. e. abd-a activity throughout the pleonic segments (which do not fuse), and lack of activity in posterior pereopods (which do hardly orient posteriorly; VON H AFFNER 1937; GRUNER 1965). Thus, even between highly related crustaceans, shifts of Hox gene expression boundaries correlate with adult morphological variations. We thus hypothesize that temporal-spatial changes in abd-a gene expression are responsible for morphogenetic variations in adult morphologies of Asellus aquaticus and Porcellio scaber. Direct testing of this proposal might become possible in the future, provided that techniques for genetic manipulation of embryos become available. 3. References ABZHANOV, A. & KAUFMAN, T. C. (2000a): Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development, 127: 2239 2249. ABZHANOV, A. & KAUFMAN, T. C. (2000b): Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Developmental Biololgy, 227: 673 689. AKAM, M. (1995): Hox genes and the diversification of insect and crustacean body plans. Nature, 376: 420 423. AKAM, M., AVEROF, M., CASTELLI-GAIR, J., DAWES, R., FALCIANI, F., & FERRIER, D. (1994): The evolving role of Hox genes in arthropods. Development, Supplement: 209 215. AVEROF, M. (1997): Arthropod evolution: same Hox genes, different body plans. Current Biology, 7: R634 R636. AVEROF, M. & AKAM, M. (1995): Hox genes and the diversification of insect and crustacean body plans. Nature, 376: 420 423. DEUTSCH, J. S. & MOUCHEL-VIELH, E. (2003): Hox genes and the crustacean body plan. Bioessays, 25: 878 887. DOHRN, A. (1867): Die embryonale Entwicklung des Asellus aquaticus. Zeitschrift für wissenschaftliche Zoologie, 17: 221 278. DUBOULE, D. (2007): The rise and fall of Hox gene clusters. Development, 134: 2549 2560. Fig. 7. Expression domains of abd-a mrna in Asellus aquaticus (left) and Porcellio scaber (right). The experimentally derived embryonic patterns are shown in relation to the adult morphology. Dark blue coloring indicates strong gene activities, while a light blue color refers to weaker expression domains. at, antennae; an, antennule; ct, cephalothorax; pl, pleon; pt, pleotelson.

VICK & BLUM, THE ISOPOD ASELLUS AQUATICUS 97 GARCIA-FERNANDEZ, J. (2005): The genesis and evolution of homeobox gene clusters. Nature Review Genetics, 6: 881 892. GRUNER, H.-E. (1965): Krebstiere oder Crustacea, V. Isopoda. In: DAHL, M. & PEUS, F. (eds.): Die Tierwelt Deutschlands und der angenzenden Meeresteile, 51: VIII + 149 pp.; Jena (Gustav Fischer Verlag). HOEGG, S. & MEYER, A. (2005): Hox clusters as models for vertebrate genome evolution. Trends in Genetics, 21: 421 424. HOLLAND, P. W. & GARCIA-FERNANDEZ, J. (1996): Hox genes and chordate evolution. Developmental Biololgy, 173: 382 395. HUEBER, S. D. & LOHMANN, I. (2008): Shaping segments: Hox gene function in the genomic age. Bioessays, 30: 965 979. KRUMLAUF, R. (1993): Hox genes and pattern formation in the branchial region of the vertebrate head. Trends in Genetics, 9: 106 112. PANGANIBAN, G. & RUBENSTEIN, J. L. (2002): Developmental functions of the Distal-less/Dlx homeobox genes. Development, 129: 4371 4386. PANGANIBAN, G., NAGY, L. & CARROLL, S. B. (1994): The role of the Distal-less gene in the development and evolution of insect limbs. Current Biology, 4: 671 675. PANGANIBAN, G., SEBRING, A., NAGY, L. & CARROLL, S. (1995): The development of crustacean limbs and the evolution of arthropods. Science, 270: 1363 1366. PANGANIBAN, G., IRVINE, S. M., LOWE, C., ROEHL, H., CORLEY, L. S., SHERBON, B., GRENIER, J. K., FALLON, J. F., KIMBLE, J., WALKER, M., WRAY, G. A., SWALLA, B. J., MARTINDALE, M. Q. & CARROLL, S. B. (1997): The origin and evolution of animal appendages. Proceedings of the National Academy of Science of the United States of America, 94: 5162 5166. PEARSON, J. C., LEMONS, D. & MCGINNIS, W. (2005): Modulating Hox gene functions during animal body patterning. Nature Review Genetics, 6: 893 904. POPODI, E. & RAFF, R. A. (2001): Hox genes in a pentameral animal. Bioessays, 23: 211 214. RUDDLE, F. H., BARTELS, J. L., BENTLEY, K. L., KAPPEN, C., MURTHA, M. T. & PENDLETON, J. W. (1994): Evolution of Hox genes. Annual Review of Genetics, 28: 423 442. TABIN, C. J. (1992): Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. Development, 116: 289 296. VERVOORT, M. (2002): Functional evolution of Hox proteins in arthropods. Bioessays, 24: 775 779. VICK, P., SCHWEICKERT, A. & BLUM, M. (2009). Cloning and expression analysis of the homeobox gene abdominal-a in the isopod Asellus aquaticus. In: KURZFIELD, N. C. (ed.): Development Gene Expression Regulation: 285 295; Hauppauge (Nova Science Publishers). VON HAFFNER, K. (1937): Untersuchungen über die ursprüngliche und abgeleitete Stellung der Beine bei den Isopoden. Zeitschrift für wissenschaftliche Zoologie, 149: 513 536. WELLIK, D. M. (2009): Hox genes and vertebrate axial pattern. Current Topics in Developmental Biology, 88: 257 278. WEYGOLDT, P. (1959): Beitrag zur Kenntnis der Malakostrakenentwicklung. Die Keimblätterbildung bei Asellus aquaticus (L.). Zeitschrift für wissenschaftliche Zoologie, 163: 342 354. WHITINGTON, P. M., LEACH, D. & SANDEMAN, R. (1993): Evolutionary change in neural development within the arthropods: axonogenesis in the embryos of two crustaceans. Development, 118: 449 461. WOLPERT, L. (2000): What is evolutionary developmental biology? Novartis Foundation Symposium, 228: 1 14, discussion 46 52. ZENKER, D. (1854): Über Asellus aquaticus. Archiv für Naturgeschichte, 20: 103 107. Addresses of the authors: PHILIPP VICK, MARTIN BLUM, Institute of Zoology, University of Hohenheim, Garbenstr. 30, 70593 Stuttgart, Germany Present address of P. VICK: HHMI, University of California, Los Angeles, CA 90095-1662, USA E-mail of corresponding author: martin.blum@uni-hohenheim.de Manuscript received 15 April 2010, accepted 15 June 2010.