z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1

Similar documents
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

Recurrence. 1 Definitions and main statements

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

This circuit than can be reduced to a planar circuit

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

We are now ready to answer the question: What are the possible cardinalities for finite fields?

1 Example 1: Axis-aligned rectangles

Lecture 3: Force of Interest, Real Interest Rate, Annuity

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

Support Vector Machines

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

MATH 381 HOMEWORK 2 SOLUTIONS

PERRON FROBENIUS THEOREM

A machine vision approach for detecting and inspecting circular parts

7.5. Present Value of an Annuity. Investigate

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Rotation Kinematics, Moment of Inertia, and Torque

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

3 Contour integrals and Cauchy s Theorem

Homework: 49, 56, 67, 60, 64, 74 (p )

BERNSTEIN POLYNOMIALS

Least Squares Fitting of Data

Section 5.4 Annuities, Present Value, and Amortization

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

SIMPLE LINEAR CORRELATION

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

What is Candidate Sampling

Simple Interest Loans (Section 5.1) :

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solutions for Review Problems

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

3. Present value of Annuity Problems

CHAPTER 8 Potential Energy and Conservation of Energy

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Finite Math Chapter 10: Study Guide and Solution to Problems

21 Vectors: The Cross Product & Torque

Hedging Interest-Rate Risk with Duration

Quantization Effects in Digital Filters

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Ring structure of splines on triangulations

The Greedy Method. Introduction. 0/1 Knapsack Problem

5.3 Improper Integrals Involving Rational and Exponential Functions

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Lecture 2: Single Layer Perceptrons Kevin Swingler

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

Using Series to Analyze Financial Situations: Present Value

J. Parallel Distrib. Comput.

How To Assemble The Tangent Spaces Of A Manfold Nto A Coherent Whole

Texas Instruments 30X IIS Calculator

Generalizing the degree sequence problem

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Solutions to Homework 10

Solutions to Practice Problems for Test 4

This makes sense. t /t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

4.2. LINE INTEGRALS ; z = t. ; y = sin

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

FINANCIAL MATHEMATICS

Realistic Image Synthesis

The OC Curve of Attribute Acceptance Plans

Support vector domain description

Faraday's Law of Induction

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Chapter 11 Torque and Angular Momentum

MATH 52: MATLAB HOMEWORK 2

Addendum to: Importing Skill-Biased Technology

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

Chapter 17. Review. 1. Vector Fields (Section 17.1)

Extending Probabilistic Dynamic Epistemic Logic

Section C2: BJT Structure and Operational Modes

Section 2 Introduction to Statistical Mechanics

Section 2.3 Present Value of an Annuity; Amortization

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

1. Math 210 Finite Mathematics

Computational Fluid Dynamics II

10.2 Future Value and Present Value of an Ordinary Simple Annuity

Physics 110 Spring D Motion Problems: Projectile Motion Their Solutions

Energies of Network Nastsemble

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST)

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

The descriptive complexity of the family of Banach spaces with the π-property

COLLOQUIUM MATHEMATICUM

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

Peak Inverse Voltage

Positive Integral Operators With Analytic Kernels

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

A Three-Point Combined Compact Difference Scheme

reduce competition increase market power cost savings economies of scale and scope cost savings Oliver Williamson: the efficiency defense

Fisher Markets and Convex Programs

Mean Value Coordinates for Closed Triangular Meshes

Cautiousness and Measuring An Investor s Tendency to Buy Options

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

DEFINING %COMPLETE IN MICROSOFT PROJECT

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = = 0

Lecture 2 The First Law of Thermodynamics (Ch.1)

Transcription:

(4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at z 4 +. z(t) + 4e t ; t (c). the arc of the crcle jzj R lyng n the second quadrant, from z R to z R. z(t) Re t ; t (d). the segment of the parabola y x from the pont (; ) to the pont (3; 9). z(t) t + t ; t 3 3. Show that the ellpse x a admssble parametrzaton. + y b s a smooth curve by producng an Let x a cos t; y b sn t. Substtute these values n the ellpse to obtan cos t + sn t, a true statement for all t. 5. Identfy the nteror of the curve. Is t postvely orented? Yes. 7. Parametrze the contour consstng of the permeter of the square wth vertces ; ; + ; and +. What s the length of ths contour? : z(t) + t ; t : z(t) + (t ) ; t 3 : z(t) + (t ) ; t 3 4 : z(t) + (t 3) ; 3 t 4 l( ) 8. 8. Parametrze the contour. Also parametrze.

The contour conssts of of two smooth curves - the straght lne pece and the sem-crcle : : z (t) ( + ) + t( ( + )) + + t( ) ; t : z (t) e t ; t : z (t) e t ; t : z (t) + (t )( + ) ; t 9. Parametrze the barbell-shaped contour wth ntal pont and termnal pont. rcle : z(t) + e t ; t Straght lne : z(t) + (t ) ; t rcle 3 : z(t) e (t ) ; t 3 Straght lne 4 : You can reduce the above parametrzaton to the one gven n the back of the text. Namely, 8 < + e 6t f t 3 z(t) + 6(t 3) f 3 t 3 : e 6(t 3) f 3 t : Follow Wen s soluton dscussed n class.. Fnd the length of the contour parametrzed by z(t) 5e 3t ; t. z (t) 5e 3t ) jz (t)j 5: l( ) R jz (t)j dt 5: (4.): ontour Integrals 3. Evaluate the followng ntegrals. (a). (t + t )dt t + 3 t3 + 3

(b). ( + ) ( + ) cos(t)dt ( + ) snh sn(t) ( + ) sn() (c). ( + t) 5 dt ( + t) 6 ( + )6 + 9 3 ( + ) 6 3 (d). t (t + ) dt 4+ u 4+ u dt ; u t + ) du tdt lmts: u to u 4 + 5. Evaluate where : jz (4 + ) + 7 8 7 6 (z ) + + 3(z ) dz z j 4 traversed once counterclockwse. 6 (z ) + + 3(z ) dz z 6() + () + + 4: 7. ompute R Re zdz along the drected lne segment from z to z +. The lne can be parametrzed as z(t) ( + )t t + t for t ) z (t) ( + )dt R R Re zdz (+) t ( + )dt [t ] (+) : 8. Let be the permeter of the square wth vertces at the ponts z ; z ; z +; and z traversed once n that order. Show that R ez dz. 3

Refer to the class notes for a soluton that uses parametrzaton. For an alternate soluton consder the followng: e z dz e z dz + + e z dz + e z dz + + e z dz [e z ] + [e z ] + + [e z ] + + [e z ] (e ) + (e + e) + (e e + ) + ( e ) : 9. Evaluate R (x xy)dz over the contour : z t + t ; t ) z ( + t)dt. R R (x xy)dz (t t3 )( + t)dt R [(t + 4t4 ) + (t t 3 )]dt h t + 4t5 5 + t 3 t 4 3 + 6 : I I. True or False: zdz z dz. jzj jzj The statement s true snce we can use the fact that all z satsfy jzj. Indeed, I jzj zdz I jzj z z z dz I jzj I jzj z dz jzj z dz. 3. ompute R (jz + j z)dz along the semcrcle z + e t ; t. (jz + j z)dz ( + e t ( + e t ) e t dt e t + ( + e t )) e t dt ( e t e t )dt e t [ ]. (4.3): Independence of Path. alculate the followng. 4

(a). R (3z 5z + )dz : lne z to z : (3z 5z + )dz (3z 5z + )dz [z 3 5 z + z] 3 + ( + 5 3 + : ) (b). R e z dz : upper half of crcle jzj from z to z : e z dz [e z ] z e e (only the end ponts matter) (e e ) snh : (e). R sn z dz : contour n the gure. sn z dz 3 sn 3 z z 3 [sn ]3 snh 3 : 3 (f). R e z dz : contour n the gure. e z dz (use ntegraton by parts) [ez (sn z + )] z [e (sn + cos ) e ( )] e + e (cosh + snh ): (h). R (Log(z)) dz : lne z to z : 5

We rst need to nd the ntegral of R (log(x)) dx: I (log(x)) dx ; u log x ) du x dx dv log xdx ) v x[log x ] I x log(x)[log x ] [log x ]dx x log(x)[log x ] x[log x ] + x x x log(x) + x(log(x)) : (Log(z)) dz z zlog(z) + z(log(z)) z Log() + (Log()) [] [log jj + ] + [log jj + ] + 4 (). R +z dz : lne z to z + : + ( 4): We wll use the de nton h of the complex nverse tangent functon: tan (z) log +z z : + z dz tan z + z tan ( + ) tan () + + log log( ) log + log( ) log p 5 + ( + tan ()) 3 4 log(5) tan () + 4 :. If P (z) s a polynomal and s any closed contour, explan why R P (z)dz : P (z) s entre and therefore has an antdervatve. Thus, f contour, R P (z)dz : s any closed 6

4. True or False: If f s analytc at each pont of a closed contour, then R f(z)dz : Ths s false, auchy s Theorem requres that f be analytc on and nsde. For example, the functon f(z) z s analytc on jzj ; but not nsde and dz 6 : R z 5. Explan why f(z) z has no antdervatve n the punctured plane rfg: Suppose f(z) z has an antdervatve n r fg. Then R z dz for every closed curve r fg. But ths s not true for any loop whch encloses the pole z : For nstance f : jzj, R jzj z dz. (4.4): auchy s Integral Theorem. Let D be the doman gven on page 99 and the contour shown. Decde f the followng gven contours can be deformed to. (a). Yes (b). No (c). Yes (d). No 3. Let D : < jzj < 5 and : jz 3j traversed once postvely startng at z 4. Decde whch of the followng contours are contnuously deformable to n D. (a). Yes (b). Yes (c). No (d). Yes (e). Yes. Determne the doman of analytcty and explan why R f(z)dz : jzj (a). f(z) z z +5 RD fz j z 6 5g. f(z)dz snce f s analytc on and nsde : jzj. jzj (b). f(z) e z (z + ) Ths s an entre functon, so R f(z)dz. jzj 7

(c). f(z) z 6z+ RD fz j z 6 3 g. f(z)dz snce f s analytc on and nsde : jzj. jzj (d). f(z) sec z cos(z) ) z 6 (n ) ) z 6 (n ); n ; ; ; D R fz j z 6 (n ); n ; ; ; g. f(z)dz snce f s analytc on and nsde : jzj. jzj (e). f(z) Log(z + 3) z + 3 x + y + 3 x + 3 + y. We need to avod y and x+3. D R r fx + y j y ; x 3g. f(z)dz snce f s analytc on and nsde : jzj. jzj 3. Evaluate R z + (a). R z + dz R (b). Deform nto a barbell. R z + dz R (c). R z + dz R dz along each of the three contours. (z+)(z ) dz R (z+)(z ) dz R (z+)(z ) dz R h (z+) h (z+) h (z+) (z ) dz (z ) dz (z ) : : dz : 5. Evaluate R z (z+)(z ) dz; where : jzj 4 traversed twce n the clockwse drecton. R z (z+)(z ) dz R jzj4 h 3 (z+) + 3 (z ) dz 3 + 3 4: 7. Evaluate R z z+ (z+)(z ) dz; where s the contour shown n the gure. Frst get the partal fractons. z z + (z + )(z ) A () (z + ) + A() (z ) + A() (z ) over-up rule gves, A () ; A (). To nd A () d z z + lm z!! dz (z + ) d (z + )(4z ) (z z + ) lm z! dz (z + ) 6 : 4 8

R z z+ (z+)(z ) dz R h (z+) + (z ) + (z ) dz [ + ] : (4.5): auchy s Integral Formula and Its onsequences. Let f be analytc nsde and on the smple closed contour. What s the value of f(z) dz z z when z les outsde? Snce f s analytc nsde and on, the nteror of the closed loop s a smply-connected doman (call t D) n whch f s analytc. Gven that z les outsde, the functon f(z) z z s analytc n D as well. By auchy s Integral Theorem, R f(z) z z dz. R f(z) Therefore, z z dz.. Let f and g be analytc nsde and on the smple loop. Prove that f f(z) g(z) for all z on, then f(z) g(z) for all z nsde. Let z be any pont nsde. We need to show that f(z ) g(z ). Applyng auchy s Integral Formula we obtan f(z) g(z) f(z ) g(z ) dz dz z z z z f(z) g(z) dz z z ; snce f(z) g(z) for all z on. 3. Let : jzj traversed once postvely. ompute the followng. (a). (b). sn 3z z dz [sn 3z] z : ze z z 3 dz ze z z 3 dz [zez ] z3 3 e3 3 e3 : 9

(c). (d). Let f(z) 5z + z +. (e). Let f(z) e z. (f). Let f(z) sn z z 4. z 3 + 9z dz z(z + 9) dz z(z + 3)(z 3) dz cos (z + 3)(z 3) 9 9 : z 5z + z + (z ) 3 dz! [f () ()] : e z (z + ) dz! [f () ( )] e: sn z z (z 4) dz! [f () ()] : 4. ompute where s (z 4) sn z z + z 3 + z dz; (a). crcle jzj traversed once counterclockwse. z + z 3 + z dz z + z (z + ) dz z +! z + ( ) : z (z 4) (z + ) (z + ) (z + ) z z

(b). crcle jz + j traversed once counterclockwse. z + z 3 + z dz z + z (z + ) dz z + + z 4 ( + ) : z (c). crcle jz j traversed once counterclockwse. z + z 3 + z dz z + z (z + ) dz : 6. Evaluate e z (z + ) dz; where s the crcle jzj 3 traversed once counterclockwse. Sketch the contour jzj 3 and reduce the contour to a vertcal barbell conssng of: a crcle traversed counter clockwse : jz j straght lne 3 connectng to a crcle traversed counter clockwse : jz + j and straght lne 3 connectng to Let f(z) ez (z+) and g(z) ez (z ). Then e z (z + ) dz f ()! f(z) (z ) dz + + cosh (z + ) dz + 3 e z 3 e z (z + ) dz + snh 3 e z (z + ) dz + e 3 z (z + ) dz + g ()! (cosh snh ) g(z) (z + ) dz

7. ompute z (z 3) dz; where s the ndcated contour. The poles of the ntegrand are z (mul ); and z 3. Snce the small loop does not enclose the poles we can deform to a crcle, say jzj. Therefore, z (z 3) dz! lm z! 9 : d dz (z 3) lm z! (z 3) sn z (z 3). Let f u + v be analytc n a doman D. Explan why @ u @x n D. s harmonc By Theorem 6, all dervatves of f exst and are analytc. In partcular, f () (z) u x + v x ; and f () (z) u xx + v xx. Snce f () (z) u xx + v xx s analytc, ts real part, @ u @x ; s harmonc n D.